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Abstract

The leader trajectory function defined in this article is an approx-

imate solution of a differential equation. It is defined by some inde-

pendent one-dimensional differential equations. The generalized main

result of this article asserts that if the leader trajectory exists then it is

at finite distance from the solution of the system. The application of

the generalized main result is to control the trajectory of the periodic

systems. We prove that for any periodic system and any initial con-

dition there exists a leader trajectory which is a linear function of the

time variable. In other words, we find an exact Rotation vector formula

which is the relation between the rotation vector and the initial con-

dition. In addition, we present a necessary and sufficient condition for

the existence of a locally constant rotation vector under perturbation

of the system, known by the Arnold tongue.

Keywords: Differential equations, bounded solution, periodic system, ro-
tation vector.

1 Introduction and main results

One important application of the result is to control the trajectory of the
periodic systems as cited in the abstract; The applications of the periodic
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differential equations are various. The issue is to estimate the value of the
rotation vector. For some biological works about the rotation vector see
[1, 4] [6, 8] [10, 12] [15, 37] [39, 41]. We study in this article the following
system

ẋ = f(x), t ∈ R, x = (xi)
n
i=1, x(0) = x0, x0 ∈ Rn. (1)

where f : Rn → Rn is a C2 function. The function x(t) = (xi(t))
n
i=1

is
the state of the system. Notice that any non-autonomous system can be
written as an autonomous system. We introduce in the present Section
some notations, the definition of the leader trajectory and the main results.
The Section 2 is the ingredients to study the linearized of system (1) which
has the form of the Riccati differential equation. In the rest of Sections we
prove the main results

1.1 Periodic systems

Many mathematical models are defined by the periodic systems [5, 9, 14].
For example, in biological sciences the components of the rotation vector are
called the frequency [10, 12, 33]. When the periodic system is stable, in the
sens of the Lyapunov stability, the rotation vector exists [5, 9, 14, 38].

Definition 1 (Periodic function). Let be q, p ∈ N∗ and let
g = (gi)

p
1
: Rq → Rp be a function. We say that g is periodic if it is pe-

riodic relative to each variable. In other words,

gi

(

y1, . . . , yj + 1, . . . , yq

)

= gi(y), ∀i = 1, q,∀j = 1, q, ∀y = (yi)
q
i=1

∈ Rq.

In this article, we use the usual norm on Rq, q ∈ N∗, defined by
‖z‖ = max1≤i≤q |zi| for all z := (zi)

q
i=1

∈ Rq. We also denote ‖.‖ the
associated matrix norm.

Definition 2 (The rotation vector). Let be q ∈ N∗ and λ ∈ Rq. Let
g : R → Rq be a continuous function. We say that λ is the rotation vec-
tor of the function g if

sup
t∈R

‖g(t) − λt‖ < +∞.

Notice that if the rotation vector exists then it is unique. To formulate the
main results let us introduce the following notations; Let p, q ∈ N∗, for every
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q × p matrix M = [mi,j]i,j we denote

σ(M) :=
∑

1≤i≤q

∑

1≤j≤p

mi,j. (2)

Let be u ∈ Rq, we denote Diag(u) the diagonal matrix of diagonal u. Let be
1 ≤ i ≤ q, define the diagonal matrix Ii,q as

Ii,q = Diag(v), v = (vj)
q
j=1

: vi = −1 and vj = 1, ∀1 ≤ j 6= i ≤ q. (3)

Denote by Iq the q×q identity matrix and put I0,q = Iq. The particularity of
the matrix Ii,q is the relation 2yi = σ(I0,qy)−σ(Ii,qy) for any vector (yi)

q
i=1

.
Let g : Rq → Rq be a C2 function we denote dg and d2g the first and the
second differential of g respectively.

Main Result. Let be x0 ∈ Rn and let x be the solution of the Equation (1).
Suppose that f is periodic, then x admits a rotation vector ρ ∈ Rn which is
the unique solution of the following Rotation vector formula

lim
t→+∞

1

t

[

Ψ0[fx0
](ρ, t)−Ψi[fx0

](ρ, t)
]

= 0, ∀i = 1, n, (4)

where the functions
(

Ψi[fx0
]
)n

i=0
are defined by

Ψi[fx0
](ρ, t) :=

∫ t

0

Ai(ρ, s) exp
( 1

n

∫ t

s

σ
(

Ii,ndf(νρ+ x0)Ii,n

)

dν
)

ds,

Ai(ρ, t) := σ
(

Ii,n(ρ− f(tρ+ x0))
)

, ∀t ∈ R, ∀i = 0, n.

1.2 Generalized Main result

Define the leader trajectory function.

Definition 3. [Leader trajectory] Let be q ∈ N∗, let g : Rq → Rq and
µ : R → Rq be a C1 functions. We say that µ is a leader trajectory of the
function g if the following hypotheses are satisfied

• sup
{∣

∣

∣

∫ t

0
σ
(

dg(µ(ν))
)

dν
∣

∣

∣
, t ∈ R

}

< +∞.

• ∀i = 1, q, ∃τi ∈ {−1, 1}: supt≥0

∫ t

0
τiσ

(

Ii,qdg(µ(τiν))Ii,q

)

dν < +∞.
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• The following one-dimensional differential equations

ψ̇i = σ
(

Ii,qµ̇(t)− Ii,qg(µ(t))
)

+
1

q
σ
(

Ii,qdg(µ(t))Ii,q

)

ψi,

ψi(0) = 0, i = 0, q, t ∈ R.

admit a solution ψi : R → R of initial condition ψi(0) = 0 such that

sup
t∈R

|ψ0(τit)− ψi(τit)| < +∞, ∀i = 1, q.

Generalized Main Result. Let be x0 ∈ Rn and let x be the solution of the
Equation (1). Suppose that

‖df‖∞ + ‖d2f‖∞ < +∞.

Let µ : R → Rn be a leader trajectory of f such that µ(0) = x0. Then there
exists D > 0 such that

‖µ(t)− x(t)‖ ≤ D, ∀t ∈ R. (5)

In order to prove the Generalized mains result, we use the following linearized
system of (1): Let µ : R → Rn be a C1 function such that µ(0) = x0.
Consider the change of variables

η(t) = µ(t)− Φt(x0), t ∈ R, η := (ηi)
n
i=1,

where Φt is the flow of the system (1). Use Taylor formula to obtain the
following linearized system

η̇ = µ̇(t)− f(µ(t)) + df(µ(t))η + ηT ζµ(t)η, ‖η(0)‖ = 0, t ∈ R, (6)

where ζµ : R × Rn×n×n is a continuous function such that ‖ζµ‖∞ < ‖d2f‖∞
and where ηT is the transpose of the function η. Equation (6) take the
form of Riccati differential equation. The aim is to prove that the solution
η : R → Rn is uniformly bounded on R.

2 Riccati differential equation

We denote vT the transpose of a vector v and for any q ∈ N∗ we denote

1q := (1, . . . , 1)T ∈ Rq and 0q := (0, . . . , 0)T ∈ Rq.
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In this Section, we study a generalized Riccati differential equation. Let
A : R → Rq, B : R → Rq×q and H : R → Rq×q×q be a continuous functions
such that

∃γ < 1 : max
{

‖H ‖∞, ‖B‖∞

}

≤ γ. (7)

Consider the following Riccati differential equation

ẏ = A(t) + B(t)y + yT H (t)y, y(0) = 0q, y = (yi)
q
i=1

, t ∈ R. (8)

Recall that the notation σ(.) and the diagonal matrix Ii,q are defined by
Equations (2) and (3) respectively. Consider the following hypotheses
[H1]

sup
{
∣

∣

∣

∫ t

0

σ(B(ν))dν
∣

∣

∣
, t ∈ R

}

< +∞,

and for every i = 1, q there exists τi ∈ {−1, 1} such that

sup
{

τi

∫ t

0

σ(Ii,qB(τiν)Ii,q)dν, t ≥ 0
}

< +∞,

[H2] The following one-dimensional differential equations

ψ̇i = σ(Ii,qA(t)) +
1

q
σ(Ii,qB(t)Ii,q)ψi, t ≥ 0, (9)

admit a solution ψi : R → R of initial condition ψi(0) = 0 such that

sup
t∈R

|ψ0(τit)− ψi(τit)| < +∞, ∀i = 1, q.

The following theorem is the main ingredient used to prove the main results.

Theorem 4. Let y be the solution of the differential Equation (8) and let be
γ ∈ (0, 1) as defined by Equation (7). Suppose that Hypotheses [H1] and [H2]
are satisfied. Then there exists γ∗ > 0 such that for all γ ∈ (0, γ∗) there exists
Dγ > 0 such that the solution y of Equation (8) satisfies supt∈R‖y(t)‖ < Dγ .

The strategy it to use an appropriate change of variable in (8) and use
the differential equation comparison. In order to simplify, we introduce the
following notation. Define the cone V q

+ of Rq by

V q
+ := {z = (zi)

q
i=1

∈ Rq : zi > 0, ∀i = 1, q}. (10)

We consider the partial order � on Rq defined by

∀z ∈ Rq : z ≻ 0q ⇐⇒ z ∈ V q
+ and z � 0q ⇐⇒ z ∈ V q

+.
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Define the sets K
+
q and Kq of the q × q diagonal matrix by

K
+
q = {Ii,q, i = 0, q} and Kq = {−I : I ∈ K

+
q } ∪K

+
q . (11)

We have the following lemma

Lemma 5. Let y be the solution of the differential Equation (8). Let be
γ > 0 given by Equation (7). Let be T > 0 and put U = [−T, T ]. For every
I ∈ Kq and τ ∈ {−1, 1} denote

δI(t) := ψI(τt)− σ(Iy(τt)) (12)

where ψI : R → R satisfies

ψ̇I = σ(IA(t)) +
1

q
σ(IB(t)I)ψI , t ∈ R. (13)

Let be D > 0 and suppose that supt∈U‖y(t)‖ < D/γ, then

∀t ∈ U, ∀I ∈ Kq : δI(t) =
D2

γ(1− γ)
=⇒

d

dt
[exp(qt)δI(t)] > 0.

Proof. Denote Ĩq := [ci,j ]1≤i,j≤q be the q× q matrix such that ci,j = 1 for all
i, j = 1, q. Let be I ∈ Kq and τ ∈ {−1, 1}. Consider the change of variable

zI(τ, t) := exp(tĨ)Iy(τt), t ∈ U.

Put ỹI(t) := Iy(τt), since the inverse matrix of I is itself the system (8)
becomes

˙̃yI = τIA(τt) + τIB(τt)IỹI(t) + τIyT (τt)H (τt)y(τt), ∀t ∈ U.

That follows

żI(τ, t) = exp(tĨ)
[

τIA(τt) + [Ĩ + τIB(τt)I]ỹI + τyT (τt)H (τt)y(τt)
]

. (14)

Remark that Ĩ2q = qĨq. We have the relation

exp(tĨq) = Iq +
1

q
(exp(qt)− 1)Ĩq and ‖exp(tĨq)‖ ≤ exp(qt), ∀t ≥ 0. (15)

By hypothesis supt∈U‖γy(t)‖ < D and ‖H ‖∞ ≤ γ then

‖γ exp(tĨ)IyT (τt)H (τt)y(τ)‖ < exp(qt)D2, ∀t ∈ U.
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From (14),

żI(τ, t) ≺ exp(tĨ)
[

τIA(τt) + [Ĩ + τIB(t)I]ỹI

]

+
1

γ
exp(qt)D21q.

Suppose that exp(−qt)δI(t) = D2/(γ(1 − γ)) then exp(−qt)δI(t) > 0. Use
the fact that for every c = (ci)

q
i=1

∈ Rq and v = (vi)
q
i=1

∈ Rq such that
σ(v) 6= 0 there exists c̃ ∈ R that satisfies |c̃| ≤ ‖c‖ and such that

q
∑

j=1

cjvj = c̃σ(v).

The above vector v play the following role

v =
1

q
ψI(τt)1q − ỹI(t).

Use the hypothesis hypothesis ‖B(t)‖ < γ, to obtain

−
[

Ĩ + τIB(t)I
]

(
1

q
ψI(τt)1q − ỹI(t)) ≺ −(1− γ)δI(t)1q, ∀t ∈ U.

Since exp(tĨ)V +
q ⊂ V +

q , Equation (14) implies that

żI(τ, t) ≺ τ exp(tĨ)IA(τt) +
1

q
exp(tĨ)[Ĩ + τIB(τt)I]ψI(τt)1q

− (1− γ) exp(qt)δ(t)1q +
1

γ
exp(qt)D21q, ∀t ∈ U.

By Equation (15), we have

σ(IB(τt)I) = exp(−qt)σ(exp(tĨ)IB(τt)I1q) and exp(tĨ)Ĩ = exp(qt)1q.

By addition, we get

d

dt
[exp(qt)ψI(τt)− σ(zI(τ, t)] < −q(1− γ) exp(qt)δ(t) + q

1

γ
exp(qt)D2,

We have proved δI(t) = D2/(γ(1− γ)) implies that d
dt
[exp(qt)δI(t)] > 0.

Recall that the diagonal matrix Ii,q define the sets K
+
q and Kq in Equation

(11) and recall that Iq is the q × q identity matrix.
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Lemma 6. Let v : R → Rq and ψ : Kq × {−1, 1} × R+ → R be a functions
such that

• For all (I, τ, t) ∈ Kq × {−1, 1} × R+,

ψ(−I, τ, t) = −ψ(I, τ, t). (16)

• There exist θ, α, T > 0 such that for all I ∈ Kq there exists τI ∈ {−1, 1}
such that τI = τ−I and such that

θ+ψ(I, τI , t)−σ(Iv(τI t)) > α > ψ(I, τI ,−t)−σ(Iv(−τI t)), ∀t ∈ (0, T ).

• For all I0 ∈ {Iq,−Iq} and all τ ∈ {−1, 1}

θ+ψ(I0, τ, t)−σ(I0v(τt)) > α > ψ(I0, τ,−t)−σ(I0v(−τt)), ∀t ∈ (0, T ).

Then,

‖v(t)‖ ≤ θ + α+
1

2
βT , ∀t ∈ [−T, T ],

where

βT := sup
{
∣

∣

∣
ψ(Iq, τI , t)− ψ(I, τI , t)

∣

∣

∣
: t ∈ [−T, T ], I ∈ K

+
q

}

.

Proof. By addition and by Equation (16), we have

2(θ − α) + ψ(I0, τI , t) + ψ(I, τI , t) > σ(I0v(τIt)) + σ(Iv(τI t)),

2α− ψ(I, τI ,−t)− ψ(I0, τI ,−t) > σ(I0v(−τIt)) + σ(Iv(−τI t)).

Use the fact τI = τ−I and again Equation (16):

• For I0 = Iq and I = −Ii,q we obtain

2(θ − α) + ψ(Iq, τI , t)− ψ(Ii,q, τI , t) > σ(Iqv(τIt))− σ(Ii,qv(τIt)),

2α+ ψ(Ii,q, τI ,−t)− ψ(Iq, τI ,−t) > σ(Iqv(−τIt))− σ(Ii,qv(−τIt)).

• For I0 = −Iq and I = Ii,q we obtain

2(θ − α)− ψ(Iq, τI , t) + ψ(Ii,q, τI , t) > −[σ(Iqv(τI t))− σ(Ii,qv(τI t))],

2α− ψ(I, τI ,−t) + ψ(Iq, τI ,−t) > −[σ(Iqv(−τIt))− σ(Ii,qv(−τIt))].
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Now, use the relation

∀u = (ui)
q
i=1

∈ Rq : ui =
1

2
[σ(Iqu)− σ(Ii,qu)], ∀i = 1, q,

to deduce that for every i = 1, q there exists τi ∈ {−1, 1} such that

∣

∣

∣
vi(τit) +

1

2

[

ψ(Iq, τi, t)− ψ(Ii,q, τi, t)
]
∣

∣

∣
< θ + α, ∀t ∈ (0, T )

∣

∣

∣
vi(−τit)−

1

2

[

ψ(Iq, τi,−t)− ψ(Ii,q, τi,−t)
]
∣

∣

∣
< θ + α, ∀t ∈ (0, T ).

Finally, by definition of the constants βT of the present Lemma, we find

‖v(t)‖ ≤ θ + α+
1

2
βT , ∀t ∈ [−T, T ].

Proof of Theorem 4.
For every α ∈ R and i = 0, q let ψi(t, α) be the solutions of the Equation
(9) of initial condition ψi(0, α) = α. For every i = 1, q le be τi ∈ {−1, 1}
defined by the hypothesis [H1] and put τ0 = 1. Let y be the solution of the
differential Equation (8) and put

δi(t, α) := −ψi(τit, α) + σ(Ii,qy(τit)) and δi(t, α) := −δi(t, α), ∀i = 0, q,

Let be D > 0 and put α∗ = D2/(γ(1 − γ)). Since y(0) = 0q then
δi(0, α∗) = δi(0, α∗) = α∗. By Lemma 5,

δ̇i(0, α∗) > 0 and δ̇i(0, α∗) > 0 ∀i = 0, q.

Since δi(0, 0) = δi(0, 0) = 0, then there exists ǫ > 0 such that

δi(t, α∗) > α∗ > δi(−t, 0) ∀t ∈ (0, ǫ), ∀i = 0, q,

δi(t, α∗) > α∗ > δi(−t, 0) ∀t ∈ (0, ǫ), ∀i = 0, q.

Define

T =sup{t ≥ 0 : δi(s, α∗) > α∗ > δi(−s, 0), ∀s ∈ (0, t), ∀i = 0, q},

T =sup{t ≥ 0 : δi(s, α∗) > α∗ > δi(−s, 0), ∀s ∈ (0, t), ∀i = 0, q}
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Our strategy is to prove that T = T = +∞. By contradiction, suppose
that T < +∞ or T < +∞, then there exists i ∈ {0, q} such that one of the
following cases is true

δi(T , α∗) = α∗, δi(−T , 0) = α∗,

δi(T , α∗) = α∗, δi(−T , 0) = α∗.

Then T and T satisfies

d

dt

[

exp(qt)δi(T , α∗)
]

≤ 0 and
d

dt

[

exp(qt)δi(−T , 0)
]

≤ 0, (17)

d

dt

[

exp(qt)δi(T , α∗)
]

≤ 0 and
d

dt

[

exp(qt)δi(−T , 0)
]

≤ 0. (18)

Integrate Equation (9) to obtain

ψi(t, α) = α exp
(1

q

∫ t

0

σ(Ii,qB(ν)Ii,q)dν
)

+ ψi(t, 0), ∀t ∈ R, ∀i = 0, q

By hypothesis [H1] there exists ω > 0 such that for all τ ∈ {−1, 1} we have

sup
{τ

q

∫ t

0

σ(B(τν))dν, ∀t ∈ R
}

< ω,

and for all i = 1, q there exists τi ∈ {−1, 1} such that

sup
{τi
q

∫ t

0

σ(Ii,qB(τiν)Ii,q)dν, ∀t ≥ 0
}

< ω.

Let be T∗ = min{T , T}. We obtain the following estimations

ψ0(τt, α) ≤ exp(ω)α+ ψ0(τt, 0), ∀τ ∈ {−1, 1}, ∀t ∈ (0, T∗),

ψi(τit, α) ≤ exp(ω)α+ ψi(τit, 0), ∀i = 1, q, ∀t ∈ (0, T∗).

Put
ψ(Ii,q, τ, t) := ψi(τt, 0), ∀i = 0, q, ∀τ ∈ {−1, 1}.

By definition of the function ψi(t, 0) we have: ψ(−Ii,q, τ, t) = −ψ(Ii,q, τ, t)
for every i = 0, q and τ ∈ {−1, 1}. By definition of T∗ we have: for all I ∈ Kq

there exists 1 ≤ i ≤ q and τI ∈ {−1, 1} such that τI = τ−I = τi and such
that for all t ∈ (0, T∗) we have

exp(ω)α∗ + ψ(I, τI , t)− σ(Iy(τI t)) > α∗ > ψ(I, τI ,−t)− σ(Iy(−τIt)),
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further, for all τ ∈ {−1, 1} and I ∈ {Iq,−Iq} we have

exp(ω)α∗ + ψ(I, τ, t) − σ(Iy(τt)) > α∗ > ψ(I, τ,−t) − σ(Iy(−τt)),

where we recall that α∗ = D2/(γ(1 − γ)). By Hypothesis [H2] there exists
β > 0 such that

sup
t∈R

|ψ0(τit)− ψi(τit)| < β, ∀i = 1, q.

By Lemma 6 ,

‖γy(t)‖ < γ(exp(ω) + 1)α∗ +
1

2
γβ, ∀[−T∗, T∗]. (19)

There exists γ∗ > 0 such that for all γ ∈ (0, γ∗) there exists Dγ > 0 such
that

exp(ω) + 1

1− γ
D2

γ + γβ < Dγ , (20)

Choose α∗ = D2
γ/(γ(1 − γ)) and use equation (19) to get

‖γy(t)‖ <
exp(ω) + 1

1− γ
D2

γ + γβ < Dγ , ∀[−T∗, T∗].

Then ‖γy(t)‖ < Dγ for every t ∈ [−T∗, T∗]. In particular ‖γy(T∗)‖ < Dγ

and ‖γy(−T∗)‖ < Dγ . By Lemma 5 and Equation (17),

d

dt

[

exp(qt)δi(T∗, α∗)
]

> 0 and
d

dt

[

exp(qt)δi(−T∗, 0)
]

> 0,

d

dt

[

exp(qt)δi(T∗, α∗)
]

> 0 and
d

dt

[

exp(qt)δi(−T∗, 0)
]

> 0.

We obtain a contradiction with Equation (17). Then T∗ = +∞ and we have

δi(t, α∗) > α∗ > δi(−t, 0) ∀t ≥ 0, ∀i = 0, q,

δi(t, α∗) > α∗ > δi(−t, 0) ∀t ≥ 0 ∀i = 0, q.

Finally, use again Equation (20) and Lemma 6 to deduce that

‖γy(t)‖ <
exp(ω) + 1

1− γ
D2

γ + γβ < Dγ , ∀t ∈ R.
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3 Proof of the Generalized main result

Proof of the Generalized main result.
Consider the Equation (1). By hypothesis of the Generalized main result
there exist L such that

max{‖df‖∞, ‖d
2f‖∞} < L.

Let be ǫ ∈ (0, 1) and consider the change of variable

η(t) = ǫ2
[

µ(ǫt)− Φǫt(x0)
]

, t ∈ R, η := (ηi)
n
i=1,

where Φt := (Φt
i)
n
i=1

is the flow of the system (1). Use Taylor formula

η̇ = ǫ3[µ̇(ǫt)− f(µ(ǫt))] + ǫ2df(µ(ǫt))η + ηT ζµ(t)η, η(0) = 0n, t ∈ R,

where he function ζµ : R × Rn×n×n is a continuous function and satisfies
‖ζµ‖∞ ≤ ‖d2f‖∞ < ǫL. By hypothesis the function µ : R → Rn is a leader
trajectory of f such that µ(0) = x0. By Theorem 4 there exists γ∗ > 0 such
that for all ǫL < γ∗ there exists Dǫ,L such that

‖µ(t)− Φt(x0)‖ =
1

ǫ2
‖η(

t

ǫ
)‖ <

1

ǫ2
Dǫ,L, ∀t ∈ R.

4 Leader trajectory and Rotation vector formula

We show in this Section that for any periodic function g there exists a con-
stant vector ρ ∈ Rq such that the function t 7→ t1q is a leader trajectory of
the function t 7→ I−1

ρ g(ρt). In order to prove the result let us introduce the
following notations; Let g = (gi)

q
i=1

: Rq → Rq be a C1 periodic function.
Recall that the cone V q

+ is defined by Equation (10). Let Ψi[g] : V
q
+×R → R

be the functions defined by

Ψi[g](z, t) :=

∫ t

0

Ai(z, s) exp
(1

q

∫ t

s

σ
(

Ii,qI
−1
z dg(νz)IzIi,q

)

dν
)

ds,

Ai(z, s) := σ
(

Ii,q(1q − I−1
z g(sz))

)

, ∀i = 0, q, (21)
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where Iz is the diagonal matrix of diagonal z. For every i = 0, q the func-
tion Ψi[g](z, t) is the solution of the following one-dimensional differential
equation

ψ̇ := σ
(

Ii,q(1q − I−1
z g(tz))

)

+
1

q
σ
(

Ii,qI
−1
z dg(tz)IzIi,q

)

ψ, (22)

ψ(0) = 0, t ∈ R.

Proposition 7. Let g = (gi)
q
i=1

: Rq → Rq be a C1 periodic function such

∃β, γ > 0 : inf{gi(z), z ∈ Rq, i = 1, q} > 1 + β and ‖dg‖∞ < γ.

Then there exits γ∗ > 0 such that for all γ ∈ (0, γ∗) there exists ρ ∈ V q
+ such

that the function t 7→ t1q is a leader trajectory of the function t 7→ I−1
ρ g(ρt).

Further, ρ is solution of the following Equation

lim
t→+∞

1

t

[

Ψ0[g](ρ, t) −Ψi[g](ρ, t)
]

= 0, ∀i = 1, q.

For the proof of the following Lemma we refer to [5].

Lemma 8. Let be q ∈ N∗ and g, h : Rq → R be a periodic function. Let be
z ∈ Rq and suppose that

lim
t→+∞

1

t

∫ t

0

g(zs)ds ≤ 0,

then there exists λz ∈ R and a bounded function pz : R → R such that the
following differential equation

ψ̇ = h(zt) + g(zt)ψ, ψ(0) = 0,

admits a solution ψ : R → R of the form

ψ(t) = λzt+ pz(t), ∀t ∈ R.

In particular, the Lemma is true when g(ν) = 0 for all ν ∈ Rq; in this case
we have

‖pz‖∞ < ‖h‖∞, ∀z = (zi)
q
i=1
, zi ≥ 1, ∀i = 1, q.

Proof of the Proposition 7. Thanks to Lemma 8, for every i = 0, q and
z ∈ V q

+ let τi : Rq → {−1, 1} defined by

τi(z) = − Sign(λi,z), λi,z := lim
t→+∞

1

t

∫ t

0

σ
(

Ii,qI
−1
z dg(νz)IzIi,q

)

dν, (23)
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where the function Sign : R → {−1, 1} is defined by Sign(t) = 1 if t ≥ 0 and
Sign(t) = −1 if t < 0. Remark that for all τ ∈ {−1, 1} and z ∈ V q

+ we have

σ
(

I−1
z dg(τtz)Iz

)

= τ
d

dt
σ
(

I−1
z g(τtz)

)

, (24)

σ
(

Ii,qI
−1
z dg(τtz)IzIi,q

)

= τ
d

dt
σ
(

I−1
z Ii,qg(τtz)

)

− 2τσ(Ii,q
∂

∂zi
g(τzt)), (25)

where ∂
∂zi
g := ( ∂

∂zi
g1, . . . ,

∂
∂zi
gq) is the ith partial derivative of g. In order

to prove that the function t 7→ t1q is a leader trajectory of the function
t 7→ I−1

ρ g(ρt), we must prove that

sup
t∈R

∣

∣

∣
Ψ0[g](ρ, τi(ρ)t)−Ψi[g](ρ, τi(ρ)t)

∣

∣

∣
< +∞, ∀i = 1, q.

Again, by Lemma 8 , it is sufficient to prove that

lim
t→+∞

1

t

[

Ψ0[g](ρ, t) −Ψi[g](ρ, t)
]

= 0, ∀i = 1, q. (26)

In order to simplify, for every i = 0, q, z ∈ Rq and t, s ≥ 0 denote

θi(z, t, s) := exp
(

γ
τi(z)

q

∫ t

s

σ
(

Ii,qI
−1
z dg(τi(z)νz)IzIi,q

)

dν
)

,

θi0(z, t, s) := exp
(

γ
τi(z)

q

∫ t

s

σ
(

I−1
z dg(τi(z)νz)Iz

)

dν
)

,

θi(z, t, s) := θi0(z, t, s)− θi(z, t, s),

Θi(z, t) :=

∫ t

0

θi0(z, t, s) +
1

2
θi(z, t, s)σ

(

Ii,q(1q − I−1
z g(τi(z)sz))

)

ds.

For every fixed k ∈ N, define the function Γk = (Γi,k)
q
i=1

: z ∈ V q
+ → Rq by

Γi,k(z) :=
1

Θi(z, k)

∫ k

0

θi0(z, k, s)gi(τi(z)sz)ds, z ∈ V q
+.

Equation (26) is satisfied if there exists ρ ∈ V q
+ and a sequence uk → +∞

such that limk→+∞ Γuk
(ρ) = ρ. We have

Θi(z, k)Γi,k(z)−

∫ k

0

θi0(z, k, s)gi(τi(z)sz)ds = 0.

By the Mean value Theorem, for all z ∈ V q
+ and all k ∈ N there exists szi,k ≥ 0

such that

θi0(z, k, s
z
i,k) +

1

2
θi(z, k, s

z
i,k)σ

(

Ii,q(1q − I−1
z g(szi,kτi(z)z))

)

Γi,k(z)

= θi0(z, k, s
z
i,k)gi(s

z
i,kτi(z)z).
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That follows

Γi,k(z) :=
gi(s

z
i,kτi(z)z)

1 + ζi(z, k)
, (27)

where

ζi(z, k) =
1

2

θi(z, k, s
z
i,k)

θi
0
(z, k, szi,k)

σ
(

Ii,q(1q − I−1
z g(szi,kτi(z)z))

)

=
1

2

[

1−
θi(z, k, s

z
i,k)

θi
0
(z, k, szi,k)

]

σ
(

Ii,q(1q − I−1
z g(szi,kτi(z)z))

)

. (28)

Let be L > 1 and denote

VL =
{

z = (zi)
q
i=1

∈ z ∈ V q
+ : ‖z‖ ≤ (L−1)‖g‖∞ and zi > 1, ∀i = 1, q

}

.

By definition of the coefficients τi(z) in Equation (23) and by Lemma 8,
using Equations (24) and (25) we find the following relations

∣

∣

∣

1

q

∫ t

0

σ
(

I−1
z dg(νz)Iz

)

dν
∣

∣

∣
< γ, ∀z ∈ VL, t ∈ R, (29)

τi(z)

q

∫ t

0

σ
(

Ii,qI
−1
z dg(τi(z)νz)IzIi,q

)

dν < γ, ∀z ∈ VL, ∀t ≥ 0. (30)

That implies

θi(z, t, s) < exp(γ), ∀i = 1, q, ∀t ≥ s ≥ 0, ∀z ∈ VL,

exp(−γ) < θi0(z, t, s) < exp(γ), ∀i = 1, q, ∀t ≥ s ≥ 0, ∀z ∈ VL.

For all t ≥ 0 and all z ∈ VL, we have the following estimation

|ζi(z, t)| ≤
1

2
q[exp(2γ)− 1]

[

‖z‖+ ‖g‖∞

]

≤
1

2
qL[exp(2γ) − 1]‖g‖∞.

Again, by the hypotheses of the present Proposition, there exists β > 0 such
that

inf{gi(z), z ∈ Rq, i = 1, q} > 1 + β

There exists γ∗ > 0 such that for all γ ∈ (0, γ∗) there exists Lγ > 0 such
that

Lγ >
2

2− qLγ(exp(2γ) − 1)‖g‖∞
and

2(1 + β)

2 + qLγ(exp(2γ) − 1)‖g‖∞
> 1
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By Equations (27) and (28), for a fixed γ ∈ (0, γ∗) and Lγ > 1, the compact
and convex set VLγ satisfies

Γk(VLγ ) ⊂ VLγ , ∀k ∈ N.

and the function Γk is C1 on VLγ . By Brouwer fixed-point theorem, for all
k ∈ N there exists ρk ∈ VLγ such that Γk(ρk) = ρk. There exists ρ ∈ VLγ

and there exists a sequence (uk)k∈N ⊂ N such that

lim
k→+∞

ρuk
= ρ and lim

k→+∞

1

uk
Γuk

(ρ, uk) = ρ.

In other words,

lim
k→+∞

1

uk
[Ψ0[g](ρ, uk)−Ψi[g](ρ, uk)] = 0, ∀i = 1, q.

Hence, Equation (26) is satisfied. By Equations (29) and (30), we de-
duce that the the function t 7→ t1q is a leader trajectory of the function
t 7→ I−1

ρ g(ρt).

5 Proof of the Main result

Proof of the Main Result. Let x be the solution of the system 1 and suppose
that f is periodic. By periodicity, there exists > 0 such that

max
{

‖f‖∞, ‖df‖∞, ‖df‖∞

}

< ω. (31)

Let be c, γ > 0, and consider the following change of variable

x̃(t) := ct1n + x(γt)− x0, ∀t ∈ R.

System 1, becomes

˙̃x = c1n + γf̃x0
(x̃, t), x̃(0) = 0n, t ∈ R.

f̃x0
(z, zn+1) = c1n + γf(z + x0 − czn+11n), ∀z = (zi)

n+1

i=1
∈ Rn+1.

Put f̃x0
:= (f̃x0,i)

n
i=0, thanks to Equation (31) we get

∀(z, t) ∈ Rn × R : max
{

‖
d

dz
f̃x0

(z, t)‖, ‖
d2

dz2
f̃x0

(z, t)‖
}

< γω,

inf
{

f̃x0,i(z, zn+1), i = 1, n, z = (zi)
n+1

i=1
∈ Rn+1

}

> c− γω.
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Le be β > 0 fixed then fora all c > 1 + β + γω we get

f̃x0
(z, zn+1) > 1 + β, ∀z = (zi)

n+1

i=1
∈ Rn+1. (32)

By Proposition 7, there exist γ > 0 and ρ∗ ∈ Rn such that the function
µ(t) := t1n is a leader trajectory of the function I−1

ρ∗
f̃x0

. Since x̃0 = 0n and
by the Generalized main result we deduce that

sup
t∈R

‖t1n − I−1
ρ∗ x̃(t)‖ < +∞.

By definition of x̃ we obtain

sup
t∈R

‖
t

γ
(ρ∗ − c1n)− x0 + x(t)‖ < +∞.

In other words, the solution x of the Equation (1) admits a rotation vector
ρ := (ρ∗ − c1n)/γ . Again by Proposition 7 and by the uniqueness of the
rotation vector the vector we deduce that ρ∗ is the unique solution of the
following equation

lim
t→+∞

1

t

[

Ψ0[f̃x0
](ρ∗, t)−Ψi[f̃x0

](ρ∗, t)
]

= 0, ∀i = 1, n

where the functions Ψi[f̃x0
] are defined in Equation (21) of the previous

Section. Since ρ∗ = γρ + c1n and by using the change of variable t → γt
then it is equivalent

lim
t→+∞

1

t

[

Ψ0[fx0
](ρ∗, c, t)−Ψi[fx0

](ρ∗, c, t)
]

= 0, ∀i = 1, n,

where

Ψi[fx0
](ρ, c, t) :=

∫ t

0

Ai(ρ, s) exp
( 1

n

∫ t

s

σ
(

Ii,nI
−1
ρ∗
df(νρ+ x0)Iρ∗Ii,n

)

dν
)

ds,

Ai(ρ, c, s) := σ
(

Ii,nI
−1
ρ∗

(ρ− f(sρ+ x0))
)

, ∀i = 0, n.

By Equation (32) the coefficient c is arbitrary in (1 + β + γω,+∞), since ρ
is unique, we get

lim
c→∞

lim
t→+∞

c

t

[

Ψ0[f̃x0
](ρ∗, c, t) −Ψi[f̃x0

](ρ∗, c, t)
]

= 0, ∀i = 1, n.

Finally, by Lemma 8 of the previous Section, we deduce that ρ is the unique
solution of the following Rotation vector formula

lim
t→+∞

1

t

[

Ψ0[fx0
](ρ, t)−Ψi[fx0

](ρ, t)
]

= 0, ∀i = 1, n,
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where

Ψi[fx0
](ρ, t) :=

∫ t

0

Ai(ρ, s) exp
( 1

n

∫ t

s

σ
(

Ii,ndf(νρ+ x0)Ii,n

)

dν
)

ds,

Ai(ρ, s) := σ
(

Ii,n(ρ− f(sρ+ x0))
)

, ∀i = 0, n.

6 Conclusion and open problem

We have proved that for any periodic field f and any initial condition the
solution of the system admits a unique rotation vector which is the solution
of the Rotation vector formula (4). We conjecture that the solution x of
initial condition x0 and rotation vector ρ is periodic on the torus if and only
if there exists T > 0 such that Tρ ∈ Qn and Ψ0[fx0

](ρ, T )−Ψi[fx0
](ρ, T ) = 0

for every i = 1, n. Consider the systems

ẋ = f(x), x(0) = x0 ∈ Rn and ẏ = f(y) + ζ(t), y(0) = x0,

where f : Rn → Rn is a C2 periodic function and ζ : R → Rn is an integrable
function. Let ρx be the rotation vector of the solution x. Thanks to the
Rotation vector formula (4) and the Generalized main result, we deduce
that the rotation vector ρy of the solution y exists and satisfies ρx = ρy if
and only if

sup
t∈R

∣

∣

∣
Ψ0[ζ](t)−Ψi[ζ](t)

∣

∣

∣
< +∞, ∀i = 1, n,

Ψi[ζ](t) :=

∫ t

0

exp
( 1

n

∫ t

s

σ
(

Ii,ndf(ρν + x0)Ii,n

)

dν
)

σ(Ii,nζ(s))ds, i = 0, n,

which gives information about the Arnold Tongue. The leader trajectory
defined in this article is an approximate solution.
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