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Abstract

We focus here on a technique to compute compressible fluid flows in physical domains
cluttered up with many small obstacles. This technique, referred to here as the integral
formulation, consists in integrating the flow governing equations over the fluid part of
control volumes including both fluid and solid zones; doing so, the integral of fluxes over
solid boundaries may appear, for which expressions as a function of discrete variables
must be provided. The integral formulation presents two essential advantages: first, we
naturally recover the standard fluid approach when the mesh is refined; second, fluid/solid
interactions may be, to some extent, modelled to recover the singular head losses at the
interface between a free and a congested part of the computational domain. We apply
here this approach to the Euler equations, using a collocated space discretization and
a pressure correction algorithm, preserving the positivity of both the density and the
internal energy. Verification test cases are performed, including a Riemann problem in
a free domain and a shock wave reflection on a wall, using an equation of state which
is suitable for weakly compressible fluid flows. Finally, we address a two-dimensional
situation, where a shock wave impacts a set of obstacles; we observe a very encouraging
agreement between the integral approach results and a CFD reference solution obtained
with a pure fluid approach on a fine mesh.

Keywords: Finite Volumes, integral formulation, porous media, compressible flows,
Euler equations, pressure-correction scheme

1. Introduction

The issue of dealing with congested media is pervasive in industrial Computational
Fluid Dynamics applications. In the easiest cases, the computational domain (i.e., in
practice, the mesh) may be fitted to the boundary of each of the present solids, but in
many applications, these latter are too numerous or too small with respect to the com-
putational domain characteristic dimensions to be dealt with in such a way: this would
imply using so refined meshes that the computational cost would become prohibitive. In

Email addresses: clement.colas@edf.fr (Clément Colas), martin.ferrand@edf.fr (Martin
Ferrand), jean-marc.herard@edf.fr (Jean-Marc Hérard), jean-claude.latche@irsn.fr
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nuclear industry, occurrences of such problems are numerous. One may think for instance
of safety issues as possible cables train fires, hydrogen deflagration in the reactor build-
ing rooms where numerous pipes are present. . . For the computation of the flow in the
primary circuit of Pressurized Water Reactors, both in operating and accident conditions
[1, 2], the problem has been tackled now for more than forty years, and has motivated
the development of, schematically speaking, three categories of simulation software, each
acting at its own scale:

• At the largest scale, referred to as the system scale, a 0D/1D description is used,
with the aim to provide a real time simulation of full circuits (system transient
analysis). A reference industrial code in France is CATHARE [3], developed from
the end of the 70s thanks to a joint effort by several partners, among which, in
particular, CEA (Commissariat à l’Énergie Atomique et aux Énergies Alternatives),
EDF and IRSN (Institut de Radioprotection et de Sûreté Nucléaire).

• The finest one is the CFD (Computational Fluid Dynamics) scale, referred to as
the local scale, that allows a fine 3D description on restricted physical domains.
In that case, the Navier-Stokes equations, with suitable turbulence modelling, are
solved on fine computational meshes, and all solid boundaries of obstacles in the
computational domain are meshed through standard wall boundary conditions.
Code Saturne [4] (developed by EDF R&D since 1997) is one of the CFD codes
used in this context.

• Since computations at the largest scale may be too crude and application at the
local scale are often too time-consuming, an intermediate approach, aiming at the
description of one component of the primary circuit such as the reactor core or
the steam generator, has been developed; software dedicated to this purpose are
said to operate at the component scale. In this case, an homogenized representa-
tion is chosen: the congested medium is considered as a porous medium, in which
three-dimensional balance equations (mass, momentum and energy) are solved; the
influence of the solid obstacles is taken into account, besides of course a reduction
of the porosity, through exchange terms (a friction term for the momentum balance
and a heat exchange term for the energy balance) obtained by upscaling techniques.
The component approach is implemented, for instance, in codes developed in the
80s such as THYC [5], FLICA-4 [6] or GENEPI [7, 8, 9].

Enlarging the scope to another already mentioned safety problem, namely turbulent
deflagrations, a strategy similar to what is done in thermal-hydraulics at the component
scale is employed in the commercial code FLACS [10].

The “equivalent porous media approach”, as used in component codes, has now proven
to yield accurate results for incompressible or quasi-incompressible flows in porous media
where a micro-scale and a representative elementary volume associated to this scale may
be identified [11] (so, in particular, for periodic media). Its extension to compressible
flows is however less standard and, in addition, serious difficulties may appear when the
characteristics of the equivalent porous medium sharply vary with space. In particu-
lar, the numerical study [12] shows that the porous model is not physically suitable to
manage sudden free/porous transitions: the comparison between the multi-dimensional
CFD computation, including the true geometry of obstacles (as shown on Figure 1), and
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the equivalent porous computation (see Figure 2) shows discrepancies at the interface
associated with the discontinuity in the equivalent porosity profile. These discrepancies
may be attributed to the fact that the singular head loss in the momentum balance is
not accounted for in the porous approach in an appropriate way.

uinlet

x0

Figure 1: 2D fluid model.

uinlet

ε = 1 ε = 1
2

x0

Figure 2: 1D porous model (ε the porosity).

The aim of this paper is to propose an alternative to the porous media approach,
with two essential objectives: first, to circumvent the above mentioned difficulty, i.e. to
allow to cope with discontinuous porosity media; second, to naturally boil down to the
CFD model, when the mesh exactly fits the obstacles. To this purpose, we give up the
derivation of an equivalent model at the continuous level. Instead, we directly integrate
the balance equations over the control volumes, mimicking to some extent the usual finite-
volume procedure, to the “real” fluid medium; doing so, integrals over the solid surfaces
appear, for which expressions are given. In particular, a suitable treatment of the pressure
forces naturally re-injects in the discrete system the above mentioned singular losses. Note
that, conceptually, this procedure differs for a standard finite volume discretization of a
set of PDEs: for instance, consistency and convergence issues make no more sense, since
the discrete system cannot be seen associated to a continuous problem, up to the point at
which the CFD model is recovered. In practice, we expect a significant gain in accuracy,
at least for some solid obstacles geometry of interest; the numerical tests presented in
this paper support this expectation. We also stress that, from an industrial point of
view, gathering in the same numerical tool the capabilities of both the component and
local approach is appealing, especially in a context of increasing computational power
and thus, accordingly, a progressive drift toward more and more refined computations.

The proposed technique, which we refer to as the “integral approach”, is applied
here to compressible inviscid flows obeying the Euler equations, with general equation
of states. We work here in the context of the open-source Code Saturne software, using
the same control volumes for both the scalar and velocity unknowns in a way consistent
with a collocated finite volume scheme (see [13] for more details on finite volumes), and
a fractional-step time discretization involving an elliptic step for a pressure correction (in
other words, falling in the class of pressure correction algorithms [14, 15, 16, 17, 18, 19]),
able to cope with all the Mach numbers regimes [20]. A first attempt to implement the
integral approach with an explicit in time scheme (the so-called VFRoe-ncv approximate
Godunov solver) may also be found in [21].

The paper outline is as follows. First, the multi-dimensional integral formulation of
the compressible Euler equations is described. The time and spatial discretization of the
formulation is proposed through a pressure-correction collocated finite volume scheme
preserving the positivity of the density and the internal energy under a CFL condition
based on the velocity of the fluid. Then, several fluid verification test cases are presented
to illustrate the stability and the accuracy of this method with a numerical convergence
analysis. The case of low Mach number flows is particularly investigated. Two one-
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dimensional Riemann problems with an analytical thermodynamic law (Equation Of State
(EOS)) are considered:

• a Riemann problem in a free domain using a stiffened gas EOS, modelling a gas or
liquid fluid,

• a shock wave reflection on a wall using a stiffened gas EOS, the exact solution of
which is detailed in Appendix C. This test corresponds to a water flow impacting
an obstacle.

Finally, a two-dimensional validation test case with the integral approach in an ob-
structed medium is performed, where a pressure shock wave hits transversal rod bundles
surrounded by a liquid; the formulation of the pressure forces on the solid boundaries
takes here the same form as for the reflection boundary conditions used in the previous
test, to deal within the integral approach framework with the macroscopic pressure jumps
due to the sudden restriction of the flow passage section. Results are compared with a
“reference” CFD computation, i.e. the 2D detailed solution, in particular through the
evaluation of resultant forces acting on rods, to check that the integral approach indeed
converges as expected towards the fine CFD computation when refining the mesh. From
an industrial point of view, this latter test is reminiscent of a pressure wave impacting a
rod bundle, as may occur in a reactor core during a Reactivity Initiated Accident [2].

2. An integral formulation

2.1. Set of governing equations

The compressible Euler equations (1) governing inviscid fluid flows are considered in
an open subset of Rd (d = 1, 2 or 3) and in a bounded time interval (0, T ), T ∈ R∗+. The
unknowns ρ, u, P respectively denote the density, the velocity and the pressure of the
fluid, while the momentum is Q = ρu. The volumetric total energy E is such that:

E = ρ

(
u2

2
+ ε(P, ρ)

)
,

where the internal energy ε(P, ρ) is prescribed by the Equation Of State (EOS). Besides,
in the right hand side of system (1), f is a mass external force and Φv a mass heat transfer
source term. Thus the set of governing equations is:

∂tρ + ∇ ·Q = 0,

∂tQ + ∇ · (u⊗Q) + ∇P = ρf ,

∂tE + ∇ · (u(E + P )) = ρf · u+ ρΦv.

(1)

The speed of sound, noted c, is such that:

c2 =

(
P

ρ2
− ∂ε(P, ρ)

∂ρ

)
/

(
∂ε(P, ρ)

∂P

)
.

The EOS for a stiffened gas, which generalizes the usual ideal gas EOS and is used for a
weakly compressible liquid (see [22]), is defined by

ρε =
P + γΠ∞
γ − 1

, (2)
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with γ > 1 the heat capacity ratio and Π∞ ≥ 0 the stiffened gas pressure parameter. The
admissible thermodynamic state is P ∈ [−Π∞,+∞). The speed of sound c is given by

c2 =
γ(P + Π∞)

ρ
.

The specific enthalpy is h = ε(P, ρ) + P
ρ

, and the total enthalpy reads:

H =
E + P

ρ
.

Thereafter, W is the conservative variable:

W = (ρ,Q, E)t.

The conservation laws (1) can be written as follows:

∂tW + ∇ · F (W ) = D (W ) , (3)

where

F (W ) = (Q,u⊗Q+ P I,u (E + P ))t is the convective flux,

D (W ) = (0, ρf , ρ (f · u+ Φv))
t is the source term.

2.2. Integral form

The integral formulation of conservation laws described in [23] is considered. Set
of equations (1) is integrated on control volumes Ωi, i ∈ N, which may contain many
disjoint solid obstacles. All Ωi cells form a mesh of the computational domain Ω, an open
bounded connected polygonal subset of Rd, such that Ω = ∪iΩi and ∩iΩi = ∅. Obstacles
may be completely or partially included in Ωi. Part of a control volume boundary may
coincide with the surface of an obstacle. Figure 3 is a sketch of the admissible situations.
The whole volume occupied by solid obstacles within the control volume Ωi is denoted

(1)

(5)

solid

(3)

(2)

(4)

fluid

•
Ωi

Γ
φ
i

• Ωj

Figure 3: A (blue) control volume Ωi includes (gray) obstacles numbered from 1 to 5. Obstacles may:
overlap part of the boundary of Ωi (1); partially occupy fluid cell (2); fully cross Ωi and halve it (3); be
totally included in Ωi (4); or be aligned with part of the boundary of Ωi (5). The dashed blue surface

corresponds to the fluid part Γφi of the boundary of Ωi.

by ΩS
i . Thus, the volume occupied by fluid within Ωi is Ωφ

i = Ωi \ΩS
i . The mean value of

the fluid state variable W (x, t), with x ∈ Ω and t ∈ (0, T ), over each fluid cell Ωφ
i reads:

Wi(t) =
1∣∣∣Ωφ
i

∣∣∣
∫

Ωφi

W (x, t)dx.
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Equation (3) is integrated over the bounded time interval [t0, t1] ⊂ (0, T ) and over the
fluid cell Ωφ

i . The flux-divergence theorem allows to get:∣∣∣Ωφ
i

∣∣∣(Wi (t1)−Wi (t0)) +

∫ t1

t0

∫
Γi

F (W (x, t)) · n(x)dΓdt =

∫ t1

t0

∫
Ωφi

D (W (x, t))dx dt, (4)

where, Γi = ∂Ωφ
i denotes the whole boundary of the fluid cell Ωφ

i with n(x) its unit
outward normal vector. Fluid Γφi = Γi \ ∂ΩS

i and wall Γwi = Γi ∩ ∂ΩS
i boundaries of each

fluid cell Ωφ
i are distinguished, such that:

Γi = Γφi ∪ Γwi and Γφi ∩ Γwi = ∅.

The integral formulation for all Ωi holds:∣∣∣Ωφ
i

∣∣∣(Wi (t1)−Wi (t0)) +

∫ t1

t0

∫
Γφi

F (W ) · ndΓdt +

∫ t1

t0

∫
Γwi

F (W ) · ndΓdt

=

∫ t1

t0

∫
Ωφi

D (W ) dx dt.

(5)

The inner product between the normal n and the flux function F reads:

F (W ) · n = (ρu · n, (ρu · n)u+ Pn, (E + P )u · n)t .

Note that the flux is null through Γwi wall boundaries inside Ωi, since u · n|w = 0, except
the pressure flux Pn|w.

In the sequel, the subscript ij refers to the interfaces between the neighbouring control
volumes Ωi and Ωj, where j ∈ V (i), and V (i) defines the set of neighbouring cells of Ωi.
Besides, the superscript φ refers to the fluid volumes and the fluid interfaces ij where the

fluid may cross the interface, noted Γφij of measure Sφij =
∣∣∣Γφij∣∣∣. The superscript w refers

to solid interfaces where a wall boundary Γwi of measure Swi is located inside the control
volume Ωi or on its boundary.

Remark 2.1. In practice, the geometrical quantities, as defined in the integral formula-
tion, have to be pre-processed. This step uses the mesh of the computational domain and
the known geometry of the obstacles, for instance the multidimensional computer-aiding
drafting (CAD). This pre-processing may turn to be tedious but it is performed once and
can be parallelized in space.

3. Time scheme

The time discretization of Equation (5) is based on an implicit first order Euler scheme.
It is assumed that all numerical fluxes may be evaluated by means of a standard finite
volume method, considering one mean value Wn

i per cell Ωi at each time tn, see [13] for
more details. Wn

i is an approximation of Wi(t
n), and the time step at the nth iteration

is ∆tn = tn+1 − tn. The numerical algorithm uses a pressure-correction scheme, with
prediction and correction of the pressure [19, 20, 23].

Each time stepping is thus divided in three steps: first, the mass balance, which is
used to update the density from ρn to ρn+1, and to predict a temporary pressure P ∗
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and a convective mass flux Q∗ · n, second, the momentum balance, where the velocity
is updated from un to un+1, and third, the last step, the energy balance that allows to
update the total energy from En to En+1 and thus to correct the pressure with the EOS.
The superscript (·)∗ states that the variable is predicted for the current step. The time
semi-discrete algorithm is summarized below, starting with the initial condition Wn

i for
all n ∈ N:

1. Compute P ∗ solution of the mass balance, with δρ = δP
(c2)n

= P ∗−Pn
(c2)n

:

δP

(c2)n
+ ∆tn∇ · (ρnun −∆tn∇P ∗) = 0, (6)

and update:

ρn+1 = ρn +
δP

(c2)n
and Q∗ = ρnun −∆tn∇P ∗. (7)

2. Compute un+1 solution of the momentum balance, with δ(ρu) = ρn+1un+1 − ρnun:

δ(ρu) + ∆tn∇ ·
(
un+1 ⊗Q∗

)
= −∆tn∇P ∗ + ∆tnρn+1fn. (8)

3. Compute En+1 solution of the total energy balance, with δE = En+1 − En:

δE + ∆tn∇ ·
(
En+1

ρn+1
Q∗
)

= −∆tn∇ ·
(
P ∗

ρn+1
Q∗
)

+ ∆tnρn+1
(
fn · un+1 + Φn

v

)
, (9)

and update, using the EOS:

P n+1 = P(ρn+1, εn+1) with εn+1 =
En+1

ρn+1
− 1

2
(un+1 · un+1). (10)

3.1. Mass balance

The pressure and the density are implicit, while the velocity and the entropy are
considered frozen at time tn. An acoustic mass fluxQ∗ ·n is computed from the simplified
momentum equation (14) given below. Integration of the mass balance equation, between
tn and tn+1 and over Ωφ

i , gives the following implicit time scheme:∣∣∣Ωφ
i

∣∣∣ (ρn+1
i − ρni

)
+ ∆tn

∫
Γi

Q∗ · ndΓ = 0. (11)

The acoustic linear approximation (P ∗i − P n
i ) = (c2)

n
i

(
ρn+1
i − ρni

)
is used, and reads

(c2)
n
i = c2(P n

i , ρ
n
i ). Equation (11) thus yields with the pressure variable:∣∣∣Ωφ

i

∣∣∣ 1

(c2)ni
(P ∗i − P n

i ) + ∆tn
∫

Γi

Q∗ · ndΓ = 0. (12)

This step allows to predict the pressure P ∗, from which the density ρn+1 is deduced. For
this purpose, the approximation of the implicit mass flux Q∗ · n is, at interfaces:

Q∗ · n = Qn · n−∆tn∇P ∗ · n. (13)

This discretization (13) is based on the simplified momentum balance:

∂tQ+ ∇P = 0. (14)
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Remark 3.1. The relation ρn+1
i = ρni + 1

(c2)ni
(P ∗i − P n

i ) must be used for the update of

the density to conserve the mass over time.

Remark 3.2. This first step can be viewed as an acoustic step: assuming a constant time
step, Equations (11) and (13), at the previous and current time level, yields the discrete
wave equation below:

ρn+1 − 2ρn + ρn−1

∆t2
−∇ ·

((
c2
)n∇ρn+1

)
= 0.

Indeed, the semi-discrete acoustic linear system can be written:
ρn+1 − ρn

∆t
+∇ ·Q∗ = 0,

Q∗ −Qn

∆t
+ ∇P ∗(ρn+1) = 0.

Combining the two equations yields:

ρn+1 − ρn

∆t
+∇ ·Qn −∇ · (∆t∇P ∗(ρn+1)) = 0.

Assuming that the mass flux Qn complies with the mass balance at the previous time step
tn:

ρn − ρn−1

∆t
+∇ ·Qn = 0,

the wave equation, at the discrete level, can be thus obtained:

ρn+1 − 2ρn + ρn−1

∆t2
−∇ ·∇P ∗(ρn+1) = 0.

Using the acoustic linear approximation, ∇P ∗(ρn+1) = (c2)n∇ρn+1, yields:

ρn+1 − 2ρn + ρn−1

∆t2
−∇ ·

((
c2
)n∇ρn+1

)
= 0.

3.2. Momentum balance

In this step, the velocity is implicit, whereas the density and the pressure are known
from Equation (12) of the mass balance step, and the total energy is frozen. Integration
of the momentum equation gives:∣∣∣Ωφ

i

∣∣∣ (Qn+1
i −Qn

i

)
+ ∆tn

∫
Γi

(Q∗ · n)un+1dΓ + ∆tn
∫

Γi

P ∗ndΓ

−∆tn
∣∣∣Ωφ

i

∣∣∣ ρn+1
i fni = 0. (15)

This second step provides, for all Ωi, the discrete unknown velocity un+1
i . Thus the

discrete momentum is inferred by Qn+1
i = ρn+1

i un+1
i .
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3.3. Energy balance

The total energy is implicit while the pressure, the density and the velocity are explicit
from the previous steps. The total energy En+1

i is updated with the following implicit
scheme: ∣∣∣Ωφ

i

∣∣∣ (En+1
i − En

i

)
+ ∆tn

∫
Γi

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ

−∆tn
∣∣∣Ωφ

i

∣∣∣ (ρn+1
i fni · un+1

i + ρn+1
i Φn

v,i

)
= 0. (16)

Finally, this third step provides the internal energy: εn+1
i =

En+1
i

ρn+1
i

− 1

2

(
un+1
i · un+1

i

)
, and

the pressure is thus corrected with the EOS: P(ρ, ε), for all cells Ωi:

P n+1
i = P(ρn+1

i , εn+1
i ).

4. Space scheme

A co-located finite volume method (all the variables are cell-based) is used to discretize
in space the integral formulation of the conservation laws, Equation (5). At each step, a
numerical flux is written to evaluate the different boundary integrals. We focus on the
fluid and solid interior cell faces of the mesh defined in Section 2.2 (see Figure 3). The
boundary conditions of the computational domain Ω are treated in Section 4.4. The space
scheme is described for structured and orthogonal meshes, involving some simplifications
particularly for the pressure gradient approximation in Equation (13).

4.1. Mass balance

In the time semi-discrete mass balance equation (12) given below, an expression of
the mass flux needs to be specified:∣∣∣Ωφ

i

∣∣∣ 1

(c2)ni
(P ∗i − P n

i ) + ∆tn
∫

Γi

Q∗ · ndΓ = 0.

Note that the normal mass flux to the wall is null, (Q · n)Γw = ρu · n|w = 0, and thus:∫
Γwi

Q∗ · ndΓ = 0.

Equation (13), i.e. the simplified momentum balance, allows to decompose the integral
over the fluid face into two integrals:∫

Γi

Q∗ · ndΓ =

∫
Γφi

Q∗ · ndΓ =

∫
Γφi

Qn · ndΓ︸ ︷︷ ︸
1

−
∫

Γφi

∆tn∇P ∗ · ndΓ︸ ︷︷ ︸
2

. (17)
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4.1.1. Evaluation of the explicit mass flux

Integral 1 of Equation (17) is discretized for all cells Ωi by summing up on all fluid
interfaces Γφij of Ωφ

i , with j ∈ V (i). The convective numerical flux is defined as follows:∫
Γφi

Qn · ndΓ =
∑
j∈V (i)

∫
Γφij

Qn · ndΓ =
∑
j∈V (i)

(
ρnij
)upw

(un · n)ij S
φ
ij, (18)

where nij is the unit normal vector at the fluid interface Γφij from Ωφ
i to Ωφ

j . The trans-
ported quantity ρnij is estimated by the standard first order upwind scheme:(

ρnij
)upw

= βnijρ
n
i + (1− βnij)ρnj ,

with:

βnij =

{
1 if (un · n)ij ≥ 0,

0 otherwise.

The normal velocity at the fluid interface is linearly interpolated between the two neigh-
bouring cells:

(un · n)ij =
(
αiju

n
i + (1− αij)unj

)
· nij,

where:

αij =
hji

hij + hji
,

and hij stands for the distance from the gravity centre of the cell Ωi to the interface Γφij
(remember that we assumed an orthogonal structured grid).

4.1.2. Evaluation of the mass flux implicit contribution

As previously, integral 2 of Equation (17) is decomposed into a sum on all fluid faces of
the cell Ωi. Structured and orthogonal meshes are only considered, which allows a simple
gradient scheme. Numerically and despite the potential presence of sub-elements into the
cell, the value of the pressure Pi in the cell Ωi is supposed uniform. The pressure gradient
at the face is approximated with a “two-point flux approximation” scheme, standard for
admissible meshes [24]:

∇P · nij =
∂P

∂n

∣∣∣∣
Γφij

=
Pj − Pi
hij + hji

.

Thus, the scheme yields:∫
Γφi

∆tn∇P ∗ · ndΓ =
∑
j∈V (i)

∫
Γφij

∆tn∇P ∗ · ndΓ =
∑
j∈V (i)

∆tn

hij + hji

(
P ∗j − P ∗i

)
Sφij. (19)

We conclude that the mass flux is approximated, at each fluid interface, by:∫
Γφi

Q∗ · ndΓ =
∑
j∈V (i)

(
ρnij
)upw

(un · n)ij S
φ
ij −

∑
j∈V (i)

∆tn

hij + hji

(
P ∗j − P ∗i

)
Sφij. (20)

10



4.2. Momentum balance

In this section, the semi-discrete momentum balance (15), solved with the velocity
un+1, is discretized in space:∣∣∣Ωφ

i

∣∣∣ (ρn+1
i un+1

i − ρni uni
)

+ ∆tn
∫

Γi

un+1(Q∗ · n)dΓ + ∆tn
∫

Γi

P ∗ndΓ

−∆tn
∣∣∣Ωφ

i

∣∣∣ ρn+1
i fni = 0.

At this step, the density ρn+1
i and the force fni are known. We must define the numerical

flux for both integrals of Equation (15):∫
Γi

un+1(Q∗ · n)dΓ, (21)

and

∫
Γi

P ∗ndΓ. (22)

4.2.1. Evaluation of the convective flux in the momentum equation

The integral (21) is decomposed on the wall faces Γwi and the fluid faces Γφi of the cell
Ωi: ∫

Γi

un+1(Q∗ · n)dΓ =

∫
Γwi

un+1(Q∗ · n)dΓ︸ ︷︷ ︸
=0

+

∫
Γφi

un+1(Q∗ · n)dΓ.

To evaluate the fluid part in this relation, the numerical flux is summed up on all fluid
interfaces Γφij of the cell Ωi as follows:∫

Γφi

un+1(Q∗ · n)dΓ =
∑
j∈V (i)

∫
Γφij

un+1(Q∗ · n)dΓ =
∑
j∈V (i)

(
un+1
ij

)upw
(Q∗ · n)ij S

φ
ij. (23)

The mass flux (Q∗ · n)ij S
φ
ij has already been computed at the previous step by Equation

(20):

(Q∗ · n)ij S
φ
ij =

∫
Γφij

Q∗ · ndΓ.

The value of the convected velocity
(
un+1
ij

)upw
at the fluid interface is computed with a

upwind scheme: (
un+1
ij

)upw
= λniju

n+1
i + (1− λnij)un+1

j ,

with:

λnij =

{
1 if (Q∗ · n)ij ≥ 0,

0 otherwise.

4.2.2. Evaluation of the pressure force in the momentum equation

The pressure value P ∗i for all cells Ωi is known from the mass conservation step. The
integral decomposition on Γφi and Γwi is thus explicit in time:∫

Γi

P ∗ndΓ =

∫
Γwi

P ∗ndΓ +

∫
Γφi

P ∗ndΓ.

11



For the fluid interfaces Γφij, the pressure contribution is a linear interpolation between
neighbouring cells values, that is to say:

P ∗ij =
hijP

∗
i + hjiP

∗
j

hij + hji
= (1− αij)P ∗i + αijP

∗
j .

Remark 4.1. Note that the interpolation coefficients 1−αij are unusual. Indeed a stan-
dard interpolation formula would have yielded αij instead of 1−αij. This stems from the
fact that the discrete pressure gradient is built as the transpose of the velocity divergence
operator by duality with respect to the L2 inner product [19].

For the solid faces (interior walls) of Γwi , two approximations of the wall pressure Pw are
considered.

• First approximation of the wall pressure

The contribution of the wall pressure Pw is decentred in taking directly the cell centre
value:

Pw = P ∗i . (24)

Eventually, summing up on all cell faces, the pressure gradient may be written as follows:∫
Γi

P ∗ndΓ =
∣∣∣Ωφ

i

∣∣∣∇iP
∗ =

∑
j∈V (i)

P ∗ijnijS
φ
ij +

∫
Γwi

PwndΓ

=
∑
j∈V (i)

P ∗ijnijS
φ
ij + P ∗i

− ∑
j∈V (i)

nijS
φ
ij


=
∑
j∈V (i)

(
P ∗ij − P ∗i

)
nijS

φ
ij.

In the last relation, we used the fact that the integral of the normal vector on a closed
boundary vanishes: ∫

Γi

ndΓ = 0 =
∑
j∈V (i)

nijS
φ
ij +

∫
Γwi

ndΓ.

• Second approximation of the wall pressure

Another choice for the evaluation of the wall pressure Pw is to use the “mirror state”
technique defined in [25]. A virtual cell is considered in the solid obstacle with the normal
n and the wall pressure is obtained by solving a Riemann problem, see Appendix B:

Pw = PRiemann
(
Wn+1

i ,Ŵn+1
i

)
, (25)

where
Ŵn+1

i =
[
ρn+1
i ,−ρn+1

i un+1
i · n, E∗i

]t
is the mirror state of

Wn+1
i =

[
ρn+1
i , ρn+1

i un+1
i · n, E∗i

]t
.

12



For the Euler equations (1) and for any EOS, the general form of the solution of this
problem is:

PRiemann
(
Wn+1

i ,Ŵn+1
i

)
= P ∗i (1 + f (M∗)) ,

where M∗ is the local Mach number based on the normal velocity to the wall:

M∗ =
un+1
i · n

c(P ∗i , ρ
n+1
i )

.

The expression of the function f depends on the Riemann solver and the EOS of the
fluid, see [25], but in any cases: f(0) = 0.

In order to compute the pressure integral contribution, the function f is linearized in
using its Taylor expansion at the first order with respect to M∗, supposed to be small
compared to 1:

Pw = P ∗i (1 + γ̂ M∗) , (26)

where γ̂ = f ′(0).

Remark 4.2. For the EOS of an ideal gas, γ̂ = γ, and for the EOS of a stiffened gas,
γ̂ = γ

(
1 + Π∞

P

)
.

Consequently, the wall pressure integral evaluation becomes:∫
Γwi

P ∗ndΓ =

∫
Γwi

P ∗i (1 + γ̂ M∗)ndΓ

= P ∗i

(∫
Γwi

ndΓ

)
+ P ∗i

γ̂

c(P ∗i , ρ
n+1
i )

(∫
Γwi

nntdΓ

)
un+1
i .

The pressure gradient is thus discretized in space as:∫
Γi

P ∗ndΓ =
∣∣∣Ωφ

i

∣∣∣∇iP
∗ =

∑
j∈V (i)

P ∗ijnijS
φ
ij +

∫
Γwi

PwndΓ

=
∑
j∈V (i)

(
P ∗ij − P ∗i

)
nijS

φ
ij +Kiu

n+1
i ,

where: Ki =
γ̂P ∗i

c(P ∗i , ρ
n+1
i )

∫
Γwi

nntdΓ is a symmetric positive tensor.

Remark 4.3. The first order term, Ku, corresponds to a pressure drag force or form
drag force due to the obstacle shape. This term dissipates kinetic energy and is not taken
into account in the approximation (24).

The resolution of the Riemann problem (25) seems more physically grounded than the
first choice (24) of the cell pressure, particularly when the cell normal velocity to the wall
is not close to zero. If the flow is locally tangent to the wall i.e. M∗= 0, then the second
approximation boils down to the first one.
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4.3. Energy balance

The space scheme is built from the semi-discrete equation (16) of the total energy
conservation: ∣∣∣Ωφ

i

∣∣∣ (En+1
i − En

i

)
+ ∆tn

∫
Γi

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ

−∆tn
∣∣∣Ωφ

i

∣∣∣ (ρn+1
i fni · un+1

i + ρn+1
i Φn

v,i

)
= 0.

The density ρn+1, the pressure P ∗ and the velocity un+1 have been already computed in
the previous steps, and the external force fn and the term source Φn

v are given. Thus
the last part of Equation (16) is explicit. The flux integral remains to be evaluated, once
again by decomposing it on the fluid and solid faces:∫

Γi

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ =

∫
Γwi

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ︸ ︷︷ ︸

=0

+

∫
Γφi

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ.

(27)

The fluid part in the integral (27) is approximated for each cell Ωi by a numerical flux. Us-
ing the definitions of Section 2.2, the flux is decomposed into a sum on all fluid interfaces
of Γφi :∫

Γφi

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ =

∑
j∈V (i)

∫
Γφij

En+1 + P ∗

ρn+1
(Q∗ · n)dΓ

=
∑
j∈V (i)

(
En+1

ρn+1

)upw
ij

(Q∗ · n)ij S
φ
ij +

∑
j∈V (i)

(
P ∗

ρn+1

)upw
ij

(Q∗ · n)ij S
φ
ij.

(28)

The fluid face values of
(
En+1

ρn+1

)upw
ij

and
(

P ∗

ρn+1

)upw
ij

are given by an upwind scheme as

described below: (
En+1

ρn+1

)upw
ij

= λnij
En+1
i

ρn+1
i

+ (1− λnij)
En+1
j

ρn+1
j

,(
P ∗

ρn+1

)upw
ij

= λnij
P ∗i
ρn+1
i

+ (1− λnij)
P ∗j
ρn+1
j

,

where:

λnij =

{
1 if (Q∗ · n)ij ≥ 0,

0 otherwise.

4.4. Wall boundary conditions

Rigid wall boundary conditions on ∂Ωw, the wall boundary of the computational
domain Ω, are taken into account by using the “mirror state” technique, see Appendix
B and [26, 27, 25]. For the EOS of an ideal gas or stiffened gas, the exact solution of this
Riemann problem is calculated. Hence the condition applied at a wall boundary face Γbi
of the boundary of Ωi is such that the convective mass flux is null (Q∗bi ·nbi = 0) and the
predicted pressure is, for the EOS of an ideal gas, either:

14



• for uni · nbi ≤ 0, rarefaction configuration: P ∗bi = P ∗i

(
1 +

γ − 1

2

uni · nbi
cni

) 2γ
γ−1

if − 2
γ−1

<
uni ·nbi
cni
≤ 0,

P ∗bi = 0 otherwise,

• for uni · nbi > 0, shock configuration:

P ∗bi = P ∗i

1 + γ
uni · nbi
cni

(
1 +

(γ + 1)2

16

(
uni · nbi
cni

)2
) 1

2

+
γ(γ + 1)

4

(
uni · nbi
cni

)2
 .

Furthermore, the wall boundary value of the pressure for the EOS of a stiffened gas is
inferred from the formula given in Appendix B.

5. Main properties of the scheme

5.1. Properties of the pressure prediction step

This section aims at proving that the numerical scheme preserves the positivity of
both the discrete density and the predicted pressure.

The discrete equation coming from the time and space scheme of Equation (11) of the
mass conservation is written with the notations introduced in Section 2.2 as follows:∣∣∣Ωφ

i

∣∣∣ (P ∗i − P n
i )

(c2)ni
+∆tn

∑
j∈V (i)

(
βnijρ

n
i + (1− βnij)ρnj

)
(un · n)ijS

φ
ij

−
∑
j∈V (i)

(∆tn)2

hij + hji

(
P ∗j − P ∗i

)
Sφij = 0. (29)

Equation (29) yields a linear system:

AX = B,

with the vector X = (P ∗i )i∈{1,...,Ncell}, where Ncell is the total number of cell (degrees of
freedom). ∀ i ∈ {1, ..., Ncell}, the diagonal matrix coefficients are:

Aii =


∣∣∣Ωφ

i

∣∣∣
(c2)ni

+ (∆tn)2
∑
j∈V (i)

Sφij
hij + hji

if
∣∣∣Ωφ

i

∣∣∣ > 0,

1 otherwise,

∀ i, j ∈ {1, ..., Ncell} with j 6= i, the off-diagonal coefficients are:

Aij =

 −
(∆tn)2

hij + hji
Sφij if j ∈ V (i) and

∣∣∣Ωφ
i

∣∣∣ > 0,

0 otherwise.

The right hand side coefficients are:

Bi =


∣∣∣Ωφ

i

∣∣∣ P n
i

(c2)ni
−∆tn

∑
j∈V (i)

(
βnijρ

n
i + (1− βnij)ρnj

)
(un · n)ijS

φ
ij if

∣∣∣Ωφ
i

∣∣∣ > 0,

P n
i otherwise.
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Remark 5.1. If the measure of the fluid part of the cell Ωi is null, then all faces are

considered as solid, i.e.: if
∣∣∣Ωφ

i

∣∣∣ = 0, then ∀ j ∈ V (i), Sφij = 0. We conclude that:

Bi = P n
i and hence P ∗i = P n

i .

Property 5.1. [Positivity of the density and the predicted pressure] Assume that the

EOS is such that ρ > 0, P > 0 and γ̂ = ρc2

P
> 1. If the initial conditions are such that,

for all Ωi, ρ
n
i > 0 and P n

i > 0, then the density ρn+1
i and the pressure P ∗i will remain

positive for all Ωi, provided that the time step ∆tn complies with the CFL-like condition:∣∣∣Ωφ
i

∣∣∣ ≥ γ̂∆tn
∑
j∈V (i)

βnij (un · n)ij S
φ
ij. (30)

The CFL-like condition (30) allows to define the CFL+ condition if
∣∣∣Ωφ

i

∣∣∣ > 0:

CFL+ := ∆tn max
i∈{1,...,Ncell}

γ̂∣∣∣Ωφ
i

∣∣∣
∑
j∈V (i)

βnij (un · n)ij S
φ
ij ≤ 1. (31)

Proof. The proof is that A is a M-matrix and B is positive.

• A is a M-matrix: the time step ∆tn > 0, ∀ i ∈ {1, ..., Ncell}, (c2)ni > 0 and
∣∣∣Ωφ

i

∣∣∣ ≥ 0.

Moreover, ∀ j ∈ V (i), Sφij ≥ 0 and hij + hji > 0. Thus all diagonal coefficients
of the matrix A are strictly positive (Aii > 0), and all off-diagonal coefficients are
negative or null (Aij ≤ 0 for j 6= i).

∀ i ∈ {1, ..., Ncell}, A is strictly diagonally dominant by lines:

|Aii| −
∑
j 6=i
|Aij| = Aii +

∑
j∈V (i)

Aij

=

{ |Ωφi |
(c2)ni

> 0 if
∣∣∣Ωφ

i

∣∣∣ > 0,

1 otherwise.

Thus A is a M-matrix i.e. invertible and the A−1 coefficients are positive:

∀ i, j ∈ {1, ..., Ncell},
(
A−1

)
ij
≥ 0.

• B is positive: if
∣∣∣Ωφ

i

∣∣∣ > 0, the coefficient Bi yields:

Bi =


∣∣∣Ωφ

i

∣∣∣
(c2)ni

−∆tn
∑
j∈V (i)

βnij
ρni
P n
i

(un · n)ijS
φ
ij

P n
i −∆tn

∑
j∈V (i)

(1− βnij)ρnj (un · n)ijS
φ
ij.

(32)

By considering Equation (32), the coefficient Bi is a positive combination of P n
i

and ρnj if the CFL-like condition (30) holds. Thus the vector B is positive:

∀ i ∈ {1, ..., Ncell}, Bi ≥ 0.
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Given that:
X = A−1B,

we conclude, for all Ωi, Xi = P ∗i ≥ 0.

Likewise the density ρn+1 remains positive under the condition (30). Indeed, to be
conservative, we have set for all i ∈ {1, ..., Ncell} (see Section 3) :

ρn+1
i − ρni =

P ∗i − P n
i

(c2)ni
⇒ ρn+1

i =
P ∗i

(c2
i )
n

+ ρni
(γ̂ni − 1)

γ̂ni
,

which completes the proof: ρn+1
i > 0, since γ̂ni = γ̂ > 1.

Remark 5.2. For an ideal gas, γ̂ = γ ≈ 1 (notably γ = 1.4 for a diatomic gas). The
CFL-like condition (30) is close to the standard CFLu condition (33), based on the
material transport.

CFLu := ∆tn max
i∈{1,...,Ncell}

1∣∣∣Ωφ
i

∣∣∣
∑
j∈V (i)

βnij (un · n)ij S
φ
ij ≤ 1. (33)

Remark 5.3. For a liquid with a physical EOS, γ̂ � 1. This CFL-like condition (30)
becomes more limiting than the standard CFLu condition (33) on the velocity for an
explicit upwind scheme. A way to maintain the standard CFLu constraint is to substitute
the mass balance linear scheme by a non-linear scheme (see Appendix A).

Remark 5.4. For the stiffened gas EOS, Property 5.1 does not apply. Indeed negative
pressures greater than −Π∞ are meaningful. In this case, we may prove the following
result, Property 5.2.

Property 5.2. [Admissible state of the density and the predicted pressure for the stiffened
gas EOS] Assume a stiffened gas EOS (2), which is such that ρ > 0 and P + Π∞ > 0. If
the initial conditions are such that, for all Ωi, ρ

n
i > 0 and P n

i + Π∞ > 0, then the density
ρn+1
i and the pressure P ∗i + Π∞ will remain positive for all Ωi, provided that the time step

∆tn complies with the modified CFL+ condition:

CFL+ := γ∆tn max
i∈{1,...,Ncell}

1∣∣∣Ωφ
i

∣∣∣
∑
j∈V (i)

βnij (un · n)ij S
φ
ij ≤ 1. (34)

Proof. The proof is identical to the one of Property 5.1 thanks to the suitable change of
variables, for all Ωi, P̃i = Pi + Π∞ in the discrete mass balance equation (29).

Remark 5.5. The CFL+ condition (34) remains always close to the CFLu condition
(33), since, for the stiffened gas EOS, γ is usually in the range (1, 10].

Remark 5.6 (Conservativity in time and space). The algorithm is conservative in
time and in space. It is important to emphasize that, for all i ∈ {1, ..., Ncell}, the density
ρn+1
i needs to be updated only as follows:

ρn+1
i = ρni +

1

(c2
i )
n

(P ∗i − P n
i ) .

Conservativity of the algorithm allows to find the correct shock solutions in pure fluid
cases. This is verified in presence of discontinuities in [20]. The convergence order,
determined from the Riemann problem of the shock tube test case, is 1

2
for contact dis-

continuities, and 1 for shock waves and rarefaction waves.
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5.2. Properties of the pressure correction step

This section aims at proving that the numerical scheme preserves the positivity of the
discrete internal energy and hence of the corrected pressure.

Property 5.3. [Positivity of the internal energy] Assume that the EOS is such that
ρ > 0 and ε > 0. If the initial conditions are such that, for all Ωi, ρ

n
i > 0 and εni > 0,

then the internal energy εn+1
i will remain positive for all Ωi, provided that the time step

∆tn complies with the CFL-like condition:∣∣∣Ωφ
i

∣∣∣ ≥ ∆tn

ρni ε
n
i

∑
j∈V (i)

((
P ∗

ρn+1

)upw
ij

(Q∗ · n)ij −
(
P ∗ij − P ∗i

)
nij · un+1

i

)
Sφij. (35)

The CFL-like condition (35) allows to define the CFL+
ε condition, if

∣∣∣Ωφ
i

∣∣∣ > 0:

CFL+
ε := ∆tn max

i∈{1,...,Ncell}

1∣∣∣Ωφ
i

∣∣∣ a∗i
ρni ε

n
i

≤ 1, (36)

with a∗i :=
∑
j∈V (i)

((
P ∗

ρn+1

)upw
ij

(Q∗ · n)ij −
(
P ∗ij − P ∗i

)
nij · un+1

i

)
Sφij.

Proof. The proof consists in deriving a discrete kinetic energy balance. Subtracting this
balance to the total energy balance (16) allows to obtain a discrete internal energy balance
and to deduce a condition of positivity on the right hand side of the associated linear
system.

• Discrete kinetic energy balance

The derivation of the kinetic energy balance in the continuous case is mimicked: we
multiply the momentum equation by the velocity and use the mass balance. Multiplying
the discrete momentum balance (15) by the velocity un+1

i for all Ωi, i ∈ {1, ..., Ncell},
yields: ∣∣∣Ωφ

i

∣∣∣ ρn+1
i un+1

i − ρni uni
∆tn

· un+1
i +

∑
j∈V (i)

(Q∗ · n)ij (un+1
ij )upw · un+1

i Sφij

+
∑
j∈V (i)

(
P ∗ij − P ∗i

)
nij · un+1

i Sφij = 0. (37)

Using the identity: 2 uni · un+1
i =

∣∣un+1
i

∣∣2 + |uni |
2 −

∣∣un+1
i − uni

∣∣2, the unsteady term of
Equation (37) reads:

2
(
ρn+1
i

∣∣un+1
i

∣∣2 − ρni uni · un+1
i

)
= 2ρn+1

i

∣∣un+1
i

∣∣2 − ρni |uni |2 + ρni
∣∣un+1

i − uni
∣∣2 − ρni ∣∣un+1

i

∣∣2 ,
multiplying the mass balance (11) by 1

2

∣∣un+1
i

∣∣2,∣∣∣Ωφ
i

∣∣∣
2∆tn

ρni
∣∣un+1

i

∣∣2 =

∣∣∣Ωφ
i

∣∣∣
2∆tn

ρn+1
i

∣∣un+1
i

∣∣2 +
∑
j∈V (i)

(Q∗ · n)ij
1

2

∣∣un+1
i

∣∣2 Sφij,
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and substituting this relation in Equation (37) yields:∣∣∣Ωφ
i

∣∣∣
2∆tn

(
ρn+1
i

∣∣un+1
i

∣∣2 − ρni |uni |2)+
∑
j∈V (i)

(Q∗ · n)ij

(
(un+1

ij )upw · un+1
i − 1

2

∣∣un+1
i

∣∣2)Sφij
+

∣∣∣Ωφ
i

∣∣∣
2∆tn

ρni
∣∣un+1

i − uni
∣∣2 +

∑
j∈V (i)

(
P ∗ij − P ∗i

)
nij · un+1

i Sφij = 0. (38)

The convective flux can be rewritten for the upwind discretization (23) as:

(Q∗ · n)ij

(
(un+1

ij )upw · un+1
i − 1

2

∣∣un+1
i

∣∣2) = (Q∗ · n)ij
1

2

∣∣(un+1
ij )upw

∣∣2
− (1− λnij) (Q∗ · n)ij︸ ︷︷ ︸

≤0

1

2

∣∣un+1
i − un+1

j

∣∣2 .
The coefficient λnij has been defined in Section 4.2.1. Eventually substituting this latter
equality in Equation (38) yields the following discrete kinetic energy balance for all Ωi:∣∣∣Ωφ

i

∣∣∣
2∆tn

(
ρn+1
i

∣∣un+1
i

∣∣2 − ρni |uni |2)+
∑
j∈V (i)

(Q∗ · n)ij
1

2

∣∣(un+1
ij )upw

∣∣2 Sφij
+
∑
j∈V (i)

(
P ∗ij − P ∗i

)
nij · un+1

i Sφij +R2
i = 0, (39)

with R2
i =

∣∣∣Ωφ
i

∣∣∣
2∆tn

ρni
∣∣un+1

i − uni
∣∣2− ∑

j∈V (i)

(1−λnij) (Q∗ · n)ij
1

2

∣∣un+1
i − un+1

j

∣∣2 Sφij ≥ 0, since

ρni > 0 for all Ωi.

• Discrete internal energy balance

Subtracting the discrete kinetic energy balance (39) to the discrete total energy balance
(16) yields the following local discrete internal energy balance for all Ωi:∣∣∣Ωφ

i

∣∣∣
∆tn

(
ρn+1
i εn+1

i − ρni εni
)

+
∑
j∈V (i)

(Q∗ · n)ij
(
εn+1
ij

)upw
Sφij

+
∑
j∈V (i)

(
(Q∗ · n)ij

(
P ∗

ρn+1

)upw
ij

−
(
P ∗ij − P ∗i

)
nij · un+1

i

)
Sφij = R2

i . (40)

The upwind discretization of the internal energy equation (40) infers that the associated
linear system matrix is a M-matrix, i.e. invertible and its inverse is positive. Thus the
internal energy εn+1

i remains positive as long as the explicit-in-time term is positive. Since
R2
i ≥ 0, the sufficient condition of the positivity of εn+1

i is for all Ωi:∣∣∣Ωφ
i

∣∣∣
∆tn

ρni ε
n
i +

∑
j∈V (i)

((
P ∗ij − P ∗i

)
nij · un+1

i −
(
P ∗

ρn+1

)upw
ij

(Q∗ · n)ij

)
Sφij ≥ 0,

which completes the proof.
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Remark 5.7. The positivity of the pressure holds under the CFL-like conditions (30) and
(35): for all Ωi, P

n+1
i = P(ρn+1

i , εn+1
i ) ≥ 0, since ρn+1

i > 0 under the CFL+ condition
(30) and εn+1

i ≥ 0 under the CFL+
ε condition (35).

Remark 5.8. if
∣∣∣Ωφ

i

∣∣∣ = 0, then ∀ j ∈ V (i), Sφij = 0. We thus conclude that ρn+1
i = ρni

and εn+1
i = εni (and so P n+1

i = P n
i ) for all Ωi.

Remark 5.9. For the stiffened gas EOS, Property 5.3 does not apply. The inequality
ρε − Π∞ ≥ 0, equivalent to P + Π∞ ≥ 0 with γ > 1, must be verified. The change of
variables is set here ρ̃ε = ρε − Π∞ and P̃ = P + Π∞, given that P̃ = (γ − 1)ρ̃ε. In this
case, we may prove the following result, Property 5.4.

Property 5.4. [Admissible state of the internal energy for the stiffened gas EOS] Assume
a stiffened gas EOS (2), which is such that ρ > 0 and ρ̃ε = ρε − Π∞ > 0. If the initial
conditions are such that for all Ωi, ρ

n
i > 0 and ρ̃εni > 0, then ρ̃εn+1

i will remain positive
for all Ωi, provided that the time step ∆tn complies with the modified CFL+

ε condition:

CFL+
ε := (γ − 1)∆tn max

i∈{1,...,Ncell}

1∣∣∣Ωφ
i

∣∣∣ ã
∗
i

P̃ n
i

≤ 1, (41)

with ã∗i :=
∑
j∈V (i)

( P̃ ∗

ρn+1

)upw

ij

(Q∗ · n)ij −
(
P̃ ∗ij − P̃ ∗i

)
nij · un+1

i

Sφij.

Proof. The proof is identical to the one of Property 5.3 thanks to the suitable change of
variables (see Remark 5.9), for all Ωi, P̃i = Pi + Π∞ and ρ̃εi = ρiεi − Π∞ in the proof of
Property 5.3 and thus in the discrete internal energy balance equation (40).

Remark 5.10. Note that, when considering a locally constant pressure, the CFL+
ε con-

dition (41) boils down to:

(γ − 1)∆tn max
i∈{1,...,Ncell}

1∣∣∣Ωφ
i

∣∣∣
∑
j∈V (i)

(Q∗ · n)ij(
ρn+1
ij

)upwSφij ≤ 1,

the CFL+
ε number (41) is thus approximately equal to (γ − 1)CFLu, and (γ − 1) is of

the same order of magnitude as one.
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6. Numerical results

6.1. Verification test cases: one-dimensional Riemann problems

6.1.1. Sod shock tube

This section is dedicated to the verification case of the basic configuration without
obstacles: the so-called Sod shock tube, which is an one-dimensional Riemann problem.
The computational domain is Ω = (−200, 200) and consists of a one-dimensional tube
with a membrane in the middle which separates two different constant fluid states. At
the time t = 0, the membrane bursts. The ideal gas EOS is considered with γ = 1.4
(diatomic gas). The numerical solution is compared with the exact solution, which is
composed of a 1-rarefaction wave followed by a 2-contact discontinuity and a 3-shock
wave. This solution is derived in [28].

All meshes used to solve this Riemann problem are uniform. The meshes contain N
cells with N = 800, 1600, 3200, 6400, 12800, 25600 or 51200. The CFLu number, based
on the material velocity u and defined by Equation (33), is equal to 0.1. In the sequel,
the space step dx is defined in m, the density ρ in kg.m−3, the velocity u in m.s−1 and
the pressure P in Pa.

Initial conditions are, for the left and right states:{
(ρL, uL, PL) = (1, 0, 105) ,
(ρR, uR, PR) = (0.125, 0, 104) .

(42)

For a qualitative study, the profiles of density, velocity, pressure and enthalpy are pre-
sented in Figure 4 at a time t = 0.3 s such that all waves are visible in the computational
domain. The exact profiles are recovered with numerical diffusion for the rarefaction,
contact discontinuity and shock waves. To check the convergence order, we plot in Fig-
ure 5 the logarithm of the relative L1 error1 as a function of the logarithm of the mesh
size N (see Table 1). The numerical rates of convergence are about 0.6 for the density,
0.9 for the velocity and the pressure, and slightly more than 0.5 for the enthalpy (see
Table 2). Theoretically the convergence order is 1 for a rarefaction wave and shock wave,
and 1

2
for a contact discontinuity. This verification shows the ability of the fractional step

scheme to correctly capture discontinuous solutions.

dx N ρ u P h
5.0e-1 800 8.497e-3 9.778e-3 5.308e-3 9.099e-3
2.5e-1 1600 5.427e-3 5.627e-3 3.010e-3 6.180e-3
1.25e-1 3200 3.472e-3 3.078e-3 1.679e-3 4.169e-3
6.25e-2 6400 2.237e-3 1.668e-3 9.272e-4 2.831e-3
3.125e-2 12800 1.456e-3 9.269e-3 5.095e-4 1.943e-3
1.5625e-2 25600 9.571e-4 5.070e-4 2.780e-4 1.342e-3
7.8125e-3 51200 6.354e-4 2.660e-4 1.496e-4 9.273e-4

Table 1: L1 error for variables (ρ, u, P, h) for all the considered meshes for the Sod shock-tube.

1The discrete relative L1 error is defined as: eL1(Ω)(ψ) =
∑Ncell

i=1 |ψexact
i −ψcompute

i |meas(Ωi)∑Ncell
i=1 |ψexact

i |meas(Ωi)
.
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Figure 4: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for
the Sod shock-tube at t = 0.3 s.
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Figure 5: L1 convergence curves for the Sod shock-tube.
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dx N ρ cnv. order u cnv. order P cnv. order h cnv. order
5.0e-1 800
2.5e-1 1600 0.6467 0.7972 0.8185 0.5582
1.25e-1 3200 0.6444 0.8703 0.8436 0.5679
6.25e-2 6400 0.6341 0.8839 0.8562 0.5586
3.125e-2 12800 0.6196 0.8477 0.8638 0.5429
1.5625e-2 25600 0.6054 0.8703 0.8743 0.5337
7.8125e-3 51200 0.5910 0.9306 0.8940 0.5334

Table 2: L1 convergence order for variables (ρ, u, P, h) for all the considered meshes for the Sod shock-
tube.

6.1.2. Riemann problem with a stiffened gas EOS

This verification test case is a one-dimensional Riemann problem with a stiffened
gas EOS. The stiffened gas parameters are computed for a liquid water at a 165 bar
pressure and 583.15 K temperature: γSG = 1.85768 and Π∞ = 4.243468× 108 Pa. Initial
conditions are, for the left and right states:{

(ρL, uL, PL) = (800, 0, 1.65× 107) ,
(ρR, uR, PR) = (797, 6.827, 5.0× 106) .

(43)

This test case corresponds to a low Mach number flow. The Mach number is such that:
M = |u|

c
∈ [0, 10−2]. The exact solution is composed of a 1-rarefaction wave followed by a

2-contact discontinuity and a 3-shock wave. The uniform meshes contain N = 800, 1600,
3200, 6400, 12800, 25600 and 51200 cells. For the first test, CFLu is equal to 0.0084,
i.e. CFL+ = 0.015 (CFL+ defined by Equation (31)). The second test is run with
CFLu equal to 0.54 (CFL+ = 1). The simulation ending time is 0.1 s. As expected, the
numerical simulation matches the exact profile with numerical diffusion at discontinuities
(see Figure 6 and Table 3). The greater is the CFLu value, the greater is the diffusion,
excepted for the contact discontinuity profile which maintains sharp (see Figure 8 and
Table 5). In accordance with the theory for a stiffened gas EOS, we note that the L1

convergence order is 1
2

for all waves (see Table 4, 6 and Figure 7, 9).
The semi-implicit pressure correction scheme allows to release the explicit stability

constraint due to the acoustic waves and thus to increase the CFLu value.

Test case 1 with CFL+ = 0.015

dx N ρ u P h
5.0e-01 800 1.927e-04 2.546e-02 1.534e-02 1.684e-04
2.5e-01 1600 1.352e-04 1.786e-02 1.073e-02 1.182e-04
1.25e-01 3200 9.449e-05 1.244e-02 7.477e-03 8.260e-05
6.25e-02 6400 6.570e-05 8.634e-03 5.189e-03 5.744e-05
3.125e-02 12800 4.534e-05 5.943e-03 3.571e-03 3.965e-05
1.5625e-02 25600 3.100e-05 4.049e-03 2.433e-03 2.712e-05
7.8125e-03 51200 2.093e-05 2.722e-03 1.635e-03 1.832e-05

Table 3: L1 error for variables (ρ, u, P, h) for all the considered meshes for a Riemann problem with a
SG EOS (CFL+ = 0.015).
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Figure 6: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for
a Riemann problem with a SG EOS at t = 0.1 s (CFL+ = 0.015).
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Figure 7: L1 convergence curves for a Riemann problem with a SG EOS (CFL+ = 0.015).
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dx N ρ cnv. order u cnv. order P cnv. order h cnv. order
5.0e-1 800
2.5e-1 1600 0.5110 0.5120 0.5157 0.5107
1.25e-1 3200 0.5171 0.5209 0.5211 0.5168
6.25e-2 6400 0.5243 0.5274 0.5270 0.5240
3.125e-2 12800 0.5353 0.5389 0.5392 0.5349
1.5625e-2 25600 0.5486 0.5535 0.5536 0.5480
7.8125e-3 51200 0.5665 0.5731 0.5733 0.5658

Table 4: L1 convergence order for variables (ρ, u, P, h) for all the considered meshes for a Riemann
problem with a SG EOS (CFL+ = 0.015).

Test case 2 with CFL+ = 1
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Figure 8: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for
a Riemann problem with a SG EOS at t = 0.1 s (CFL+ = 1).
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Figure 9: L1 convergence curves for a Riemann problem with a SG EOS (CFL+ = 1).

dx N ρ u P h
5.0e-1 800 1.543e-03 1.857e-01 1.326e-01 1.342e-03
2.5e-1 1600 1.067e-03 1.453e-01 9.145e-02 9.263e-04
1.25e-1 3200 7.431e-04 1.042e-01 6.355e-02 6.440e-04
6.25e-2 6400 5.208e-04 7.307e-02 4.447e-02 4.512e-04
3.125e-2 12800 3.631e-04 5.132e-02 3.090e-02 3.144e-04
1.5625e-2 25600 2.552e-04 3.604e-02 2.169e-02 2.209e-04
7.8125e-3 51200 1.791e-04 2.528e-02 1.521e-02 1.550e-04

Table 5: L1 error for variables (ρ, u, P, h) for all the considered meshes for a Riemann problem with a
SG EOS (CFL+ = 1).

dx N ρ cnv. order u cnv. order P cnv. order h cnv. order
5.0e-1 800
2.5e-1 1600 0.5327 0.3542 0.5364 0.5343
1.25e-1 3200 0.5214 0.4797 0.5250 0.5245
6.25e-2 6400 0.5129 0.5116 0.5149 0.5132
3.125e-2 12800 0.5202 0.5097 0.5253 0.5211
1.5625e-2 25600 0.5089 0.5010 0.5103 0.5094
7.8125e-3 51200 0.5108 0.5115 0.5118 0.5111

Table 6: L1 convergence order for variables (ρ, u, P, h) for all the considered meshes for a Riemann
problem with a SG EOS (CFL+ = 1).

6.2. Verification test cases: one-dimensional shock tube interaction with a wall

The aim here is to simulate the interaction between a shock wave generated by a sub-
sonic shock tube experiment and a wall. The shock tube experiment has been presented
in the previous Section 6.1. In this second test case, the computational domain contains a
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wall boundary on the right located at x = x1; here, a wall boundary condition is applied.
The 3-shock wave is reflected by the wall, and then the reflected shock interacts with
the 2-contact discontinuity at time t1 in x = x∗ = x1 − σ3(t1 − t0) = x0 + u1t1, where t0
denotes the time when the initial 3-shock wave hits the wall and u1 and σ3 the celerity
of the contact discontinuity and the reflected shock wave respectively. The computed
configurations are:

• the interaction of the initial shock wave with the wall,

• the interaction of the initial contact discontinuity with the reflected shock wave.

The localisation of the different constant fluid states is given in Figure 10. The state (3)
is created by the shock wave reflection on the wall and the states (4) and (5) are created
by the interaction of the contact discontinuity (1) and the reflected shock (3).

xx1x∗
+

t

x0

WL WR

u1 − c1uL − cL u1 = u2 σ2

−σ3

t0

t1

(1) (2)

(3)

(4) (5)

wall

Figure 10: Wave interactions with the wall (subsonic case: u1 − c1 < 0).

Appendix C presents the calculation of the analytic solution (hence computing exact
values for W3, W4 and W5) based on an exact solving of two distinct Riemann problems.
In the following section, the numerical solution is compared with this analytic solution
in order to check the numerical scheme error and to investigate convergence rates.

6.2.1. Interaction of the initial contact discontinuity with the reflected shock wave for an
ideal gas EOS

The computational domain is initialized with the Sod shock-tube configuration. The
discontinuity between the initial left and right states is located at x0 = 50 m. Initial
conditions are: {

(ρL, uL, PL) = (1, 0, 105) ,
(ρR, uR, PR) = (0.125, 0, 104) .

(44)

and: P = (γ − 1) ρε, with γ = 7
5
.

The convergence study is performed with uniform meshes. The mesh containsN cells with
N = 800, 1600, 3200, 6400, 12800, 25600 or 51200. The material CFLu value is equal to
1. The computation final time is 0.42 s such that the reflected shock wave has interacted
with the initial contact discontinuity. Numerical diffusion affects obtained profiles, but
these latter are in quite good agreement with the exact solution (dark dashed line), see
Figure 11 and Table 7. The L1 convergence orders are close to 0.5 for the density, and
close to 0.6 for the pressure and the velocity (see Figure 12 and Table 8). For N = 12800,
the numerical wall pressure is P num

wall = 78038.0843 Pa to be compared with the theoretical
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value P exact
wall = 78038.3071 Pa (arising from Appendix C). The relative error is 2.9×10−6.
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Figure 11: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution
for the Sod shock-tube interaction case at t = 0.42 s.

dx N ρ u P h
5.0e-1 800 5.143e-02 5.508e-02 3.673e-02 3.938e-02
2.5e-1 1600 3.680e-02 3.631e-02 2.332e-02 2.774e-02
1.25e-1 3200 2.562e-02 2.294e-02 1.468e-02 1.906e-02
6.25e-2 6400 1.781e-02 1.495e-02 9.649e-03 1.322e-02
3.125e-2 12800 1.209e-02 9.426e-03 6.181e-03 9.107e-03
1.5625e-2 25600 8.247e-03 6.062e-03 4.003e-03 6.290e-03
7.8125e-3 51200 5.569e-03 3.766e-03 2.507e-03 4.320e-03

Table 7: L1 error for variables (ρ, u, P, h) for all the considered meshes for the Sod shock-tube interaction
case.
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Figure 12: L1 convergence curves of for Sod shock-tube interaction case.

dx N ρ cnv. order u cnv. order P cnv. order h cnv. order
5.0e-1 800
2.5e-1 1600 0.4829 0.6012 0.6557 0.5056
1.25e-1 3200 0.5226 0.6626 0.6671 0.5411
6.25e-2 6400 0.5244 0.6182 0.6057 0.5281
3.125e-2 12800 0.5594 0.6649 0.6427 0.5377
1.5625e-2 25600 0.5516 0.6368 0.6269 0.5338
7.8125e-3 51200 0.5663 0.6868 0.6748 0.5419

Table 8: L1 convergence order for variables (ρ, u, P, h) for all the considered meshes for the Sod shock-
tube interaction case.

6.2.2. Shock wave reflection on a wall for a stiffened gas EOS

The verification test case is still a shock tube experiment that interacts with a wall,
now considering a stiffened gas EOS. The stiffened gas parameters are:

γSG = 5 and Π∞ = 1.345951× 108 Pa.

The membrane is located at x0 = 50 m. Initial conditions are:{
(ρL, uL, PL) = (762.8, 0, 1.65× 107) ,
(ρR, uR, PR) = (762.8, 0, 1.55× 107) .

(45)

This test case corresponds to a low Mach number flow. Indeed the Mach number varies
from 0 to 10−3. The convergence study is performed with the same uniform meshes.
CFLu is equal to 0.005 (i.e. CFLu+c ≈ 5). The CFLu value is chosen small enough to
capture accurately the shock wave profile. The computation final time is 0.21 s such that
the reflected shock wave has been generated by interaction with the wall. The field values
of the shock after the wall reflection fit the exact solution (see Figure 13 and Table 9).
The expected L1 convergence orders are recovered: approximately 0.5 for the density,
the pressure and the velocity (see Figure 14 and Table 10). For N = 12800 cells, the
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numerical wall pressure after the reflection on the wall is P num
wall = 16500348 Pa to be

compared with the theoretical value P exact
wall = 16500335 Pa (arising from Appendix C).

The relative error is 7.8× 10−7.
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Figure 13: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution
for the shock-tube reflection case with a SG EOS at t = 0.21 s.

dx N ρ u P h
5.0e-1 800 5.401e-05 1.059e-01 2.504e-03 2.147e-04
2.5e-1 1600 3.857e-05 7.607e-02 1.776e-03 1.525e-04
1.25e-1 3200 2.714e-05 5.377e-02 1.253e-03 1.076e-04
6.25e-2 6400 1.915e-05 3.793e-02 8.840e-04 7.589e-05
3.125e-2 12800 1.351e-05 2.673e-02 6.230e-04 5.350e-05
1.5625e-2 25600 9.501e-06 1.880e-02 4.382e-04 3.763e-05
7.8125e-3 51200 6.668e-06 1.319e-02 3.075e-04 2.641e-05

Table 9: L1 error for variables (ρ, u, P, h) for all considered meshes for the shock-tube reflection case
with a SG EOS.
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Figure 14: L1 convergence curves for the shock-tube reflection case with a SG EOS.

dx N ρ cnv. order u cnv. order P cnv. order h cnv. order
5.0e-1 800
2.5e-1 1600 0.4855 0.4778 0.4958 0.4934
1.25e-1 3200 0.5073 0.5006 0.5025 0.5037
6.25e-2 6400 0.5028 0.5034 0.5037 0.5034
3.125e-2 12800 0.5040 0.5049 0.5047 0.5045
1.5625e-2 25600 0.5075 0.5078 0.5078 0.5077
7.8125e-3 51200 0.5107 0.5110 0.5110 0.5109

Table 10: L1 convergence order for variables (ρ, u, P, h) for all considered meshes for the shock-tube
reflection case with a SG EOS.

6.3. Integral formulation validation test case

EDF R&D has set up research programmes in order to investigate accidental situations
in a major context of nuclear safety and security expertise for PWR (Pressurized Water
Reactor) conditions, including RIA (Reactivity Initiated Accident) [2].

The aim of the current test case is to assess the integral formulation with obstacles,
while mimicking the RIA situation. Thus, the numerical test case consists in simulating
a fluid flow induced by the fuel during a RIA fast transient, where a shock wave impacts
a fuel assembly, gathering a few rods. Actually, the desired physical quantity is the
resultant pressure force on fuel rods in order to evaluate the mechanical properties of the
rod cladding. Both the CFD fluid approach, where the mesh perfectly matches the rods,
and the new integral approach, where fluid cells are obstructed by the rods, are used in
this study. Results are thus compared to validate the integral approach. The CFD study
provides the reference values.

6.3.1. Case description

The numerical test consists in a shock wave impacting rigid obstacles. The com-
pressible fluid is assumed to be inviscid, and the flow is unsteady. The two-dimensional
computational domain Ω is a large tube with a membrane in the middle which separates

31



two discontinuous constant fluid states WL and WR initially at rest. Both tube ends are
closed by walls. Symmetry boundary conditions are imposed at the top and the bottom
of the computational domain to enforce a periodic condition in the y-direction. An ob-
structed area composed of four solid rods is set on the right of the shock tube membrane.
A sketch of the test case is displayed in Figure 15. The obstacles are squares of 1 cm
edge. We perform several computations with Cartesian meshes:

• The reference 2D CFD computation using a fine fluid mesh including 87 millions
of square cells, such that 2000 cells mesh the height h of the tube (see Figure 15).

• The integral formulation computations using coarse porous meshes with square cells.
Nh cells mesh the height h of the tube: Nh = 1, 2, 3, 4, 5 or 6. Thus the obstructed
pattern of size h × L/8 is meshed with 3.5 ×N2

h square cells (see Figure 15). The
total number of cells in Ω is: Ncell = 8× 3.5×N2

h .

The first mesh size (Nh = 1) is representative of the one used for a “component” com-
putation with THYC or FLICA 4 codes for instance. Unlike with the CFD computation
where the solid boundary is explicitly meshed (a wall boundary condition is enforced on
the obstacle surface), the obstacles with the integral approach are included or partially
included in the cells. The simulation is performed with a stiffened gas EOS modelling
the liquid water thermodynamic in the PWR core. The stiffened gas parameters are:

γSG = 1.66512803 and Π∞ = 3.7258761468× 108Pa.

Initial conditions are, for left and right states:{
(ρL, uL, PL) = (713.187, 0, 200× 105) ,
(ρR, uR, PR) = (729.614, 0, 155× 105) .

(46)

CFL+ is equal to 0.006 (i.e. CFLu+c ≈ 1). The CFL+ value is chosen small enough to
capture accurately shock and rarefaction waves. The final time is 0.17 ms. Hence the
fast waves (rarefaction and shock waves) do not hit the left and right wall boundaries.
The CFD unsteady pressure field is plotted in Figure 16.

obstructed pattern
Ω

detailed patternh = L/28 1 2 3 4

WL WRh

y

x

L/2

L/8

Figure 15: Sketch of the Ω domain of size h × L obstructed by four internal solid rods (in grey) and
periodic in the y-direction. The pressure shock wave propagates from the middle of the domain towards
the right end.

Note that explicit-in-time schemes, such as the one described in [21] would lower
computational cost results for the same level of accuracy in this case, where the acoustic
CFLu+c number is close to one, in order to be accurate on pressure loads associated with
fast waves. However this test case validates the ability of the semi-implicit algorithm to
deal with unsteady situations involving sharp genuinely non-linear shocks.
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Figure 16: Pressure field obtained with the local CFD approach (870 000 cells), tfinal = 0.17 ms.

6.3.2. Numerical results

In order to validate the integral approach for the fluid variables, the unsteady profiles
of the density, the x-velocity component and the pressure, for the coarse mesh integral
approach computations, are compared, at tfinal = 0.17 ms, with the local CFD profiles
in Figure 17. These one-dimensional profiles, along the x-direction, are obtained as a
volume-average of the fluid fields in the y-direction. We retrieve the plateau values for
the pressure, the velocity and the density for x ∈ [−0.15,−0.05]. These values are exactly
those obtained when solving the one-dimensional Riemann problem associated with the
current initial conditions (46). The profiles in the obstructed area, for x ∈ [0.07, 0.14],
give satisfactory profiles for the fluid variables, when compared with the CFD reference.

In order to compare the integral approach and the local approach on the quantity of
interest, the pressure force exerted by the pressure shock wave on the surface of the four
rods is computed from the numerical simulations with both the integral approach and the
CFD reference simulation. Figure 18 presents a mesh refinement study for the pressure
force using several meshes (Ncell = 87 × 104, 3.48 × 106, 13.92 × 106 or 87 × 106). The
maximal relative difference between the finest and the coarsest CFD mesh is 14%. The
finest CFD computation with Ncell = 87× 106 is the reference.

The x-component of the pressure force Fx(t) is defined as:

Fx(t) =

(∫
Γw
P (x, t) ndΓ

)
· ex,

where for the integral approach P (x, tn)|Γw is equal to P n
i for all wall interfaces in the cell

Ωi, according to the 0th-order approximation (24). For each mesh, the pressure force as
a function of time Fx(t) is plotted in Figure 19; in addition the time integral of the force,
called impulsion, as a function of time is given in Figure 20. The impulsion is defined as:

Jx(t) =

∫ t

0

Fx(τ)dτ.

The results reveal that:

• For all computations, the maximal resultant force with the integral approach is
underestimated for the rods 1, 2, 3, 4 and their sum, when compared with the CFD
reference; however the resultant force with the integral approach has the same order
of magnitude as the one with the CFD reference. Note that the maximal value of
the sum of the forces exerted on the rods is less underestimated than the one exerted
rod by rod, see Figure 19. Besides, we observe that the convergence towards the
CFD reference computation is not monotonous for coarse porous meshes.
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Figure 17: Fluid fields, at tfinal = 0.17 ms, averaged in the y-direction using the integral approach
with different coarse meshes – comparison with the CFD reference (black line).

• The impulsion approximation on the coarse meshes is slightly overestimated for all
computations when compared with the CFD reference, see Figure 20.

• As expected, Figure 21 shows that the integral approach converges towards the
CFD approach when refining the mesh.
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• Figure 22 and 23 show the quantities of interest (force and impulsion) computed
with the 1st-order approximation (26) of the wall pressure in the algorithm, and
using the post-treatment: P (x, t)|Γw = Pi + ρiciui · n on the wall boundary of
the cell Ωi. The latter values are actually different from those obtained with the
0th-order approximation on very coarse meshes (see Figure 24); as expected, they
are almost identical on very fine meshes, since ui ·n tends to zero close to the wall.
Moreover, when compared with the CFD reference, the maximal value of the sum of
the forces exerted on the rods and the impulsion, using the 1st-order approximation
(26), are overestimated on very coarse meshes.
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Figure 18: Resultant pressure force Fx(t) using different meshes with Ncell cells – CFD approach.
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Figure 19: Resultant pressure force Fx(t) using the integral approach with different coarse meshes –
comparison with the CFD reference (black line).
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Figure 20: Pressure force impulsion Jx(t) using the integral approach with different coarse meshes –
comparison with the CFD reference (black line).
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Figure 21: Resultant pressure force Fx(t) using the integral approach with different fine meshes –
comparison with the CFD reference (black line).
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Figure 22: Resultant pressure force Fx(t) using the integral approach with different coarse meshes and
the 1st-order approximation of the wall pressure – comparison with the CFD reference (black line).
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Figure 23: Pressure force impulsion Jx(t) using the integral approach with different coarse meshes and
the 1st-order approximation of the wall pressure – comparison with the CFD reference (black line).
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Figure 24: Resultant pressure force Fx(t) using the integral approach with three very coarse meshes
– comparison of the 0th-order approximation with the 1st-order approximation of the wall
pressure.
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7. Conclusion

The multi-dimensional integral formulation has been introduced to approximate solu-
tions of the Euler equations in a domain cluttered up by small solid obstacles compared
with the global size of the domain. Thus, the obstacles may not be explicitly meshed in
the computational domain. The integral formulation uses an original pressure-correction
method in a co-located semi-implicit finite volume conservative scheme. The preservation
of the positivity of the density and the internal energy under a CFL condition, based on
the material velocity, is proved.

Numerical verification tests presented herein are shock tube problems, for gas or liquid,
either in a free domain or in a domain closed by a wall reflecting the incident shock wave.
These tests indicate a stable and consistent behaviour of the algorithm, for Mach numbers
ranging from 10−3 to 1. Indeed, the numerical scheme enables to capture correct shock
waves and contact discontinuities, and also to reproduce the correct pressure, density
and velocity profiles in rarefaction waves. We emphasize that the numerical rate of
convergence is similar to those obtained with classical exact or approximate Riemann
solvers.

The numerical validation test, representative of a safety industrial experiment, shows
the ability of the integral approach, with porous coarse meshes, to obtain integral quan-
tities, such that forces acting on tube bundles, with the same order of magnitude than
the fine CFD solution. The zero and the first order approximation of the wall pressure in
the integral approach are tested. Furthermore, the integral approach naturally converges
towards the CFD approach when the mesh is refined.

Hence, by simply defining mesh geometric quantities like fluid volumes and fluid
surfaces, the integral formulation allows to unify the porous and the fluid representation
by construction. Thus a wide range of computational meshes, from the coarsest porous
mesh for the “component” scale to the finest fluid mesh for the “local” scale, can be
continuously treated. The current integral approach is an alternative to the standard
porous approach in order to compute fluid flows in an obstructed medium, including the
sharp transition between a free and an obstructed medium, as it occurs when the fluid
flow enters the PWR core. Numerical tests involving comparisons with results performed
with the component scale software THYC, using the standard porous approach, will be
carried out in the near future.

Current work aims at extending the integral formulation to compressible and incom-
pressible viscous fluid flows governed by the Navier-Stokes equations. Viscous effects
would be taken into account thanks to wall functions which vanish when the mesh is
refined.
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Appendix A. Mass balance non linear scheme for liquid

The mass balance step of the pressure-correction algorithm (see Section 3.1) is modi-
fied for a real Equation Of State (EOS) of a liquid.

Appendix A.1. Time scheme

At the time step ∆tn, pressure and density are implicit, while entropy is always
considered frozen, sn+1 = sn. Integration of the mass balance equation between tn and
tn+1 and over Ωφ

i gives the following implicit time scheme:∣∣∣Ωφ
i

∣∣∣ (ρn+1
i − ρni

)
+ ∆tn

∫
Γφi

Q∗ · ndΓ = 0, (A.1)

where the implicit mass flux Q∗ is computed as (see Equation (13)):

Q∗ · n = Qn · n−∆tn∇P ∗ · n.

The relation between pressure and density is henceforth non linear: ρn+1
i = ρ(P ∗i , s

n
i ).

Equation (A.1) is written with the unknown pressure P ∗i as follows:∣∣∣Ωφ
i

∣∣∣ (ρ(P ∗i , s
n
i )

P ∗i
− (∆tn)2∇ ·∇

)
P ∗i =

∣∣∣Ωφ
i

∣∣∣ ρni −∆tn
∫

Γφi

Qn · ndΓ. (A.2)

Remark Appendix A.1. The relation ρn+1
i = ρ (P ∗i , s

n
i ) must be used for the update

of the density to conserve mass over time.

Appendix A.2. Space scheme

The space discretization of the mass balance equation (A.2) is identical to the scheme
described in Section 4.1. The explicit mass flux is discretized by an upwind scheme:∫

Γφi

Qn · ndΓ =
∑
j∈V (i)

(
ρnij
)upw

(un · n)ij S
φ
ij, (A.3)

with: (
ρnij
)upw

= βnijρ
n
i + (1− βnij)ρnj , βnij =

{
1 if (un · n)ij ≥ 0,

0 otherwise,

and the pressure gradient is discretized with a two-point flux approximation:∫
Γφi

∇P ∗ · ndΓ =
∑
j∈V (i)

1

hij + hji

(
P ∗j − P ∗i

)
Sφij. (A.4)

Thus the pressure prediction scheme holds:∣∣∣Ωφ
i

∣∣∣ (ρ(P ∗i , s
n
i )

P ∗i

)
P ∗i − (∆tn)2

∑
j∈V (i)

1

hij + hji

(
P ∗j − P ∗i

)
Sφij

=
∣∣∣Ωφ

i

∣∣∣ ρni −∆tn
∑
j∈V (i)

(
ρnij
)upw

(un · n)ijS
φ
ij. (A.5)
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Equation (A.5) yields a non-linear algebraic system:

MX = B′,

with the vector X = (P ∗i )i∈{1,...,Ncell} and Ncell the total number of cell (or degrees of
freedom). ∀ i ∈ {1, ..., Ncell}, the diagonal operator coefficients are:

Mii =


∣∣∣Ωφ

i

∣∣∣ (ρ(P ∗i , s
n
i )

P ∗i

)
+ (∆tn)2

∑
j∈V (i)

Sφij
hij + hji

if
∣∣∣Ωφ

i

∣∣∣ > 0,

1 otherwise.

∀ i, j ∈ {1, ..., Ncell} with j 6= i, the off-diagonal coefficients are:

Mij =

 −
(∆tn)2

hij + hji
Sφij if j ∈ V (i) and

∣∣∣Ωφ
i

∣∣∣ > 0,

0 otherwise.

The right hand side coefficients are:

B′i =


∣∣∣Ωφ

i

∣∣∣ ρni −∆tn
∑
j∈V (i)

(
ρnij
)upw

(un · n)ijS
φ
ij if

∣∣∣Ωφ
i

∣∣∣ > 0,

P n
i otherwise.

Appendix A.3. Property of positivity

The non linear operator M is coercive (therefore invertible) if the pressure is positive,
i.e. for all i, P ∗i ≥ 0. The sufficient condition of positivity of both the pressure and the
density is the classical CFL-like condition (A.6) only based on the mass flux rather than

the thermodynamic coefficient γ̂ = ρc2

P
> 1.

Property Appendix A.1 (Positivity of the density and the pressure). If the ini-
tial conditions are such that ρni > 0 and P n

i > 0, then the density ρn+1
i and the pressure P ∗i

will remain positive for all i, provided that the time step ∆tn complies with the CFL-like
condition (A.6): ∣∣∣Ωφ

i

∣∣∣ ≥ ∆tn
∑
j∈V (i)

βnij (un · n)ij S
φ
ij. (A.6)

Proof. The proof is similar to the proof of Property 5.1 in Section 5. The inverse operator
M−1 is positive (M−1

ij ≥ 0) and the right hand side vector B′ is also positive (B′i ≥ 0) if

Condition (A.6) holds, implying P ∗i ≥ 0. Besides, density ρn+1
i is computed as a positive

function of the pressure ρn+1
i = ρ (P ∗i , s

n
i ) ≥ 0, which completes the proof.
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Appendix B. Riemann problem with mirror state

A popular method to treat numerically solid wall boundary conditions is the “mirror
state” technique. It consists in defining a virtual state Ŵn

i outside the multidimensional
fluid domain, which is deduced from the state Wn

i in the nearest wall cell with the same
density, pressure, but opposite normal velocity. The half Riemann problem consists in
solving an exact one-dimensional Riemann problem with respect to this virtual state in
the normal direction to the wall (see Figure B.25).

x

y

0

Ωi

Γwi

n

τWR = Wn
i WL = Ŵn

i

Figure B.25: Riemann problem with mirror state in the immersed obstacle into the cell Ωi.

This problem is used to compute the wall pressure with a priori any EOS where n is
the outward normal from the cell to the wall and τ a tangent vector to the wall. Since
Euler system (1) is invariant under frame rotation and translation along the τ direction,
the wall pressure is the solution of the local one-dimensional Riemann problem (B.1) in
the n-direction: 

∂tW + ∂n (Fn (W )) = 0, x · n ∈ R, t ∈ R+,

W (x · n, 0) =

{
WL if x · n < 0,
WR if x · n > 0,

(B.1)

where the left state WL and the right state WR are such that:{
WL = Wn

i (real cell i),

WR = Ŵn
i (virtual cell, mirror of Wn

i ),
(B.2)

and Fn(W ) = F (W ) · n is the normal flux. For the two-dimensional Euler system:

W =

 ρ
ρu
E

 and Fn(W ) =

 ρu · n
(ρu · n)u+ Pn
(u · n) (E + P )

 .
Note that u = [u, v]t, where u = u·n is the normal velocity and v = u·τ is the tangential
velocity.

The discrete conservative variable is Wn
i = [ρni , ρ

n
i u

n
i , ρ

n
i v

n
i , E

n
i ]t and so the corre-

sponding mirror state is Ŵn
i = [ρni ,−ρni uni , ρni vni , En

i ]t. Two possible cases may appear:

• a double symmetric rarefaction wave if uni · n ≤ 0,

• a double symmetric shock wave if uni · n > 0.
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Figure B.26: Double symmetric rarefaction with mirror state in the immersed obstacle.

Appendix B.1. Double symmetric rarefaction wave: uni · n ≤ 0

The computation of the wall state, classically called intermediate state (?) (see Fig-
ure B.26), is based on the symmetry of the problem, implying:

u? = 0, (B.3)

and on the conservation of three Riemann invariants of the 1-wave:
v? = vni ,

s(P ?, ρ?) = s(P n
i , ρ

n
i ) = sni ,

u? +

∫ ρ?

0

c(ρ, sni )

ρ
dρ = uni +

∫ ρni

0

c(ρ, sni )

ρ
dρ.

(B.4a)

(B.4b)

(B.4c)

We deduce from Equations (B.3) and (B.4c) that:

∫ ρni

ρ?

c(ρ, sni )

ρ
dρ = −uni ≥ 0, allowing

to retrieve the density ρ? ≤ ρni of the intermediate state, and then the pressure P ? using
Equation (B.4b), such that:

P ? = P n
i

(
1 + f

(
uni
cni

))
.

The expression of the function f depends on the thermodynamic law of the fluid, but for
any EOS:

f(0) = 0 and f(ξ < 0) < 0, where ξ =
uni
cni
.

Appendix B.1.1. Ideal gas EOS

For an ideal gas such that ρε = P
γ−1

, with γ > 1 the heat capacity ratio:

∫ ρni

ρ?

c(ρ, sni )

ρ
dρ =

2

γ − 1
(cni − c?) = −uni and

P ?

P n
i

=

(
ρ?

ρni

)γ
=

(
c?

cni

) 2γ
γ−1

⇒

 P ? = P n
i

(
1 +

γ − 1

2

uni
cni

) 2γ
γ−1

if − 2
γ−1

<
uni
cni
≤ 0,

P ? = 0 otherwise.
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Appendix B.1.2. Stiffened gas EOS

For a stiffened gas such that ρε = P+γΠ∞
γ−1

, with Π∞ ≥ 0 the reference pressure:∫ ρni

ρ?

c(ρ, sni )

ρ
dρ =

2

γ − 1
(cni − c?) = −uni and

P ? + Π∞
P n
i + Π∞

=

(
ρ?

ρni

)γ
=

(
c?

cni

) 2γ
γ−1

⇒

 P ? + Π∞ = (P n
i + Π∞)

(
1 +

γ − 1

2

uni
cni

) 2γ
γ−1

if − 2
γ−1

<
uni
cni
≤ 0,

P ? = −Π∞ otherwise.

Appendix B.1.3. First order expansion of the function f for any EOS

For all ξ ∈ R−, the function f(ξ) and its derivative f ′(ξ) are evaluated in the neigh-
bourhood of zero in order to get a first order expansion for any EOS.

Noting f(ξ) =
P ? − P n

i

P n
i

(ξ), and using the mean value theorem and Equation (B.4b),

ρ̃ ∈ [ρ?, ρni ] exists such that:

P ? − P n
i = ∂̃ρP |s (ρ? − ρni ) .

Moreover Equation (B.4c) suggests that ρ̂ ∈ (ρ?, ρni ) exists such that:

uni = −
∫ ρni

ρ?

c(ρ, sni )

ρ
dρ =

̂c(ρ, sni )

ρ
(ρ? − ρni ) .

We conclude that:

f(ξ) =
1

P n
i

c̃2
ρ̂

c(ρ, sni )
uni =

cni
P n
i

c̃2
ρ̂

c(ρ, sni )
ξ ∼
ξ→0−

ρni (c2
i )
n

P n
i

ξ,

since ρ? → ρni
− when ξ → 0−.

Hence the function f is differentiable in ξ = 0− such that, for any EOS:

f(0−) = 0 and f ′(0−) = γ̂ni =
ρni (c2

i )
n

P n
i

.

Appendix B.2. Double symmetric shock wave: uni · n > 0

The computation of the intermediate state (?) (see Figure B.27) is based on the
Rankine-Hugoniot jump relations for a shock (B.5), and also on the symmetry of the
problem:

u? = 0,

− σ [W ]?i + [F (W ) · n]?i = 0, (B.5)

where for any field Ψ, the jump is defined as: [Ψ]?i = Ψ? − Ψn
i and σ is the speed of the

shock wave.
This system of jump relations (B.5) gives:

[v]?i = 0,

[ε]?i +
Pi + P ?

2

[
1

ρ

]?
i

= 0,

ρiρ
? ([u]?i )

2 − [P ]?i [ρ]?i = 0,

(B.6a)

(B.6b)

(B.6c)

47



x

t

0 n

uni > 0 −uni

(?)

σ < 0

Figure B.27: Double symmetric shock with mirror state in the immersed obstacle.

which allows to determine the intermediate density ρ? > ρni and the intermediate pressure
P ?. For any EOS, the pressure reads as follows:

P ? = P n
i

(
1 + g

(
uni
cni

))
.

The function g verifies:

g(0) = 0 and g(ξ > 0) > 0, where ξ =
uni
cni
.

Appendix B.2.1. Ideal gas EOS

For an ideal gas, the solution is detailed in [25]. We get the solution of the intermediate
state, writing:

P ? = P n
i

1 + γ
uni
cni

(
1 +

(γ + 1)2

16

(
uni
cni

)2
) 1

2

+
γ(γ + 1)

4

(
uni
cni

)2
 .

Appendix B.2.2. Stiffened gas EOS

For a stiffened gas, the solution of the intermediate state is:

P ? + Π∞ = (P n
i + Π∞)

1 + γ
uni
cni

(
1 +

(γ + 1)2

16

(
uni
cni

)2
) 1

2

+
γ(γ + 1)

4

(
uni
cni

)2
 .

Appendix B.2.3. First order expansion of the function g for any EOS

For all ξ ∈ R+, the function g(ξ) =
P ? − P n

i

P n
i

(ξ) is evaluated to get a first order

expansion for any EOS. The mean value theorem suggests that ρ̃ ∈ (ρni , ρ
?) and ε̃ ∈ (εn, ε?)

exist and such that:

P ? − P n
i = ∂̃ρP |ε (ρ? − ρni ) + ∂̃εP |ρ (ε? − εn) = a [ρ]?i + b [ε]?i .

Thus Equation (B.6b) implies:

[P ]?i =

(
a+ b

P n
i + P ?

2ρni ρ
?

)
[ρ]?i ,

and Equation (B.6c) gives:

([P ]?i )
2

= ρni ρ
?

(
a+ b

P n
i + P ?

2ρni ρ
?

)
(uni )2 .
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Thus, we conclude:

g(x) =
cni
P n
i

(
ρni ρ

?

(
a+ b

P n
i + P ?

2ρni ρ
?

)) 1
2

ξ.

Since ∂ρP |ε + ∂εP |ρ
P
ρ2

= c2, the equivalent when ρ? → ρni
+ is:

g(x) ∼
ξ→0+

ρni (c2
i )
n

P n
i

ξ.

Hence the function g is differentiable in ξ = 0+ and such that, for any EOS:

g(0+) = 0 and g′(0+) = γ̂ni =
ρni (c2

i )
n

P n
i

.

Property Appendix B.1. For any EOS such that P = P(ρ, ε), the fitting between the
double symmetric shock solution and the double symmetric rarefaction solution is C1:

∀ ξ ∈ R, f(ξ) ≡ g(ξ) + o(ξ) when ξ → 0, (B.7)

and the derivative value is: f ′(0) = g′(0) = γ̂L =
(
ρc2

P

)
L

.
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Appendix C. Analytic solution of a shock tube interaction with a wall

Appendix C.1. Initial condition: the shock tube

The analytic solution is based on the exact solution of 1D Riemann problems for the
Euler equations. The calculation is performed with an ideal gas or a stiffened gas EOS.
At the beginning of the computation, the shock tube apparatus contains a membrane
(x = x0) separating two different initial constant fluid states at rest: the right state WR

and the left state WL (see Figure C.28). The tube is closed on the right side: x = x1.

xx1

wall

n

WL =

 ρL
ρRuL = 0

EL

 WR =

 ρR
ρRuR = 0

ER


membrane

x0

Figure C.28: Sketch of the shock tube apparatus, with the initial condition: uL = uR = 0 and PL > PR.

The solution of this Riemann problem can be computed using [28] in order to evaluate
the two intermediate states W1 and W2 respectively on the left and the right side of the
contact discontinuity travelling at speed u1 = u2 > 0. Since uL = uR = 0 and PL > PR,
the unique solution is a 1-rarefaction wave that propagates towards the left side, and a
3-shock wave travelling at the celerity σ2 that moves to the right. We assume in addition
that the initial pressure ratio PL/PR is such that u1 − c1 < 0.

Appendix C.2. Shock wave reflection with the wall for an ideal gas

The shock wave generated by the shock tube hits the wall in x = x1 at time t = t0
(see Figure C.29):

t0 =
x1 − x0

σ2

,

where σ2 is the celerity of the 3-shock wave. In order to evaluate the state W3, we need
to calculate the Riemann problem for t > t0 with the initial condition (see Figure C.30):{

W (x < x1, t = t0) = W2 = [ρ2, ρ2u2, E2]t ,

W (x > x1, t = t0) = Ŵ2 = [ρ2,−ρ2u2, E2]t ,

with u2 > 0, obtained above by solving the shock tube Riemann problem.
This 1D Riemann problem is solved with the primitive variables: Z2 = [ρ2, u2, P2]t

and Ẑ2 = [ρ2,−u2, P2]t. The new intermediate state (3) (see Figure C.29) with Z3 =
[ρ3, u3, P3]t is the reflected shock wave on the wall. The Rankine-Hugoniot jump relations
of the Euler equations and the symmetry of the problem give:

u3 = 0,

[ε]32 +
P2 + P3

2

[
1

ρ

]3

2

= 0,

ρ2ρ3

(
[u]32
)2 − [P ]32 [ρ]32 = 0.
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xx1

t

x0

WL WR

uL − cL
u1 − c1 u1 σ2 t0

W1 W2

(3)

Figure C.29: Reflection of the shock wave on the wall (subsonic case: u1 − c1 < 0) at t = t0.

x

t > t0

x1 n

u2 > 0

W2

−u2

Ŵ2

mirror state

(3)

−σ3 < 0

Figure C.30: Riemann problem for t > t0: double symmetric shock wave with a mirror state.

For an ideal gas EOS, P = (γ − 1)ρε, it implies the following equation with respect to

z =
ρ3

ρ2

:

g(z) =
(z − 1)2

z(β − z)
=

1

β + 1

ρ2u
2
2

P2

:= b, (C.3)

using the standard notation β = γ+1
γ−1

> 1. There exists a unique solution z0 ∈ [1, β) of

Equation (C.3):

z0 =
2 + bβ +

√
∆

2(1 + b)
, (C.4)

with the positive discriminant ∆ = bβ
(
bβ + 4

(
1− 1

β

))
.

The state Z3 = [ρ3, u3, P3]t is thus known.

Appendix C.3. Interaction of the contact discontinuity with the reflected shock wave for
an ideal gas

The initial contact discontinuity created by the shock tube interacts with the reflected
shock wave in x = x∗ at the time t = t1 (see Figure C.31), such that:

(u1 + σ3)t1 = x1 − x0 + σ3t0, (C.5)

with σ3 > 0.
For t > t1, there exists a unique solution of the Riemann problem since the initial

condition: {
W (x < x∗, t = t1) = W1,

W (x > x∗, t = t1) = W3,

is such that: u3 − u1 = −u1 < 0 < 2
γ−1

(c1 + c3). Since u1 > u3 = 0 and P1 = P2 < P3

(pressure increases through a shock), the unique solution of this Riemann solution cannot
involve a 1-rarefaction wave. The solutions can be either:
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xx1x∗
+

t

x0

WL WR

u− c u1 t0

t1

(1) (2)

(3)

−σ3 < 0

Figure C.31: Interaction of the reflected shock wave with the initial contact discontinuity (subsonic case:
u1 − c1 < 0).

1. a 1-shock / 3-rarefaction configuration,

2. a 1-shock / 3-shock configuration.

Appendix C.3.1. 1-Shock / 3-rarefaction solution

x

t > t1

x∗ n

W1

(1)

W3

(3)
(4)

σ4

(5)

Figure C.32: Riemann problem: 1-shock / 3-rarefaction.

We wish to compute intermediate states W4 and W5 (see Figure C.32). We recall
that we have u3 = 0 and P3 > P1. Moreover the unknowns are such that u4 = u5 and
P4 = P5. The jump relations for the 1-shock yield:

(u1 − u4)2 = (P1 − P4)(τ4 − τ1),

µ1 =
P4

P1

=
βz1 − 1

β − z1

> 1,

with z1 =
ρ4

ρ1

=
τ1

τ4

> 1, τ = 1
ρ

is the specific volume. We derive:

z1 =
1 + βµ1

β + µ1

and u1 − u4 =
√
τ1P1

√
β − 1 (µ1 − 1)

1√
1 + βµ1

.

The Riemann invariants of the 3-rarefaction are:u3 −
2

γ − 1
c3 = u5 −

2

γ − 1
c5 with c =

√
γPτ,

s3(P3, τ3) = s5(P5, τ5)⇒ P3τ
γ
3 = P5τ

γ
5 .

52



The whole set of relations implies:

u4 = u5 = u5 − u3 =
2

γ − 1
c3

(
µ
γ−1
2γ

2 − 1

)
≤ 0,

since the 3-wave is a rarefaction wave, so µ2 = P5

P3
≤ 1. The final scalar equation with

respect to µ1 that needs to be solved is:

l(µ1) = u1 − u3 = u1,

where the function l is defined by l(µ1) = A1
µ1−1√
1+βµ1

+ 2
γ−1

c3

((
µ1
a

) γ−1
2γ − 1

)
, with:

A1 =
√
τ1P1

√
β − 1 and a =

P3

P1

≥ 1.

We remark that µ1
µ2

= a, since P5 = P4.

In the current wave configuration, µ1 ∈ (1, a], since µ1 = P4

P1
> 1 and µ2 = µ1

a
≤ 1 thus

µ1 ≤ a. The function l(µ1) is strictly increasing over the interval (1, a] from l(1) < 0 to
l(a) > 0. Thus, if u1 ∈ (0, l(a)], the unique solution is the present configuration with
a 1-shock / 3-rarefaction configuration, else, if u1 > l(a), the solution is the 1-shock /
3-shock configuration as detailed below.

Appendix C.3.2. 1-Shock / 3-shock solution

The jump relations for the 3-shock give:
(u5 − u3)2 = (u4 − u3)2 = (P5 − P3)(τ3 − τ5),

µ2 =
P5

P3

=
βz2 − 1

β − z2

> 1.

Similarly, it follows z2 =
1 + βµ2

β + µ2

. So the scalar non-linear equation to be solved for the

1-shock / 3-shock configuration is:

q(µ2) = A1
aµ2 − 1√
1 + aβµ2

+ A2
µ2 − 1√
1 + βµ2

= u1 − u3 = u1,

with A2 =
√
τ3P3

√
β − 1 and µ2 =

P5

P3

> 1.

This equation has a unique solution if and only if u1 > A1
a− 1√
1 + aβ

.

Hence, two configurations are identified:

• if u1 > A1
(a− 1)√
1 + aβ

the solution is the 1-shock–3-shock configuration with µ2 > 1

such that q(µ2) = u1,

• if 0 < u1 ≤ A1
(a− 1)√
1 + aβ

, the solution is the 1-shock–3-rarefaction configuration with

µ1 ∈ [1, a] such that l(µ1) = u1.

This completely determines states W4 and W5.
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Appendix C.4. Shock wave reflection with the wall for a stiffened gas EOS

The calculation of the analytic solution is now performed with a stiffened gas ther-
modynamic law.

The method of calculation is the same as with an ideal gas EOS. A 1D Riemann
problem is solved, thanks to the jump relations. For a stiffened gas, the EOS is:

P + γΠ∞ = (γ − 1)ρε.

This implies:
c2 = γ(P + Π∞)τ and s = (P + Π∞)τ γ.

The jump relations for a 1-shock and the symmetry of the problem give:
u3 = 0,(

[u]32
)2

+ [P + Π∞]32 [τ ]32 = 0,

[ε]32 +
P2 + P3

2
[τ ]32 = 0.

(C.10a)

(C.10b)

(C.10c)

Equation (C.10c) is equivalent to:

[τ(P + Π∞)]32 + (γ − 1)
P2 + Π∞ + P3 + Π∞

2
[τ ]32 = 0.

The change of variable P̃ = P + Π∞ thus yields:
(
[u]32
)2

+
[
P̃
]3

2
[τ ]32 = 0,

τ2 + τ3

2

[
P̃
]3

2
+ γ

P̃2 + P̃3

2
[τ ]32 = 0.

The same system than for the ideal gas EOS is recovered. The solution is then identical.
The unknown is always the ratio z = ρ3

ρ2
and the equation to be solved is:

g(z) =
(z − 1)2

z(β − z)
=
γ − 1

2γ

ρ2u
2
2

P̃2

:= b.

The unique solution of this equation is called z0 > 1 and the relation
P3 + Π∞
P2 + Π∞

=
βz0 − 1

β − z0
allows to retrieve the pressure variable:

P3 − P2 = (P2 + Π∞)(β + 1)
z0 − 1

β − z0

.

Remark Appendix C.1 (low velocity situation). In the case of low Mach number,
b� 1, then a first order approximation of the solution is:

z0 ≈ 1 +
√
b(β − 1),

thus P3 − P2 = (P2 + Π∞) γ
|u2|
c2

and if P2 � Π∞, the relative difference is close to

P3 − P2

P2

≈ γ
Π∞
P2

|u2|
c2

.
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[20] F. Archambeau, J.-M. Hérard, and J. Laviéville. Comparative study of pressure-correction and
Godunov-type schemes on unsteady compressible cases. Computers & Fluids, 38:1495–1509, 2009.

[21] J.-M. Hérard and X. Martin. An integral approach to compute compressible fluid flows in do-
mains containing obstacles. International Journal on Finite Volumes, 12(1):1–39, https://hal.
archives-ouvertes.fr/hal-01166478, December 2015.

[22] R. Menikoff and B.J. Plohr. The Riemann problem for fluid flow of real materials. Rev. Mod. Phy.,
61(1):75–130, 1989.

55

https://www.oecd-nea.org/nsd/reports/2009/nea6846_LOCA.pdf
https://www.oecd-nea.org/nsd/reports/2009/nea6846_LOCA.pdf
https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx
https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx
https://www.irsn.fr/FR/connaissances/Installations_nucleaires/Les-centrales-nucleaires/criteres_surete_ria_aprp/Pages/1-accident-reactivite-RIA.aspx
https://code-saturne.org/cms/sites/default/files/docs/5.2/theory.pdf
https://tel.archives-ouvertes.fr/tel-01085328
https://tel.archives-ouvertes.fr/tel-01085328
https://www.gexcon.com/products-services/FLACS-Software/22/en
https://hal.archives-ouvertes.fr/hal-01114209
https://hal.archives-ouvertes.fr/hal-01114209
https://tel.archives-ouvertes.fr/tel-01135355
https://hal.archives-ouvertes.fr/hal-01166478
https://hal.archives-ouvertes.fr/hal-01166478
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[24] R. Eymard, T. Gallouët, C. Guichard, R. Herbin, and R. Masson. TP or not TP, that is the

question. Computational Geosciences, 18:285–296, August 2014.
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