Vocal adaptation of singers to room acoustics
Paul Luizard, Erik Brauer, Stefan Weinzierl, Nathalie Henrich Bernardoni

To cite this version:
Paul Luizard, Erik Brauer, Stefan Weinzierl, Nathalie Henrich Bernardoni. Vocal adaptation of singers to room acoustics. DAGA, Mar 2018, Munich, Germany. hal-01969191

HAL Id: hal-01969191
https://hal.science/hal-01969191
Submitted on 3 Jan 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Vocal adaptation of singers to room acoustics

P. Luizard¹, E. Brauer², S. Weinzierl³, N. Henrich³

¹ FG Audiokommunikation, TU-Berlin; ² Universität der Künste, Berlin; ³ GIPSA-Lab, Grenoble, France

Purposes

- Characterize the influence of the acoustics of a room on the vocal production of a singer
- Determine which strategies are used by the singers to adapt to the room
- Estimate the preference of room acoustics to various singing styles, for a singer and a listener

[1] Previous studies

- Mostly based on
 - Instrumentalists, not singers
 - Singers in unrealistic environments

1. Schärer Kalkandjiev et al, 2013
 - 1 cellist in 7 rooms, same program
 - Music recordings and room acoustic measurements
 - Multivariate statistics: 4 components could explain 97% of the music variance

 - 4 instrumentalists and 1 singer in virtual rooms
 - Sound rendering through 6 surrounding speakers in an anechoic chamber
 - Most acoustical features were varied beyond the corresponding just noticeable difference
 - Audio features and questionnaires showed that musicians consciously adjust their interpretation style

 - Choir singers and soloists in an anechoic chamber

- Virtual sound field based on time delays and relative amplitudes of reflections and reverberation
- Reverberation controls the comfort of singers
- Early reflections are appreciated if they are short (< 40 ms)

2. Noson et al, 2000
 - 2 to 4 singers ensembles in a church
 - Artificial early reflections added by means of couples microphone – speaker
 - Fast-tempo singing requires strong early reflections whereas slow-tempo singing not significantly impacted

1. The experiments
 - Real rooms: recordings of singers through microphones and electroglottography (EGG, used to observe the activity of the vocal folds).
 - As well, measurements of mono- and binaural room impulse responses
 - Virtual rooms: replication of the experiment through dynamic binaural auralization based on measured and simulated impulse responses

2. The analysis
 - Analysis of the variance in the performance of singers regarding the variation of estimated room acoustic parameters, in terms of musical features and vocal quality
 - Verbal analysis of the questionnaires filled by the singers after each recording
 - Listening tests to estimate the preference of listeners

[3] Singers

- 4 different vocal ranges (soprano, alto, tenor, baritone)
- Different singing styles (opera, coloratura, lied) within classical repertoire
- Recordings: exercises (glissando from lowest to highest note, crescendo for 3 different notes), 3 different musical excerpts (variation of tempo, rhythm, dynamics), one common tune (Happy birthday)

The measurements
- Acoustics: musical features (tempo, dynamics, articulation)
- EGG signal: vocal mechanism, vocal fold behavior

[4] Real rooms

- Classical room acoustic measurements (ISO-3382) for room acoustical parameters estimation
- Binaural room measurements for dynamic auralization

Numerical values for the 1 kHz octave band

Church (V = 9360 m³)
- T20 = 4.7 s, EDT = 4.6 s, C80 = -5.3 dB

Philharmonie Berlin (V = 22000 m³)
- T20 = 2.0 s, EDT = 2.0 s, C80 = 2.4 dB

Joseph Joakim Saal (V = 3660 m³)
- T20 = 2.2 s, EDT = 2.1 s, C80 = -1.3 dB
- With banners
 - T20 = 1.5 s, EDT = 1.6 s, C80 = 0.9 dB

Chamber music room (V = 590 m³)
- T20 = 1.2 s, EDT = 1.0 s, C80 = 4.5 dB

Cabaret theater (V = 1700 m³)
- T20 = 0.7 s, EDT = 0.7 s, C80 = 8.1 dB

Recording studio (V = 420 m³)
- Without banners
 - T20 = 0.7 s, EDT = 0.7 s, C80 = 6.7 dB
- With banners
 - T20 = 0.5 s, EDT = 0.5 s, C80 = 9.8 dB

Anechoic chamber
- V = 640 m³
 - Cutoff frequency = 70 Hz

[5] Virtual rooms

Aim of this step: provide the singers with real-time auralization so that they can sing in virtual rooms

In each real room, impulse responses measured with a Neumann dummy head and a speaker at the mouth position, both placed on a rotating table
Samples in the horizontal plane from -40° to +40°, 5° step
Based on the monaural impulse response measurements (ISO-3382) in each real room, simulations calibrated within the RAVEN software
Replication of the whole circular binaural measurements through simulations
- 8 real rooms
- 8 simulated rooms
- Same musical program

[6] Perspectives

- Perform the statistical analysis on the acoustical and physiological data
- Perform a verbal analysis on the questionnaires of the singers
- Run a listening test to estimate which combination (singing; acoustics) is preferred
- Compare the performances in virtual conditions based on measured vs. simulated impulse responses

References