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Abstract

We prove in this paper that any solution x, of an ordinary differ-

ential equations defined by a trigonometric polynomial field, admits a

rotation vector ρ ∈ Rn. More precisely, the function t 7→ x(t) − ρt is

uniformly bounded on time and it is a weak almost periodic function

of slope ρ.
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1 Introduction

In this paper we study the asymptotic behavior of a solutions of the ordinary
differential equations defined by a trigonometric polynomial field. The idea
comes from the scalar case; H. Poincaré defined the rotation number for circle
homeomorphisms [7]. The simple example is a scalar differential equation

ẋ = f(x), x(0) ∈ R, t ∈ R,

where f : R → R is lipschitz and 1-periodic. There exists a rotation number
λ ∈ R such that the function t 7→ x(t) − λt is periodic. For two dimension
[5] showed that the solution x, of the scalar differential equation

ẋ = f(t, x), x(0) ∈ R, t ∈ R,
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2 W. Oukil

where f : R × R → R is lipschitz and 1-periodic relative to each variable,
admits a rotation number. We know that any non-autonomous system can
be written as an autonomous system. Our result is a generalization of this
asymptotic behavior to any dimension. In this case λ is a vector and it is
called a rotation vector or rotation set as defined in [6]. Under some as-
sumptions of stability [[8], [3]] prove the existence of the rotation vector.
We mention relative results about the rotation vector in [2]. Some biologi-
cal works use the ordinary differential equations defined by a trigonometric
polynomial field as in [[1], [4]].

2 Definition and Main result

We study in this article the following system

ẋ = f(x), t ∈ R, x ∈ Rn, x(0) = x0,

where f : Rn → Rn is a trigonometric polynomial in the following sense

Definition 1. [Trigonometric polynomial function] A function g : Rn → R

is called a trigonometric polynomial if there exists a finite sequence
(cp)p∈2πZn ⊂ C such that

∀x ∈ Rn : g(x) =
∑

p∈2πZn

cp exp(i〈x, p〉),

where 〈., .〉 is the usual scalar product on Rn. A function g : Rn → Rn is
a trigonometric polynomial if each component is a trigonometric polynomial
function.

To formulate the Mains results let us introduce the following defini-
tions. We use the usual following norm ‖y‖ := max1≤j≤n‖yj‖ for every
y := (yj)

n
j=1 ∈ Cn .

Definition 2. [Rotation vector] Let λ ∈ Rn and φ : R → Rn be a function.
We say that φ admits λ as the rotation vector if

sup
t∈R

‖φ(t)− λt‖ <∞.

Definition 3. [Periodic modulo Zn function] A function g : Rn → Rn is
called periodic modulo Zn, if

g(z1 + k1, . . . , zn + kn) = g(z1 . . . , zn), ∀(kj)
n
j=1 ∈ Zn, ∀(zj)

n
j=1 ∈ Rn.
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Definition 4. [Weakly almost-periodic function] Let be r ∈ Rn. A func-
tion h : R → Rn is weakly almost periodic of slope r if it is C∞ and if
there exists a uniformly bounded sequence for the sup-norm of C∞ func-
tions (gk : Rn → Rn)k∈N that are periodic modulo Zn and there exists a
sequence (rk)k∈N ⊂ Qn such that

lim
k→∞

rk = r and ∀t > 0 : lim
k→∞

sup
s∈[−t,t]

‖gk(rks)− h(s)‖ = 0.

Main Result. Let f : Rn → Rn be a trigonometric polynomial function.
For every x0 ∈ Rn the unique solution x : R → Rn of

ẋ = f(x), t ∈ R, x(0) = x0,

admits a rotation vector ρ ∈ Rn. In addition, the function

t 7→ x(t)− ρt,

is weakly almost periodic of slope ρ.

3 Space of C∞ periodic modulo Zn functions

We define in this Section the space and the norm used to prove the Main
result. In order to use the Fourier development, let us introduce the following
notations

Notation 5. For every continuous function g : Rn → Rn and every p ∈ 2πZn

we denote ap[g] ∈ Cn the following limit if it exists

ap[g] := lim
t→+∞

1

(2t)n

∫ t

−t
. . .

∫ t

−t
g(z) exp(−i〈z, p〉)dz1 . . . dzn.

The following constant ω will be used only as change of variable in order
to find a contraction in Lemmas 13 and 14. For every ω ∈ N∗, we denote
Eω(R

n) the set of C∞ function g : Rn → Rn such that z 7→ g(ωz) is a periodic
modulo Zn function. We remark that for very ω ∈ N∗ and g ∈ Eω(R

n) we
have

ap[gω] =

∫ 1

0
. . .

∫ 1

0
gω(z) exp(−i〈z, p〉)dz1 . . . dzn, gω(z) = g(ωz), (1)
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which is the Fourier coefficient of the function gω. Since g ∈ Eω(R
n) is C∞,

by Dirichlet Theorem, we get

g(z) =
∑

p∈2πZn

ap[gω] exp(i
1

ω
〈z, p〉), (2)

∀q ≥ 0 :
∑

p∈2πZn/0

‖ap[gω]‖‖
p

ω
‖q < +∞.

We are now in position to define the following seminorm in Eω(R
n): Let

ω ∈ N∗ and g ∈ Eω(R
n), we denote for every ω ∈ N∗ and q ≥ 0

‖g‖ω,q := 2
∑

p∈2πZn/0

‖ap[gω]‖‖
p

ω
‖q,

where we recall that ‖y‖ := max1≤j≤n‖yj‖ for every y := (yj)
n
j=1 ∈ Cn. We

prove in the following Lemma that a periodic modulo Zn function g is C∞

if it is uniformly bounded for the seminorm, i.e

∀q ≥ 0 : ‖g‖ω,q < +∞,

In other words, the set Eω(R
n) coincide with the set of the periodic modulo

Zn functions uniformly bounded for the seminorm.

Lemma 6. Let ω ∈ N∗. Let (cp)p be a complex-valued family such that

∀q ≥ 0 :
∑

p∈2πZn/0

‖cp‖‖
p

ω
‖q < +∞.

Then the following series is normally convergent

g(z) :=
∑

p∈2πZn

cp exp(i
1

ω
〈z, p〉), cp ∈ Cn,

and cp = ap[gω] for every p ∈ 2πZn. Further, g ∈ Eω(R
n).

Proof. Appendix. A

We denote 0 := (0, . . . , 0) ∈ Rn. In the following Lemma we prove that
the seminorm ‖.‖ω,0 is a norm in the space {g ∈ Eω(R

n) : g(0) = 0} and we
compare it to the uniform norm topology.

Lemma 7. Let be ω ∈ N∗ and g ∈ Eω(R
n) such that g(0) = 0 then

‖a0[gω]‖ ≤
1

2
‖g‖ω,0 and ‖g‖∞ ≤ ‖g‖ω,0.
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Proof. Appendix. B

Finally, the following Lemma gives an upper-bound of the quantity ‖g‖ω,q
when g is a trigonometric polynomial.

Lemma 8. Let g : Rn → Rn be a trigonometric polynomial function. Then
there exists β := β(g) > 0 such that for every ω ∈ N∗ we have

‖dkgω‖ω,q < nkβ(
β

ω
)q+k, ∀q, k ≥ 0,

where gω(z) := g( zω ).

Proof. Appendix. C

4 Main proposition

Notation 9. Let f : Rn → Rn be a trigonometric polynomial. We denote
the finite subset Λf ⊂ 2πZn as

Λf := {p ∈ 2πZn : ‖ap[f ]‖ 6= 0},

and we denote

|Λf | := max{‖p‖, p ∈ Λf}.

Let be y ∈ Rn/{0}. Define,

Λ(f, y) := {p ∈ 2πZn : ‖p‖ ≤ 2π + |Λf |, 〈y, p〉 6= 0},

Remark that Λ(f, y) 6= ∅. We denote

τ(f, y) := max
{ 1

|〈y, p〉|
: p ∈ Λ(f, y)}.

Let be y ∈ Qn/{0}, we denote

τ(y) = max
{ 1

|〈y, p〉|
: p ∈ 2πZn, 〈y, p〉 6= 0

}

.

We denote β the constant β(f) of the function f defined in Lemma 8.

In order to prove the Main result, the aim is to find the periodic modulo
Zn functions gk of the Definition 4. Using the Fourier development and
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Equation 2, remark that for every C∞ periodic modulo Zn function g we
have

f(z + g(z)) =
∑

p∈2πZn

ap[H[g]] exp(i〈z, p〉), H[g](z) := f(z + g(z)),

under some convergence assumption of the series, by integration we get

∀v ∈ Rn :

∫ t

0
f(vs+ g(vs))ds = t

∑

p∈2πZn, 〈v,p〉=0

ap[H[g]]

+
∑

p∈2πZn, 〈v,p〉6=0

ap[H[g]]]

〈v, p〉

(

exp(i〈v, p〉t) − 1
)

.

We need remove the linear part, hence the last term of the right member of
the last equality play the role of the periodic modulo Zn functions gk of the
Definition 4. In the following Proposition we prove that it is bounded by
2βτ(f, v).

Proposition 10. [Main proposition] Let f : Rn → Rn be a trigonomet-
ric polynomial function. Then for every r ∈ Qn/{0} and every ǫ > 0
there exists a C∞ periodic modulo Zn function φr,ǫ : Rn → Rn such that
‖φr,ǫ‖∞ < 2βτ(f, r) and such that

sup
z∈Rn

‖φr,ǫ(z)−
∑

p∈2πZn, 〈r,p〉6=0

ap[H[φr,ǫ]]

〈r, p〉
(exp(i〈z, p〉) − 1)‖ < ǫ,

where

H[φr,ǫ](z) := f(z + φr,ǫ(z)), ∀z ∈ Rn.

As is state in the above Section, the following constant ω is used as
change of variable in order to find a contraction.

Definition 11. For every r ∈ Rn and every ω ∈ N∗, define the set Kr,ω as
g ∈ Kr,ω if

• there exists a complex-valued family (cp)p∈2πZn such that

g(z) =
∑

p∈2πZn

cp(exp(i
1

ω
〈z, p〉)− 1), ∀z ∈ Rn,

• ‖g‖ω,0 ≤ 2βτ(f, r),
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• ‖g‖ω,q <∞ for every q > 1.

Lemma 12. The set Kr,ω is a nonempty subset of Eω(R
n).

Proof. The set Kr,ω 6= ∅ because it contain the function z 7→ g(z) = 0. Let
be r ∈ Rn and ω ∈ N∗. Let be g ∈ Kr,ω. Since ‖g‖ω,0 < ∞ then z 7→ g(ωz)
is a continuous periodic modulo Zn. By definition of Kr,ω and by Lemma 6
the function g is C∞.

For every r ∈ Rn , for every ω ∈ N∗, and every g ∈ Kr,ω define the
function Ψ[r, ω, g] : Rn → Rn as

Ψ[r, ω, g](z) :=
∑

p∈2πZn, 〈r,p〉6=0

ap[H[ω, g]]

〈r, p〉
(exp(i

1

ω
〈z, p〉)− 1),

where

H[ω, g](z) := f
( 1

ω
z + g(z)

)

.

In the following Lemma we prove that Kr,ω is invariant under the operator
Ψ[r, ω, .].

Lemma 13. Let f : Rn → Rn be a trigonometric polynomial function. For
every r ∈ Qn/{0}, there exists ωr > 0 such that for every ω > ωr we have

g ∈ Kr,ω =⇒ Ψ[r, ω, g] ∈ Kr,ω.

Proof. Prove that

∀g ∈ Kr,ω : ‖Ψ[r, ω, g]‖ω,q <∞, ∀q ≥ 0.

Let be g ∈ Kr,ω and denote

fω(z) := f(
z

ω
), and H̃[ω, g](z) := f

( 1

ω
z + g(z)

)

− f(
z

ω
).

By definition, we get

ap[H[ω, g]] = ap[fω] + ap[H̃[ω, g]].

By definition of Ψ[r, ω, .] for every g ∈ Kr,ω we have

Ψ[r, ω, g](z) =
∑

p∈2πZn, 〈r,p〉6=0

ap[fω]

〈r, p〉
(exp(i

1

ω
〈z, p〉) − 1)

+
∑

p∈2πZn, 〈r,p〉6=0

ap[H̃[ω, g]]

〈r, p〉
(exp(i

1

ω
〈z, p〉)− 1)
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Recall that |Λf | is defined on the Notations 9. For every p ∈ 2πZn such that
〈r, p〉 6= 0 and such that ‖p‖ > |Λf | we have ap[fω] = 0. By definition of
τ(f, r) and τ(r) in Notation 9, we get

‖Ψ[r, ω, g]‖ω,q ≤ 2τ(f, r)
∑

p∈2πZn, 〈r,p〉6=0

‖ap[fω]‖‖
p

ω
‖q

+ 2τ(r)
∑

p∈2πZn, 〈r,p〉6=0

‖ap[H̃[ω, g]]‖‖
p

ω
‖q.

By definition of the norm, we have,

‖Ψ[r, ω, g]‖ω,q ≤ τ(f, r)‖fω‖ω,q + τ(r)‖H̃ [ω, g]‖ω,q . (3)

By Lemma 8, we have

‖fω‖ω,q ≤
βq+1

ωq
. (4)

Now, we estimate the quantity ‖H̃[ω, g]‖ω,q . By definition, we have

H̃[ω, g](z) = f
( 1

ω
z + g(z)

)

− f(
1

ω
z) =

∞
∑

k=1

dkf( zω )

k!
(g(z))(k),

where

dkf(
z

ω
)(g(z))(k) :=

n
∑

i1,...,ik=1

∂f

∂zi1 . . . ∂zik
(
z

ω
)gi1(z) . . . gik(z).

For every k ≥ 1 we have
‖a0[d

kfω]‖ = 0,

and since g ∈ Kr,ω then g(0) = 0 by Lemma 7 we get

‖a0[g]‖ ≤ ‖g‖ω,0 ≤ α0 := 2βτ(f, r).

By Lemma 15 [See Appendix D], we have for all q ≥ 0

‖H̃[ω, g]‖ω,q ≤
∞
∑

k=1

1

k!
‖
[

(dkfω)(g)
(k)

]

‖ω,q

≤
∞
∑

k=1

(k + 1)qωkq

k!2k
‖dkfω‖ω,q(‖g‖ω,q + α0)

k.



Trigonometric polynomial differential equations 9

By Lemma 8, we get

∀q ≥ 0 : ‖H̃[ω, g]‖ω,q ≤
∞
∑

k=1

exp(qk)ωkq

k!2k
nk
βk+q+1

ωk+q
[α0 + ‖g‖q ]

k.

By hypothesis g ∈ Kr,ω, then

∀q ≥ 0,∃αq > 0 : ‖g‖ω,q ≤ αq where α0 := 2βτ(f, r).

we deduce that for all q ≥ 0,

‖H̃[ω, g]‖ω,q ≤
∞
∑

k=1

exp(qk)ωkq

k!2k
nk
βk+q+1

ωk+q
(α0 + αq)

k

=
βq+1

ωq

∞
∑

k=1

1

k!

(

n exp(q)ωq β

2ω
(α0 + αq)

)k

≤
βq+1

ωq

[

exp
(

n exp(q)ωq β

2ω
(α0 + αq)

)

− 1
]

<∞.

By Equations (4) and Equation (3), we obtain

∀g ∈ Kr,ω : ‖Ψ[r, ω, g]‖ω,q <∞, ∀q ≥ 0.

Choose ω > ωr > 0, where ωr ∈ N∗ satisfies

β
[

exp
(

n
β

ωr
α0

)

− 1
]

<
βτ(f, r)

τ(r)
.

We obtain

∀ω > ωr : ‖H̃[ω, g]‖ω,0 <
βτ(f, r)

τ(r)
. (5)

Replace both Equations (4) and (5) on Equation (3), one obtain

∀ω > ωr : ‖Ψ[r, ω, g]‖ω,0 < βτ(f, r) + βτ(f, r) = 2βτ(f, r) = α0.

Lemma 14. Let f : Rn → Rn be a trigonometric polynomial function. For
every r ∈ Qn/{0} there exists ω := ω(r) > 0 such that for every ǫ > 0, there
exists φr,ω,ǫ ∈ Kr,ω satisfying

‖φr,ω,ǫ −Ψ[r, ω, φr,ω,ǫ]‖∞ < ǫ.
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Proof. Let be ω > β and h, g ∈ Kr,ω, we have

Ψ[r, ω, h](z) −Ψ[r, ω, g](z)

=
∑

p∈2πZn, 〈r,p〉6=0

ap[φ[ω, h, g](h − g)]

〈r, p〉
(exp(i

1

ω
〈z, p〉) − 1),

where

φ[ω, h, g](z) :=

∫ 1

0
df
( 1

ω
z + sh(z) + (1− s)g(z)

)

ds.

The function
z 7→ φ[ω, h, g](ωz),

is a C∞ periodic modulo Zn function. As in Proof of Lemma 13, for every
u ≥ 0,

‖Ψ[r, ω, h] −Ψ[r, ω, g]‖ω,0 ≤ τ(r)‖φ[h, g](h − g)‖ω,0.

Since h, g ∈ Kr,ω, then

‖h− g‖ω,0 < ‖h‖ω,0 + ‖g‖ω,0 <∞.

Prove that there exists ωr > 0 such that for every ω > ωr there exists
ǫω ∈ (0, 1) such that

‖Ψ[r, ω, h] −Ψ[r, ω, g]‖ω,0 ≤ ǫω‖h− g‖ω,0.

By Lemma 15 [See Appendix D], we have

‖φ[h, g](h − g)‖ω,0 ≤ ‖φ[ω, h, g]‖ω,0‖h− g‖ω,0.

Then

‖Ψ[r, ω, h] −Ψ[r, ω, g]‖ω,0 ≤ τ(r)‖φ[ω, h, g]‖ω,0‖h− g‖ω,0. (6)

Prove that there exists ωr > 0 such that for every ω > ωr we have

∀g, h ∈ Kr,ω : 2τ(r)‖φ[ω, h, g]‖ω,0 < 1.

As in Proof of Lemma 13, we have

φ[ω, h, g](z) =

∫ 1

0

∞
∑

k=0

dk+1fω(z)

k!

(

sh(z) + (1− s)g(z)
)(k)

ds,
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By Lemma 15 [See Appendix D] and 7,

‖φ[ω, h, g]‖ω,0 ≤

∫ 1

0

∞
∑

k=0

1

k!2k
‖dk+1fω‖ω,0‖Vs‖

2k
ω,0.

where fω(z) := f( 1ωz) and where Vs : Rn → Rn is the C∞ periodic modulo
Zn defined by

Vs(z) := sh(z) + (1− s)g(z), ∀z ∈ Zn, s ∈ [0, 1].

By hypothesis g, h ∈ Kr,ω, by consequence

sup
s∈[0,1]

‖Vs‖ω,0 ≤ ‖g‖ω,0 + ‖h‖ω,0 ≤ 4βτ(f, r).

By Lemma 15, we have

‖φ[ω, h, g]‖ω,0 ≤
∞
∑

k=0

1

k!2k
βk+2

ωk+1
(4βτ(f, r))k =

β2

ω

∞
∑

k=0

1

k!

[1

2

(β

ω
4βτ(f, r)

)2]k

=
β2

ω
exp

(1

2

(β

ω
4βτ(f, r)

)2)

.

Choose ω > ωr > 0 large such that

2τ(r)
β2

ωr
exp

(1

2

(β

ω
4βτ(f, r)

)2)

< 1.

By Equation (6), we have proved that for every ω > ωr we have

‖[Ψ[r, ω, h] −Ψ[r, ω, g]‖ω,0 ≤
1

2
‖h− g‖ω,0. (7)

Now, choose ωr >> 1 fixed and very large. By Equation (7), for every ǫ > 0
there exists kǫ ≥ 0 such that

‖Ψ[r, ωr, φr,ω,ǫ]− φr,ω,ǫ‖ω,0 < ǫ,

where
φr,ω,ǫ := Ψkǫ [r, ωr, g].

By Lemma 7 we obtain

‖Ψ[r, ωr, φr,ω,ǫ]− φr,ω,ǫ‖∞ < ǫ,

By Lemma 13 we have φr,ω,ǫ ∈ Kr,ω.
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Proof of Proposition 10. Let be r ∈ Qn/{0}. By Lemma 14, there exists
ω := ωr > 0 such that for every ǫ > 0 there exists φr,ω,ǫ ∈ Kr,ω such that

‖Ψ[r, ω, φr,ω,ǫ]− φr,ω,ǫ‖∞ < ǫ. (8)

Define the functions,

φ̃r,ǫ(z) := φr,ω,ǫ(ωz), and H[g](z) := f(z + g(z)).

We recall that,

H[ω, φr,ω,ǫ](z) = f
( 1

ω
z + φr,ω,ǫr(z)

)

.

By Equation 1,
ap[H[ω, φr,ω,ǫ]] = ap[H[φ̃r,ǫ]],

Using the definition of Ψ[r, ω, φ̃r,ǫ] and replace on Equation (8), the function
φ̃r,ǫ satisfies

sup
z∈Rn

‖φ̃r,ǫ(z)−
∑

p∈i2πZn, 〈r,p〉6=0

ap[H[φ̃r,ǫ]]

〈r, p〉
(exp(〈z, p〉) − 1)‖ < ǫ.

By Lemma 14, φr,ω,ǫ ∈ Kr,ω then

‖φ̃r,ǫ]‖∞ ≤ ‖φr,ω,ǫ‖∞ < 2βτ(f, r).

By Lemma 12 the set Kr,ω is a subset of Eω(R
n). Then φ̃r,ǫ is a C∞ periodic

modulo Zn function.

5 Proof of the Main result

Proof of Main results. By a change of variable we can suppose that x(0) = 0

and f(z) 6= 0 for all z ∈ Rn. Let (ǫk)k ⊂ (0, 1] be a sequence satisfying
limk→∞ ǫk = 0. For every k ≥ 1 let γk ∈ Rn → Qn/{0} be a bijective
function satisfying

‖y − γk(y)‖ < ǫk.

Since γk(y) ∈ Qn/{0}, consider for every y ∈ Rn and every k ≥ 1 the function
φγk(y) satisfies the Main Proposition such that

sup
z∈Rn

‖φγk(y)(z)−
∑

p∈2πZn, 〈γk(y),p〉6=0

ap[H[φγk(y)]]

〈γk(y), p〉
(exp(i〈z, p〉) − 1)‖ <

1

k
,
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Define the recurrent sequence (ρk)k ⊂ Rn as

ρ0 = 0, ρk+1 :=
∑

p∈i2πZn, 〈γk(ρk),p〉=0

ap[H[φγk(ρk)]], ∀k ≥ 0.

Prove that the sequence (ρk)k is bounded. Let be ψk : R → Rn the function
defined by t 7→ ψk(t) := φγk(ρk)(γk(ρk)t). By Item 1 of the Main Proposition,
we get

sup
t∈R

‖ψk(t)−
∑

p∈2πZn, 〈γk(ρk),p〉6=0

ap[H[φγk(ρk)]]

〈γk(ρk), p〉
(exp(i〈γk(ρk), p〉t)− 1)‖ <

1

k
,

since the sum is normally convergent, that implies

sup
t∈R

‖ψk(t)−

∫ t

0

∑

p∈2πZn, 〈γk(ρk),p〉6=0

ap[H[φγk(ρk)]] exp(i〈γk(ρk), p〉s)ds‖ <
1

k
.

By Equation 2, we have the following Fourier development

f(z + φγk(ρk)(z)) =
∑

p∈2πZn

ap[H[φγk(ρk)]] exp(i〈z, p〉),

implies

sup
t∈R

‖ψk(t)−

∫ t

0
f(γk(ρk)s+ ψk(s))ds − tρk+1‖ <

1

k
.

Since ‖ψk‖∞ <∞ then

‖ρk+1 − lim
t→∞

1

t

∫ t

0
f(γk(ρk)s+ ψk(s))ds‖ <

1

k
.

we deduce that lim supk→∞‖ρk‖ ≤ ‖f‖. There exists ρ ∈ Rn and a sub-
sequence (ρks)s which converge to ρ. In order to simplify the notation, we
suppose that (ρk)k which converge to ρ. Since ǫk → 0 then

lim
k→∞

ρk = lim
k→∞

γk(ρk) = ρ.

We have supposed on the first of this proof, that f(z) 6= 0 for every z ∈ Rn,
then ρ 6= 0. There exists c > 0 and k0 ≥ 0 such that

τ(f, γk(ρk)) < c, ∀k ≥ k0.
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By the Main Proposition, we obtain

sup
k≥k0

‖φγk(ρk)‖∞ ≤ 2β sup
k≥k0

τ(f, γk(ρk)) < 2βc.

The functions

s 7→ γk(ρk)s+ φγk(ρk)(γk(ρk)s),

is a Picard iteration of the differential equation

ẋ = f(x), x(0) = 0,

there exists a weakly almost periodic function ψρ : R → Rn of slope ρ such
that

ψρ(t) = lim
k→∞

φγk(ρk)(γk(ρk)t)

=

∫ t

0
lim
k→∞

f(γk(ρk)s+ φγk(ρk)(γk(ρk)s))ds− t lim
k→∞

ρk

=

∫ t

0
f(ρs+ ψρ(s))ds − tρ, ∀t ∈ R.

By uniqueness of solution of differential equation, we have proved that

x(t) = ρt+ ψρ(t), ∀t ∈ R.
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Appendix. A

Proof of Lemma 6. By hypothesis, for q = 0 we have
∑

p∈2πZn/0

‖cp‖ < +∞,

the series is normally convergent and we have

∀p ∈ 2πZn : g(ωz) exp(−i〈z, p〉) =
∑

q∈2πZn

cp exp(i〈z, q − p〉), cp ∈ Cn,

implies

∀p ∈ 2πZn : ap[gω] =

∫ 1

0
. . .

∫ 1

0
g(ωz) exp(−i〈z, p〉)z1 . . . zn

=
∑

q∈2πZn

cp

∫ 1

0
. . .

∫ 1

0
exp(i〈z, q − p〉)z1 . . . zn = cp.

Now, prove that g ∈ Eω(R
n). Denote

θp(z) := exp(i〈z, p〉), ∀z ∈ Rn,

It is sufficient to prove that for every q ≥ 1 we have

Sq :=
∑

p∈2πZn/0

‖cp‖‖d
qθp‖∞ < +∞,

where dqg is qth differential of g, the function dqg is defined by

dqg(v1, . . . , vq) =
∑

p∈2πZn

cpd
qθp(v1, . . . , vq), ∀vj := (vj,k)

n
k=1 ∈ Rn, ∀j ∈ J1, qK.
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We have

∀j ∈ J1, qK, ∀vj := (vj,k)
n
k=1 ∈ Rn, p := (pj)

n
j=1,

dqθp(v1, . . . , vq) =
n
∑

k1=1

. . .
n
∑

kq=1

iqpk1 . . . pkq exp(i〈z, p〉)v1,k1 . . . vq,kq ,

then

‖dqθp‖∞ =
(

n
∑

k=1

|pk|
)q

≤ nq‖p‖q.

implies

∀q ≥ 1 : Sq ≤
∑

p∈2πZn/0

‖cp‖n
q‖p‖q =

1

2
nq‖g‖1,q < +∞.

then g ∈ Eω(R
n).

Appendix. B

Proof of Lemma 7 . By Equation 2, we have

g(z) =
∑

p∈2πZn

ap[gω] exp(i
1

ω
〈z, p〉).

Since g(0) = 0, then

a0[gω] = −
∑

p∈2πZn/0

ap[gω],

implies

‖a0[gω]‖ ≤
∑

p∈2πZn/0

‖ap[gω]‖ =
1

2
‖g‖ω,0.

Since

‖g‖∞ ≤
∑

p∈2πZn

‖ap[gω]‖.

We deduce that

‖g‖∞ ≤ ‖g‖ω,0.
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Appendix. C

Proof of Lemma 8. Since g : Rn → Rn is a trigonometric polynomial, then
it is C∞ and there exists m ∈ N such that

gω(z) = g(
z

ω
) =

∑

p∈2πZn, ‖p‖≤m

ap[g] exp(i
1

ω
〈z, p〉),

Denote

θp(z) := exp(i
1

ω
〈z, p〉), ∀z ∈ Rn,

Denote dkg is kth differential of g, which implies

∀vj := (vj,s)
n
s=1 ∈ Rn, ∀j ∈ J1, kK,

dkg(v1, . . . , vk) =
∑

p∈2πZn,‖p‖≤m

ap[g]d
kθp(v1, . . . , vk).

We have

∀j ∈ J1, kK, ∀vj := (vj,s)
n
s=1 ∈ Rn, p := (pj)

n
j=1 ∈ 2πZn,

dlθp(v1, . . . , vk) =
n
∑

s1=1

. . .
n
∑

sk=1

ik
ps1
ω
. . .

psk
ω

exp(i〈z, p〉)v1,s1 . . . vk,sk ,

then

∀p ∈ 2πZn, ‖p‖ ≤ m : ‖dkθp‖∞ =
(

n
∑

s=1

|
ps
ω
|
)k

≤ nk‖
m

ω
‖k.

We obtain

‖dkg‖ω,q ≤ 2nk(
m

ω
)k

∑

p∈2πZn, ‖p‖≤m

‖ap[g]‖‖
p

ω
‖q

≤ 2nk(
m

ω
)k+q

∑

p∈2πZn, ‖p‖≤m

‖ap[g]‖ = 2nk(
m

ω
)k+q‖g‖ω,0.

It is sufficient to choose β := 2max{‖g‖ω,0,m}.

Appendix. D

Lemma 15. Let ω ∈ N∗ and
(

hj ∈ Eω(R
n)
)k

j=1
. Then

∀q ∈ N, ∀k ∈ N∗ : ‖Πk
j=1hj‖ω,q ≤

(kωk−1)q

2k−1
Πk

j=1[‖2a0[hj,ω]‖+ ‖hj‖ω,q].



18 W. Oukil

Proof of Lemma 15 . Since (hj)
k
j=1 ⊂ Eω(R

n), by Equation 2 we can write

hj(z) =
∑

pj∈2πZn

apj [hj ] exp(i
1

ω
〈z, pj〉).

By definition of the norm then

‖hj‖ω,q = 2
∑

pj∈2πZn/{0}

‖apj [hj ]‖‖
pj
ω
‖q. (9)

We have

Πk
j=1hj(z) =

∑

p1,...,pk∈2πZn

Πk
j=1apj [hj ] exp(i

1

ω
〈z,

k
∑

j=1

pj〉)

=
∑

v∈2πZn

∑

∑k
j=1

pj=v

Πk
j=1apj [hj ] exp(i

1

ω
〈z, v〉).

Then

‖Πk
j=1hj‖ω,q = 2

∑

v∈2πZn/0

‖
∑

∑k
j=1

pj=v

Πk
j=1apj [hj ]‖‖

v

ω
‖q

≤ 2
∑

v∈2πZn

‖
∑

∑k
j=1

pj=v

Πk
j=1apj [hj ]‖‖

v

ω
‖q.

By the triangular inequality we obtain

‖Πk
j=1hj‖ω,q ≤ 2

∑

p1,...,pk∈2πZn

‖Πk
j=1apj [hj ]‖‖

1

ω

k
∑

j=1

pj‖
q.

Since

‖
k

∑

j=1

pj‖ ≤ kΠ‖pj‖6=0‖pj‖, ∀pj,∈ 2πZn,

then

‖
1

ω

k
∑

j=1

pj‖
q ≤ kqω(k−1)qΠ‖pj‖6=0‖

pj
ω
‖q, ∀pj,∈ 2πZn,
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implies

‖Πk
j=1hj‖ω,q ≤ 2kqω(k−1)q

∑

p1,...,pk∈2πZn

(

Π‖pj‖6=0‖
pj
ω
‖q
)(

Πk
j=1‖apj [hj ]‖

)

= 2kqω(k−1)q
∑

p1,...,pk∈2πZn

(

Π‖pj‖=0‖apj [hj ]‖
)

Π‖pj‖6=0

[

‖
pj
ω
‖q‖apj [hj ]‖

]

.

By Equation (9), we obtain finally

‖Πk
j=1hj‖ω,q ≤

1

2k−1
kqω(k−1)qΠk

j=1

[

2
(

‖a0[hj ]‖+
∑

pj∈2πZn/{0}

‖
pj
ω
‖q‖apj [hj ]‖

)]

.
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