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We focus here on a technique to compute compressible fluid flows in physical domains cluttered up with many small obstacles. This technique, referred to here as the integral formulation, consists in integrating the flow governing equations over the fluid part of control volumes including both fluid and solid zones; doing so, the integral of fluxes over solid boundaries may appear, for which expressions as a function of discrete variables must be provided. The integral formulation presents two essential advantages: first, we naturally recover the standard fluid approach when the mesh is refined; second, fluid/solid interactions may be, to some extent, modelled to recover the singular head losses at the interface between a free and a congested part of the computational domain. We apply here this approach to the Euler equations, using a collocated space discretization and a pressure correction algorithm, preserving the positivity of both the density and the internal energy. Verification test cases are performed, including a Riemann problem in a free domain and a shock wave reflection on a wall, using an equation of state which is suitable for weakly compressible fluid flows. Finally, we address a two-dimensional situation, where a shock wave impacts a set of obstacles; we observe a very encouraging agreement between the integral approach results and a CFD reference solution obtained with a pure fluid approach on a fine mesh.

Introduction

The issue of dealing with congested media is pervasive in industrial Computational Fluid Dynamics applications. In the easiest cases, the computational domain (i.e., in practice, the mesh) may be fitted to the boundary of each of the present solids, but in many applications, these latter are too numerous or too small with respect to the computational domain characteristic dimensions to be dealt with in such a way: this would imply using so refined meshes that the computational cost would become prohibitive. In nuclear industry, occurrences of such problems are numerous. One may think for instance of safety issues as possible cables train fires, hydrogen deflagration in the reactor building rooms where numerous pipes are present. . . For the computation of the flow in the primary circuit of Pressurized Water Reactors, both in operating and accident conditions [START_REF]Loss-Of-Coolant Accident (LOCA)[END_REF][START_REF]Reactivity-Initiated Accident (RIA)[END_REF], the problem has been tackled now for more than forty years, and has motivated the development of, schematically speaking, three categories of simulation software, each acting at its own scale:

• At the largest scale, referred to as the system scale, a 0D/1D description is used, with the aim to provide a real time simulation of full circuits (system transient analysis). A reference industrial code in France is CATHARE [START_REF] Barre | The CATHARE code strategy and assessment[END_REF], developed from the end of the 70s thanks to a joint effort by several partners, among which, in particular, CEA (Commissariat à l' Énergie Atomique et aux Énergies Alternatives), EDF and IRSN (Institut de Radioprotection et de Sûreté Nucléaire).

• The finest one is the CFD (Computational Fluid Dynamics) scale, referred to as the local scale, that allows a fine 3D description on restricted physical domains.

In that case, the Navier-Stokes equations, with suitable turbulence modelling, are solved on fine computational meshes, and all solid boundaries of obstacles in the computational domain are meshed through standard wall boundary conditions.

Code Saturne [4] (developed by EDF R&D since 1997) is one of the CFD codes used in this context.

• Since computations at the largest scale may be too crude and application at the local scale are often too time-consuming, an intermediate approach, aiming at the description of one component of the primary circuit such as the reactor core or the steam generator, has been developed; software dedicated to this purpose are said to operate at the component scale. In this case, an homogenized representation is chosen: the congested medium is considered as a porous medium, in which three-dimensional balance equations (mass, momentum and energy) are solved; the influence of the solid obstacles is taken into account, besides of course a reduction of the porosity, through exchange terms (a friction term for the momentum balance and a heat exchange term for the energy balance) obtained by upscaling techniques. The component approach is implemented, for instance, in codes developed in the 80s such as THYC [START_REF] Aubry | The THYC three-dimensional thermal-hydraulic code for rod bundles: recent developments and validation tests[END_REF], FLICA-4 [START_REF] Toumi | FLICA-4: A three-dimensional two-phase flow computer code with advanced numerical methods for nuclear applications[END_REF] or GENEPI [START_REF] Grandotto | Steam generators two phase flows numerical simulation with liquid and gas momentum equations[END_REF][START_REF] Grandotto | Calculs des écoulements diphasiques dans les échangeurs par une méthode aux éléments finis[END_REF][START_REF] Belliard | Méthodes de décomposition de domaine et de frontière immergée pour la simulation des composants nucléaires[END_REF].

Enlarging the scope to another already mentioned safety problem, namely turbulent deflagrations, a strategy similar to what is done in thermal-hydraulics at the component scale is employed in the commercial code FLACS [START_REF] Gexcon | [END_REF].

The "equivalent porous media approach", as used in component codes, has now proven to yield accurate results for incompressible or quasi-incompressible flows in porous media where a micro-scale and a representative elementary volume associated to this scale may be identified [START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare?[END_REF] (so, in particular, for periodic media). Its extension to compressible flows is however less standard and, in addition, serious difficulties may appear when the characteristics of the equivalent porous medium sharply vary with space. In particular, the numerical study [START_REF] Girault | Multidimensional computations of a two-fluid hyperbolic model in a porous medium[END_REF] shows that the porous model is not physically suitable to manage sudden free/porous transitions: the comparison between the multi-dimensional CFD computation, including the true geometry of obstacles (as shown on Figure 1), and the equivalent porous computation (see Figure 2) shows discrepancies at the interface associated with the discontinuity in the equivalent porosity profile. These discrepancies may be attributed to the fact that the singular head loss in the momentum balance is not accounted for in the porous approach in an appropriate way. The aim of this paper is to propose an alternative to the porous media approach, with two essential objectives: first, to circumvent the above mentioned difficulty, i.e. to allow to cope with discontinuous porosity media; second, to naturally boil down to the CFD model, when the mesh exactly fits the obstacles. To this purpose, we give up the derivation of an equivalent model at the continuous level. Instead, we directly integrate the balance equations over the control volumes, mimicking to some extent the usual finitevolume procedure, to the "real" fluid medium; doing so, integrals over the solid surfaces appear, for which expressions are given. In particular, a suitable treatment of the pressure forces naturally re-injects in the discrete system the above mentioned singular losses. Note that, conceptually, this procedure differs for a standard finite volume discretization of a set of PDEs: for instance, consistency and convergence issues make no more sense, since the discrete system cannot be seen associated to a continuous problem, up to the point at which the CFD model is recovered. In practice, we expect a significant gain in accuracy, at least for some solid obstacles geometry of interest; the numerical tests presented in this paper support this expectation. We also stress that, from an industrial point of view, gathering in the same numerical tool the capabilities of both the component and local approach is appealing, especially in a context of increasing computational power and thus, accordingly, a progressive drift toward more and more refined computations.

The proposed technique, which we refer to as the "integral approach", is applied here to compressible inviscid flows obeying the Euler equations, with general equation of states. We work here in the context of the open-source Code Saturne software, using the same control volumes for both the scalar and velocity unknowns in a way consistent with a collocated finite volume scheme (see [START_REF] Eymard | Finite Volume Methods. Handbook for Numerical Analysis[END_REF] for more details on finite volumes), and a fractional-step time discretization involving an elliptic step for a pressure correction (in other words, falling in the class of pressure correction algorithms [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Temam | Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II)[END_REF][START_REF] Van Der Heul | A conservative pressure-correction method for flow at all speeds[END_REF][START_REF] Gallouët | An unconditionnally stable pressure correction scheme for compressible barotropic Navier-Stokes equations[END_REF][START_REF] Kheriji | Pressure correction staggered schemes for barotropic one-phase and two-phase flows[END_REF][START_REF] Zaza | Contribution to numerical methods for all Mach flow regimes and to fluid-porous coupling for the simulation of homogeneous two-phase flows in nuclear reactors[END_REF]), able to cope with all the Mach numbers regimes [START_REF] Archambeau | Comparative study of pressure-correction and Godunov-type schemes on unsteady compressible cases[END_REF]. A first attempt to implement the integral approach with an explicit in time scheme (the so-called VFRoe-ncv approximate Godunov solver) may also be found in [START_REF] Hérard | An integral approach to compute compressible fluid flows in domains containing obstacles[END_REF].

The paper outline is as follows. First, the multi-dimensional integral formulation of the compressible Euler equations is described. The time and spatial discretization of the formulation is proposed through a pressure-correction collocated finite volume scheme preserving the positivity of the density and the internal energy under a CF L condition based on the velocity of the fluid. Then, several fluid verification test cases are presented to illustrate the stability and the accuracy of this method with a numerical convergence analysis. The case of low Mach number flows is particularly investigated. Two one-dimensional Riemann problems with an analytical thermodynamic law (Equation Of State (EOS)) are considered:

• a Riemann problem in a free domain using a stiffened gas EOS, modelling a gas or liquid fluid,

• a shock wave reflection on a wall using a stiffened gas EOS, the exact solution of which is detailed in Appendix C. This test corresponds to a water flow impacting an obstacle.

Finally, a two-dimensional validation test case with the integral approach in an obstructed medium is performed, where a pressure shock wave hits transversal rod bundles surrounded by a liquid; the formulation of the pressure forces on the solid boundaries takes here the same form as for the reflection boundary conditions used in the previous test, to deal within the integral approach framework with the macroscopic pressure jumps due to the sudden restriction of the flow passage section. Results are compared with a "reference" CFD computation, i.e. the 2D detailed solution, in particular through the evaluation of resultant forces acting on rods, to check that the integral approach indeed converges as expected towards the fine CFD computation when refining the mesh. From an industrial point of view, this latter test is reminiscent of a pressure wave impacting a rod bundle, as may occur in a reactor core during a Reactivity Initiated Accident [START_REF]Reactivity-Initiated Accident (RIA)[END_REF].

2. An integral formulation

Set of governing equations

The compressible Euler equations (1) governing inviscid fluid flows are considered in an open subset of R d (d = 1, 2 or 3) and in a bounded time interval (0, T ), T ∈ R * + . The unknowns ρ, u, P respectively denote the density, the velocity and the pressure of the fluid, while the momentum is Q = ρu. The volumetric total energy E is such that:

E = ρ u 2 2 + (P, ρ) ,
where the internal energy (P, ρ) is prescribed by the Equation Of State (EOS). Besides, in the right hand side of system (1), f is a mass external force and Φ v a mass heat transfer source term. Thus the set of governing equations is:

   ∂ t ρ + ∇ • Q = 0, ∂ t Q + ∇ • (u ⊗ Q) + ∇P = ρf , ∂ t E + ∇ • (u(E + P )) = ρf • u + ρΦ v . (1) 
The speed of sound, noted c, is such that:

c 2 = P ρ 2 - ∂ (P, ρ) ∂ρ / ∂ (P, ρ) ∂P .
The EOS for a stiffened gas, which generalizes the usual ideal gas EOS and is used for a weakly compressible liquid (see [START_REF] Menikoff | The Riemann problem for fluid flow of real materials[END_REF]), is defined by

ρ = P + γΠ ∞ γ -1 , (2) 
with γ > 1 the heat capacity ratio and Π ∞ ≥ 0 the stiffened gas pressure parameter. The admissible thermodynamic state is P ∈ [-Π ∞ , +∞). The speed of sound c is given by

c 2 = γ(P + Π ∞ ) ρ .
The specific enthalpy is h = (P, ρ) + P ρ , and the total enthalpy reads:

H = E + P ρ .
Thereafter, W is the conservative variable:

W = (ρ, Q, E) t .
The conservation laws (1) can be written as follows:

∂ t W + ∇ • F (W ) = D (W ) , (3) 
where

F (W ) = (Q, u ⊗ Q + P I, u (E + P )) t is the convective flux, D (W ) = (0, ρf , ρ (f • u + Φ v )) t is the source term.

Integral form

The integral formulation of conservation laws described in [START_REF] Martin | Modélisation d'écoulements fluides en milieu encombré d'obstacles[END_REF] is considered. Set of equations ( 1) is integrated on control volumes Ω i , i ∈ N, which may contain many disjoint solid obstacles. All Ω i cells form a mesh of the computational domain Ω, an open bounded connected polygonal subset of R d , such that Ω = ∪ i Ω i and ∩ i Ω i = ∅. Obstacles may be completely or partially included in Ω i . Part of a control volume boundary may coincide with the surface of an obstacle. Figure 3 is a sketch of the admissible situations. The whole volume occupied by solid obstacles within the control volume Ω i is denoted by Ω S i . Thus, the volume occupied by fluid within Ω i is Ω φ i = Ω i \ Ω S i . The mean value of the fluid state variable W (x, t), with x ∈ Ω and t ∈ (0, T ), over each fluid cell Ω φ i reads:

(1) (5) s o l i d (3) (2) (4) f luid • Ω i Γ φ i • Ω j
W i (t) = 1 Ω φ i Ω φ i W (x, t)dx.
Equation ( 3) is integrated over the bounded time interval [t 0 , t 1 ] ⊂ (0, T ) and over the fluid cell Ω φ i . The flux-divergence theorem allows to get:

Ω φ i (W i (t 1 ) -W i (t 0 )) + t 1 t 0 Γ i F (W (x, t)) • n(x)dΓdt = t 1 t 0 Ω φ i D (W (x, t))dx dt, (4) 
where, Γ i = ∂Ω φ i denotes the whole boundary of the fluid cell Ω φ i with n(x) its unit outward normal vector. Fluid Γ φ i = Γ i \ ∂Ω S i and wall Γ w i = Γ i ∩ ∂Ω S i boundaries of each fluid cell Ω φ i are distinguished, such that:

Γ i = Γ φ i ∪ Γ w i and Γ φ i ∩ Γ w i = ∅.
The integral formulation for all Ω i holds:

Ω φ i (W i (t 1 ) -W i (t 0 )) + t 1 t 0 Γ φ i F (W ) • ndΓdt + t 1 t 0 Γ w i F (W ) • ndΓdt = t 1 t 0 Ω φ i D (W ) dx dt. (5) 
The inner product between the normal n and the flux function F reads:

F (W ) • n = (ρu • n, (ρu • n) u + P n, (E + P ) u • n) t .
Note that the flux is null through Γ w i wall boundaries inside Ω i , since u • n| w = 0, except the pressure flux P n| w .

In the sequel, the subscript ij refers to the interfaces between the neighbouring control volumes Ω i and Ω j , where j ∈ V (i), and V (i) defines the set of neighbouring cells of Ω i . Besides, the superscript φ refers to the fluid volumes and the fluid interfaces ij where the fluid may cross the interface, noted Γ φ ij of measure S φ ij = Γ φ ij . The superscript w refers to solid interfaces where a wall boundary Γ w i of measure S w i is located inside the control volume Ω i or on its boundary. Remark 2.1. In practice, the geometrical quantities, as defined in the integral formulation, have to be pre-processed. This step uses the mesh of the computational domain and the known geometry of the obstacles, for instance the multidimensional computer-aiding drafting (CAD). This pre-processing may turn to be tedious but it is performed once and can be parallelized in space.

Time scheme

The time discretization of Equation ( 5) is based on an implicit first order Euler scheme. It is assumed that all numerical fluxes may be evaluated by means of a standard finite volume method, considering one mean value W n i per cell Ω i at each time t n , see [START_REF] Eymard | Finite Volume Methods. Handbook for Numerical Analysis[END_REF] for more details. W n i is an approximation of W i (t n ), and the time step at the n th iteration is ∆t n = t n+1 -t n . The numerical algorithm uses a pressure-correction scheme, with prediction and correction of the pressure [START_REF] Zaza | Contribution to numerical methods for all Mach flow regimes and to fluid-porous coupling for the simulation of homogeneous two-phase flows in nuclear reactors[END_REF][START_REF] Archambeau | Comparative study of pressure-correction and Godunov-type schemes on unsteady compressible cases[END_REF][START_REF] Martin | Modélisation d'écoulements fluides en milieu encombré d'obstacles[END_REF].

Each time stepping is thus divided in three steps: first, the mass balance, which is used to update the density from ρ n to ρ n+1 , and to predict a temporary pressure P * and a convective mass flux Q * • n, second, the momentum balance, where the velocity is updated from u n to u n+1 , and third, the last step, the energy balance that allows to update the total energy from E n to E n+1 and thus to correct the pressure with the EOS. The superscript (•) * states that the variable is predicted for the current step. The time semi-discrete algorithm is summarized below, starting with the initial condition W n i for all n ∈ N:

1. Compute P * solution of the mass balance, with δρ = δP (c 2 )

n = P * -P n (c 2 ) n : δP (c 2 ) n + ∆t n ∇ • (ρ n u n -∆t n ∇P * ) = 0, (6) 
and update:

ρ n+1 = ρ n + δP (c 2 ) n and Q * = ρ n u n -∆t n ∇P * . (7) 
2. Compute u n+1 solution of the momentum balance, with δ(ρu) = ρ n+1 u n+1 -ρ n u n :

δ(ρu) + ∆t n ∇ • u n+1 ⊗ Q * = -∆t n ∇P * + ∆t n ρ n+1 f n . (8) 
3. Compute E n+1 solution of the total energy balance, with δE = E n+1 -E n :

δE + ∆t n ∇ • E n+1 ρ n+1 Q * = -∆t n ∇ • P * ρ n+1 Q * + ∆t n ρ n+1 f n • u n+1 + Φ n v , (9) 
and update, using the EOS:

P n+1 = P(ρ n+1 , n+1 ) with n+1 = E n+1 ρ n+1 - 1 2 (u n+1 • u n+1 ). (10) 

Mass balance

The pressure and the density are implicit, while the velocity and the entropy are considered frozen at time t n . An acoustic mass flux Q * •n is computed from the simplified momentum equation [START_REF] Chorin | Numerical solution of the Navier-Stokes equations[END_REF] given below. Integration of the mass balance equation, between t n and t n+1 and over Ω φ i , gives the following implicit time scheme:

Ω φ i ρ n+1 i -ρ n i + ∆t n Γ i Q * • ndΓ = 0. ( 11 
)
The acoustic linear approximation (P * i -

P n i ) = (c 2 ) n i ρ n+1 i -ρ n i
is used, and reads (c 2 ) 11) thus yields with the pressure variable:

n i = c 2 (P n i , ρ n i ). Equation (
Ω φ i 1 (c 2 ) n i (P * i -P n i ) + ∆t n Γ i Q * • ndΓ = 0. ( 12 
)
This step allows to predict the pressure P * , from which the density ρ n+1 is deduced. For this purpose, the approximation of the implicit mass flux Q * • n is, at interfaces:

Q * • n = Q n • n -∆t n ∇P * • n. (13) 
This discretization ( 13) is based on the simplified momentum balance:

∂ t Q + ∇P = 0. ( 14 
) Remark 3.1. The relation ρ n+1 i = ρ n i + 1 (c 2 ) n i (P * i -P n i
) must be used for the update of the density to conserve the mass over time.

Remark 3.2. This first step can be viewed as an acoustic step: assuming a constant time step, Equations (11) and (13), at the previous and current time level, yields the discrete wave equation below:

ρ n+1 -2ρ n + ρ n-1 ∆t 2 -∇ • c 2 n ∇ρ n+1 = 0.
Indeed, the semi-discrete acoustic linear system can be written:

     ρ n+1 -ρ n ∆t + ∇ • Q * = 0, Q * -Q n ∆t + ∇P * (ρ n+1 ) = 0.
Combining the two equations yields:

ρ n+1 -ρ n ∆t + ∇ • Q n -∇ • (∆t∇P * (ρ n+1 )) = 0.
Assuming that the mass flux Q n complies with the mass balance at the previous time step

t n : ρ n -ρ n-1 ∆t + ∇ • Q n = 0,
the wave equation, at the discrete level, can be thus obtained:

ρ n+1 -2ρ n + ρ n-1 ∆t 2 -∇ • ∇P * (ρ n+1 ) = 0.
Using the acoustic linear approximation, ∇P * (ρ n+1 ) = (c 2 ) n ∇ρ n+1 , yields:

ρ n+1 -2ρ n + ρ n-1 ∆t 2 -∇ • c 2 n ∇ρ n+1 = 0.

Momentum balance

In this step, the velocity is implicit, whereas the density and the pressure are known from Equation [START_REF] Girault | Multidimensional computations of a two-fluid hyperbolic model in a porous medium[END_REF] of the mass balance step, and the total energy is frozen. Integration of the momentum equation gives:

Ω φ i Q n+1 i -Q n i + ∆t n Γ i (Q * • n)u n+1 dΓ + ∆t n Γ i P * ndΓ -∆t n Ω φ i ρ n+1 i f n i = 0. ( 15 
)
This second step provides, for all Ω i , the discrete unknown velocity u n+1 i . Thus the discrete momentum is inferred by

Q n+1 i = ρ n+1 i u n+1 i .

Energy balance

The total energy is implicit while the pressure, the density and the velocity are explicit from the previous steps. The total energy E n+1 i is updated with the following implicit scheme:

Ω φ i E n+1 i -E n i + ∆t n Γ i E n+1 + P * ρ n+1 (Q * • n)dΓ -∆t n Ω φ i ρ n+1 i f n i • u n+1 i + ρ n+1 i Φ n v,i = 0. ( 16 
)
Finally, this third step provides the internal energy:

n+1 i = E n+1 i ρ n+1 i - 1 2 u n+1 i • u n+1 i
, and the pressure is thus corrected with the EOS: P(ρ, ), for all cells Ω i :

P n+1 i = P(ρ n+1 i , n+1 i 
).

Space scheme

A co-located finite volume method (all the variables are cell-based) is used to discretize in space the integral formulation of the conservation laws, Equation [START_REF] Aubry | The THYC three-dimensional thermal-hydraulic code for rod bundles: recent developments and validation tests[END_REF]. At each step, a numerical flux is written to evaluate the different boundary integrals. We focus on the fluid and solid interior cell faces of the mesh defined in Section 2.2 (see Figure 3). The boundary conditions of the computational domain Ω are treated in Section 4.4. The space scheme is described for structured and orthogonal meshes, involving some simplifications particularly for the pressure gradient approximation in Equation [START_REF] Eymard | Finite Volume Methods. Handbook for Numerical Analysis[END_REF].

Mass balance

In the time semi-discrete mass balance equation [START_REF] Girault | Multidimensional computations of a two-fluid hyperbolic model in a porous medium[END_REF] given below, an expression of the mass flux needs to be specified:

Ω φ i 1 (c 2 ) n i (P * i -P n i ) + ∆t n Γ i Q * • ndΓ = 0.
Note that the normal mass flux to the wall is null, (Q • n) Γ w = ρu • n| w = 0, and thus:

Γ w i Q * • ndΓ = 0.
Equation [START_REF] Eymard | Finite Volume Methods. Handbook for Numerical Analysis[END_REF], i.e. the simplified momentum balance, allows to decompose the integral over the fluid face into two integrals:

Γ i Q * • ndΓ = Γ φ i Q * • ndΓ = Γ φ i Q n • ndΓ 1 - Γ φ i ∆t n ∇P * • ndΓ 2 . ( 17 
)
4.1.1. Evaluation of the explicit mass flux Integral 1 of Equation ( 17) is discretized for all cells Ω i by summing up on all fluid interfaces Γ φ ij of Ω φ i , with j ∈ V (i). The convective numerical flux is defined as follows:

Γ φ i Q n • ndΓ = j∈V (i) Γ φ ij Q n • ndΓ = j∈V (i) ρ n ij upw (u n • n) ij S φ ij , (18) 
where n ij is the unit normal vector at the fluid interface Γ φ ij from Ω φ i to Ω φ j . The transported quantity ρ n ij is estimated by the standard first order upwind scheme:

ρ n ij upw = β n ij ρ n i + (1 -β n ij )ρ n j ,
with:

β n ij = 1 if (u n • n) ij ≥ 0, 0 otherwise.
The normal velocity at the fluid interface is linearly interpolated between the two neighbouring cells:

(u n • n) ij = α ij u n i + (1 -α ij ) u n j • n ij , where: α ij = h ji h ij + h ji ,
and h ij stands for the distance from the gravity centre of the cell Ω i to the interface Γ φ ij (remember that we assumed an orthogonal structured grid).

Evaluation of the mass flux implicit contribution

As previously, integral 2 of Equation ( 17) is decomposed into a sum on all fluid faces of the cell Ω i . Structured and orthogonal meshes are only considered, which allows a simple gradient scheme. Numerically and despite the potential presence of sub-elements into the cell, the value of the pressure P i in the cell Ω i is supposed uniform. The pressure gradient at the face is approximated with a "two-point flux approximation" scheme, standard for admissible meshes [START_REF] Eymard | TP or not TP, that is the question[END_REF]:

∇P • n ij = ∂P ∂n Γ φ ij = P j -P i h ij + h ji .
Thus, the scheme yields:

Γ φ i ∆t n ∇P * • ndΓ = j∈V (i) Γ φ ij ∆t n ∇P * • ndΓ = j∈V (i) ∆t n h ij + h ji P * j -P * i S φ ij . ( 19 
)
We conclude that the mass flux is approximated, at each fluid interface, by:

Γ φ i Q * • ndΓ = j∈V (i) ρ n ij upw (u n • n) ij S φ ij - j∈V (i) ∆t n h ij + h ji P * j -P * i S φ ij . (20) 

Momentum balance

In this section, the semi-discrete momentum balance (15), solved with the velocity u n+1 , is discretized in space:

Ω φ i ρ n+1 i u n+1 i -ρ n i u n i + ∆t n Γ i u n+1 (Q * • n)dΓ + ∆t n Γ i P * ndΓ -∆t n Ω φ i ρ n+1 i f n i = 0.
At this step, the density ρ n+1 i and the force f n i are known. We must define the numerical flux for both integrals of Equation ( 15):

Γ i u n+1 (Q * • n)dΓ, (21) 
and

Γ i P * ndΓ. (22) 

Evaluation of the convective flux in the momentum equation

The integral ( 21) is decomposed on the wall faces Γ w i and the fluid faces Γ φ i of the cell Ω i :

Γ i u n+1 (Q * • n)dΓ = Γ w i u n+1 (Q * • n)dΓ =0 + Γ φ i u n+1 (Q * • n)dΓ.
To evaluate the fluid part in this relation, the numerical flux is summed up on all fluid interfaces Γ φ ij of the cell Ω i as follows:

Γ φ i u n+1 (Q * • n)dΓ = j∈V (i) Γ φ ij u n+1 (Q * • n)dΓ = j∈V (i) u n+1 ij upw (Q * • n) ij S φ ij . ( 23 
)
The mass flux (Q * • n) ij S φ ij has already been computed at the previous step by Equation [START_REF] Archambeau | Comparative study of pressure-correction and Godunov-type schemes on unsteady compressible cases[END_REF]:

(Q * • n) ij S φ ij = Γ φ ij Q * • ndΓ.
The value of the convected velocity u n+1 ij upw at the fluid interface is computed with a upwind scheme:

u n+1 ij upw = λ n ij u n+1 i + (1 -λ n ij )u n+1 j ,
with:

λ n ij = 1 if (Q * • n) ij ≥ 0, 0 otherwise.

Evaluation of the pressure force in the momentum equation

The pressure value P * i for all cells Ω i is known from the mass conservation step. The integral decomposition on Γ φ i and Γ w i is thus explicit in time:

Γ i P * ndΓ = Γ w i P * ndΓ + Γ φ i P * ndΓ.
For the fluid interfaces Γ φ ij , the pressure contribution is a linear interpolation between neighbouring cells values, that is to say:

P * ij = h ij P * i + h ji P * j h ij + h ji = (1 -α ij )P * i + α ij P * j .
Remark 4.1. Note that the interpolation coefficients 1 -α ij are unusual. Indeed a standard interpolation formula would have yielded α ij instead of 1 -α ij . This stems from the fact that the discrete pressure gradient is built as the transpose of the velocity divergence operator by duality with respect to the L 2 inner product [START_REF] Zaza | Contribution to numerical methods for all Mach flow regimes and to fluid-porous coupling for the simulation of homogeneous two-phase flows in nuclear reactors[END_REF].

For the solid faces (interior walls) of Γ w i , two approximations of the wall pressure P w are considered.

• First approximation of the wall pressure

The contribution of the wall pressure P w is decentred in taking directly the cell centre value:

P w = P * i . (24) 
Eventually, summing up on all cell faces, the pressure gradient may be written as follows:

Γ i P * ndΓ = Ω φ i ∇ i P * = j∈V (i) P * ij n ij S φ ij + Γ w i P w ndΓ = j∈V (i) P * ij n ij S φ ij + P * i   - j∈V (i) n ij S φ ij   = j∈V (i) P * ij -P * i n ij S φ ij .
In the last relation, we used the fact that the integral of the normal vector on a closed boundary vanishes:

Γ i ndΓ = 0 = j∈V (i) n ij S φ ij + Γ w i ndΓ.
• Second approximation of the wall pressure

Another choice for the evaluation of the wall pressure P w is to use the "mirror state" technique defined in [START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF]. A virtual cell is considered in the solid obstacle with the normal n and the wall pressure is obtained by solving a Riemann problem, see Appendix B:

P w = P Riemann W n+1 i , W n+1 i , (25) 
where

W n+1 i = ρ n+1 i , -ρ n+1 i u n+1 i • n, E * i t
is the mirror state of

W n+1 i = ρ n+1 i , ρ n+1 i u n+1 i • n, E * i t .
For the Euler equations ( 1) and for any EOS, the general form of the solution of this problem is:

P Riemann W n+1 i , W n+1 i = P * i (1 + f (M * ))
, where M * is the local Mach number based on the normal velocity to the wall:

M * = u n+1 i • n c(P * i , ρ n+1 i ) .
The expression of the function f depends on the Riemann solver and the EOS of the fluid, see [START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF], but in any cases:

f (0) = 0.
In order to compute the pressure integral contribution, the function f is linearized in using its Taylor expansion at the first order with respect to M * , supposed to be small compared to 1:

P w = P * i (1 + γ M * ) , (26) 
where γ = f (0).

Remark 4.2. For the EOS of an ideal gas, γ = γ, and for the EOS of a stiffened gas, γ = γ 1 + Π∞ P .

Consequently, the wall pressure integral evaluation becomes:

Γ w i P * ndΓ = Γ w i P * i (1 + γ M * ) ndΓ = P * i Γ w i ndΓ + P * i γ c(P * i , ρ n+1 i ) Γ w i nn t dΓ u n+1 i .
The pressure gradient is thus discretized in space as:

Γ i P * ndΓ = Ω φ i ∇ i P * = j∈V (i) P * ij n ij S φ ij + Γ w i P w ndΓ = j∈V (i) P * ij -P * i n ij S φ ij + K i u n+1 i ,
where:

K i = γP * i c(P * i , ρ n+1 i ) Γ w i nn t dΓ is a symmetric positive tensor.
Remark 4.3. The first order term, Ku, corresponds to a pressure drag force or form drag force due to the obstacle shape. This term dissipates kinetic energy and is not taken into account in the approximation [START_REF] Eymard | TP or not TP, that is the question[END_REF].

The resolution of the Riemann problem (25) seems more physically grounded than the first choice (24) of the cell pressure, particularly when the cell normal velocity to the wall is not close to zero. If the flow is locally tangent to the wall i.e. M * = 0, then the second approximation boils down to the first one.

Energy balance

The space scheme is built from the semi-discrete equation ( 16) of the total energy conservation:

Ω φ i E n+1 i -E n i + ∆t n Γ i E n+1 + P * ρ n+1 (Q * • n)dΓ -∆t n Ω φ i ρ n+1 i f n i • u n+1 i + ρ n+1 i Φ n v,i = 0.
The density ρ n+1 , the pressure P * and the velocity u n+1 have been already computed in the previous steps, and the external force f n and the term source Φ n v are given. Thus the last part of Equation ( 16) is explicit. The flux integral remains to be evaluated, once again by decomposing it on the fluid and solid faces:

Γ i E n+1 + P * ρ n+1 (Q * • n)dΓ = Γ w i E n+1 + P * ρ n+1 (Q * • n)dΓ =0 + Γ φ i E n+1 + P * ρ n+1 (Q * • n)dΓ. (27) 
The fluid part in the integral ( 27) is approximated for each cell Ω i by a numerical flux. Using the definitions of Section 2.2, the flux is decomposed into a sum on all fluid interfaces of Γ φ i :

Γ φ i E n+1 + P * ρ n+1 (Q * • n)dΓ = j∈V (i) Γ φ ij E n+1 + P * ρ n+1 (Q * • n)dΓ = j∈V (i) E n+1 ρ n+1 upw ij (Q * • n) ij S φ ij + j∈V (i) P * ρ n+1 upw ij (Q * • n) ij S φ ij . (28) 
The fluid face values of E n+1 ρ n+1 upw ij and P * ρ n+1 upw ij are given by an upwind scheme as described below:

E n+1 ρ n+1 upw ij = λ n ij E n+1 i ρ n+1 i + (1 -λ n ij ) E n+1 j ρ n+1 j , P * ρ n+1 upw ij = λ n ij P * i ρ n+1 i + (1 -λ n ij ) P * j ρ n+1 j ,
where:

λ n ij = 1 if (Q * • n) ij ≥ 0, 0 otherwise.

Wall boundary conditions

Rigid wall boundary conditions on ∂Ω w , the wall boundary of the computational domain Ω, are taken into account by using the "mirror state" technique, see Appendix B and [START_REF] Dubois | Boundary conditions and the Osher scheme for the Euler equations of gas dynamics[END_REF][START_REF] Blondel | Condensation models and boundary conditions for non-equilibrium wet flows[END_REF][START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF]. For the EOS of an ideal gas or stiffened gas, the exact solution of this Riemann problem is calculated. Hence the condition applied at a wall boundary face Γ b i of the boundary of Ω i is such that the convective mass flux is null (Q * b i • n b i = 0) and the predicted pressure is, for the EOS of an ideal gas, either:

• for u n i • n b i ≤ 0, rarefaction configuration:    P * b i = P * i 1 + γ -1 2 u n i • n b i c n i 2γ γ-1 if -2 γ-1 < u n i •n b i c n i ≤ 0, P * b i = 0 otherwise,
• for u n i • n b i > 0, shock configuration:

P * b i = P * i   1 + γ u n i • n b i c n i 1 + (γ + 1) 2 16 
u n i • n b i c n i 2 1 2 + γ(γ + 1) 4 u n i • n b i c n i 2   .
Furthermore, the wall boundary value of the pressure for the EOS of a stiffened gas is inferred from the formula given in Appendix B.

Main properties of the scheme

Properties of the pressure prediction step

This section aims at proving that the numerical scheme preserves the positivity of both the discrete density and the predicted pressure.

The discrete equation coming from the time and space scheme of Equation ( 11) of the mass conservation is written with the notations introduced in Section 2.2 as follows:

Ω φ i (P * i -P n i ) (c 2 ) n i +∆t n j∈V (i) β n ij ρ n i + (1 -β n ij )ρ n j (u n • n) ij S φ ij - j∈V (i) (∆t n ) 2 h ij + h ji P * j -P * i S φ ij = 0. ( 29 
)
Equation (29) yields a linear system:

A X = B,
with the vector X = (P * i ) i∈{1,...,N cell } , where N cell is the total number of cell (degrees of freedom). ∀ i ∈ {1, ..., N cell }, the diagonal matrix coefficients are:

A ii =        Ω φ i (c 2 ) n i + (∆t n ) 2 j∈V (i) S φ ij h ij + h ji if Ω φ i > 0, 1 otherwise, ∀ i, j ∈ {1, .
.., N cell } with j = i, the off-diagonal coefficients are:

A ij =    - (∆t n ) 2 h ij + h ji S φ ij if j ∈ V (i) and Ω φ i > 0, 0 otherwise.
The right hand side coefficients are:

B i =      Ω φ i P n i (c 2 ) n i -∆t n j∈V (i) β n ij ρ n i + (1 -β n ij )ρ n j (u n • n) ij S φ ij if Ω φ i > 0, P n i otherwise.
Remark 5.1. If the measure of the fluid part of the cell Ω i is null, then all faces are considered as solid, i.e.: if Ω φ i = 0, then ∀ j ∈ V (i), S φ ij = 0. We conclude that: B i = P n i and hence P * i = P n i .

Property 5.1. [Positivity of the density and the predicted pressure] Assume that the EOS is such that ρ > 0, P > 0 and γ = ρc 2 P > 1. If the initial conditions are such that, for all Ω i , ρ n i > 0 and P n i > 0, then the density ρ n+1 i and the pressure P * i will remain positive for all Ω i , provided that the time step ∆t n complies with the CFL-like condition:

Ω φ i ≥ γ∆t n j∈V (i) β n ij (u n • n) ij S φ ij . ( 30 
)
The CFL-like condition (30) allows to define the CF L + condition if Ω φ i > 0:

CF L + := ∆t n max i∈{1,...,N cell } γ Ω φ i j∈V (i) β n ij (u n • n) ij S φ ij ≤ 1. ( 31 
)
Proof. The proof is that A is a M-matrix and B is positive.

• A is a M-matrix: the time step ∆t n > 0, ∀ i ∈ {1, ..., N cell }, (c 2 ) n i > 0 and Ω φ i ≥ 0. Moreover, ∀ j ∈ V (i), S φ ij ≥ 0 and h ij + h ji > 0.
Thus all diagonal coefficients of the matrix A are strictly positive (A ii > 0), and all off-diagonal coefficients are negative or null (A ij ≤ 0 for j = i).

∀ i ∈ {1, ..., N cell }, A is strictly diagonally dominant by lines:

|A ii | - j =i |A ij | = A ii + j∈V (i) A ij = |Ω φ i | (c 2 ) n i > 0 if Ω φ i > 0, 1 otherwise.
Thus A is a M-matrix i.e. invertible and the A -1 coefficients are positive:

∀ i, j ∈ {1, ..., N cell }, A -1 ij ≥ 0.
• B is positive: if Ω φ i > 0, the coefficient B i yields:

B i =   Ω φ i (c 2 ) n i -∆t n j∈V (i) β n ij ρ n i P n i (u n • n) ij S φ ij   P n i -∆t n j∈V (i) (1 -β n ij )ρ n j (u n • n) ij S φ ij . (32) 
By considering Equation (32), the coefficient B i is a positive combination of P n i and ρ n j if the CFL-like condition (30) holds. Thus the vector B is positive:

∀ i ∈ {1, ..., N cell }, B i ≥ 0.
Given that: X = A -1 B, we conclude, for all Ω i , X i = P * i ≥ 0. Likewise the density ρ n+1 remains positive under the condition (30). Indeed, to be conservative, we have set for all i ∈ {1, ..., N cell } (see Section 3) :

ρ n+1 i -ρ n i = P * i -P n i (c 2 ) n i ⇒ ρ n+1 i = P * i (c 2 i ) n + ρ n i (γ n i -1) γn i ,
which completes the proof: ρ n+1 i > 0, since γn i = γ > 1. Remark 5.2. For an ideal gas, γ = γ ≈ 1 (notably γ = 1.4 for a diatomic gas). The CFL-like condition (30) is close to the standard CF L u condition (33), based on the material transport.

CF L u := ∆t n max i∈{1,...,N cell } 1 Ω φ i j∈V (i) β n ij (u n • n) ij S φ ij ≤ 1. ( 33 
)
Remark 5.3. For a liquid with a physical EOS, γ 1. This CFL-like condition (30) becomes more limiting than the standard CF L u condition (33) on the velocity for an explicit upwind scheme. A way to maintain the standard CF L u constraint is to substitute the mass balance linear scheme by a non-linear scheme (see Appendix A).

Remark 5.4. For the stiffened gas EOS, Property 5.1 does not apply. Indeed negative pressures greater than -Π ∞ are meaningful. In this case, we may prove the following result, Property 5.2. Property 5.2. [Admissible state of the density and the predicted pressure for the stiffened gas EOS] Assume a stiffened gas EOS [START_REF]Reactivity-Initiated Accident (RIA)[END_REF], which is such that ρ > 0 and P + Π ∞ > 0. If the initial conditions are such that, for all Ω i , ρ n i > 0 and P n i + Π ∞ > 0, then the density ρ n+1 i and the pressure P * i + Π ∞ will remain positive for all Ω i , provided that the time step ∆t n complies with the modified CF L + condition:

CF L + := γ∆t n max i∈{1,...,N cell } 1 Ω φ i j∈V (i) β n ij (u n • n) ij S φ ij ≤ 1. ( 34 
)
Proof. The proof is identical to the one of Property 5.1 thanks to the suitable change of variables, for all Ω i , P i = P i + Π ∞ in the discrete mass balance equation (29).

Remark 5.5. The CF L + condition (34) remains always close to the CF L u condition (33), since, for the stiffened gas EOS, γ is usually in the range (1, 10].

Remark 5.6 (Conservativity in time and space). The algorithm is conservative in time and in space. It is important to emphasize that, for all i ∈ {1, ..., N cell }, the density ρ n+1 i needs to be updated only as follows:

ρ n+1 i = ρ n i + 1 (c 2 i ) n (P * i -P n i ) .
Conservativity of the algorithm allows to find the correct shock solutions in pure fluid cases. This is verified in presence of discontinuities in [START_REF] Archambeau | Comparative study of pressure-correction and Godunov-type schemes on unsteady compressible cases[END_REF]. The convergence order, determined from the Riemann problem of the shock tube test case, is 1 2 for contact discontinuities, and 1 for shock waves and rarefaction waves.

Properties of the pressure correction step

This section aims at proving that the numerical scheme preserves the positivity of the discrete internal energy and hence of the corrected pressure.

Property 5.3. [Positivity of the internal energy] Assume that the EOS is such that ρ > 0 and > 0. If the initial conditions are such that, for all Ω i , ρ n i > 0 and n i > 0, then the internal energy n+1 i will remain positive for all Ω i , provided that the time step ∆t n complies with the CFL-like condition:

Ω φ i ≥ ∆t n ρ n i n i j∈V (i) P * ρ n+1 upw ij (Q * • n) ij -P * ij -P * i n ij • u n+1 i S φ ij . ( 35 
)
The CFL-like condition (35) allows to define the CF L + condition, if Ω φ i > 0:

CF L + := ∆t n max i∈{1,...,N cell } 1 Ω φ i a * i ρ n i n i ≤ 1, ( 36 
)
with a * i :=

j∈V (i)

P * ρ n+1 upw ij (Q * • n) ij -P * ij -P * i n ij • u n+1 i S φ ij .
Proof. The proof consists in deriving a discrete kinetic energy balance. Subtracting this balance to the total energy balance ( 16) allows to obtain a discrete internal energy balance and to deduce a condition of positivity on the right hand side of the associated linear system.

• Discrete kinetic energy balance

The derivation of the kinetic energy balance in the continuous case is mimicked: we multiply the momentum equation by the velocity and use the mass balance. Multiplying the discrete momentum balance (15) by the velocity u n+1 i for all Ω i , i ∈ {1, ..., N cell }, yields:

Ω φ i ρ n+1 i u n+1 i -ρ n i u n i ∆t n • u n+1 i + j∈V (i) (Q * • n) ij (u n+1 ij ) upw • u n+1 i S φ ij + j∈V (i) P * ij -P * i n ij • u n+1 i S φ ij = 0. ( 37 
)
Using the identity: 2

u n i • u n+1 i = u n+1 i 2 + |u n i | 2 -u n+1 i -u n i 2
, the unsteady term of Equation (37) reads:

2 ρ n+1 i u n+1 i 2 -ρ n i u n i • u n+1 i = 2ρ n+1 i u n+1 i 2 -ρ n i |u n i | 2 + ρ n i u n+1 i -u n i 2 -ρ n i u n+1 i 2 ,
multiplying the mass balance (11) by

1 2 u n+1 i 2 , Ω φ i 2∆t n ρ n i u n+1 i 2 = Ω φ i 2∆t n ρ n+1 i u n+1 i 2 + j∈V (i) (Q * • n) ij 1 2 u n+1 i 2 S φ ij ,
and substituting this relation in Equation (37) yields:

Ω φ i 2∆t n ρ n+1 i u n+1 i 2 -ρ n i |u n i | 2 + j∈V (i) (Q * • n) ij (u n+1 ij ) upw • u n+1 i - 1 2 u n+1 i 2 S φ ij + Ω φ i 2∆t n ρ n i u n+1 i -u n i 2 +
j∈V (i)

P * ij -P * i n ij • u n+1 i S φ ij = 0. ( 38 
)
The convective flux can be rewritten for the upwind discretization [START_REF] Martin | Modélisation d'écoulements fluides en milieu encombré d'obstacles[END_REF] as:

(Q * • n) ij (u n+1 ij ) upw • u n+1 i - 1 2 u n+1 i 2 = (Q * • n) ij 1 2 (u n+1 ij ) upw 2 -(1 -λ n ij ) (Q * • n) ij ≤0 1 2 u n+1 i -u n+1 j 2 .
The coefficient λ n ij has been defined in Section 4.2.1. Eventually substituting this latter equality in Equation (38) yields the following discrete kinetic energy balance for all Ω i :

Ω φ i 2∆t n ρ n+1 i u n+1 i 2 -ρ n i |u n i | 2 + j∈V (i) (Q * • n) ij 1 2 (u n+1 ij ) upw 2 S φ ij + j∈V (i) P * ij -P * i n ij • u n+1 i S φ ij + R 2 i = 0, (39) 
with

R 2 i = Ω φ i 2∆t n ρ n i u n+1 i -u n i 2 - j∈V (i) (1 -λ n ij ) (Q * • n) ij 1 2 u n+1 i -u n+1 j 2 S φ ij ≥ 0, since ρ n i > 0 for all Ω i .
• Discrete internal energy balance Subtracting the discrete kinetic energy balance (39) to the discrete total energy balance (16) yields the following local discrete internal energy balance for all Ω i :

Ω φ i ∆t n ρ n+1 i n+1 i -ρ n i n i + j∈V (i) (Q * • n) ij n+1 ij upw S φ ij + j∈V (i) (Q * • n) ij P * ρ n+1 upw ij -P * ij -P * i n ij • u n+1 i S φ ij = R 2 i . (40) 
The upwind discretization of the internal energy equation (40) infers that the associated linear system matrix is a M-matrix, i.e. invertible and its inverse is positive. Thus the internal energy n+1 i remains positive as long as the explicit-in-time term is positive. Since R 2 i ≥ 0, the sufficient condition of the positivity of n+1 i is for all Ω i :

Ω φ i ∆t n ρ n i n i + j∈V (i) P * ij -P * i n ij • u n+1 i - P * ρ n+1 upw ij (Q * • n) ij S φ ij ≥ 0,
which completes the proof. Remark 5.9. For the stiffened gas EOS, Property 5.3 does not apply. The inequality ρ -Π ∞ ≥ 0, equivalent to P + Π ∞ ≥ 0 with γ > 1, must be verified. The change of variables is set here ρ = ρ -Π ∞ and P = P + Π ∞ , given that P = (γ -1) ρ . In this case, we may prove the following result, Property 5.4.

Property 5.4. [Admissible state of the internal energy for the stiffened gas EOS] Assume a stiffened gas EOS [START_REF]Reactivity-Initiated Accident (RIA)[END_REF], which is such that ρ > 0 and ρ = ρ -Π ∞ > 0. If the initial conditions are such that for all Ω i , ρ n i > 0 and ρ n i > 0, then ρ n+1 i will remain positive for all Ω i , provided that the time step ∆t n complies with the modified CF L + condition:

CF L + := (γ -1)∆t n max i∈{1,...,N cell } 1 Ω φ i ã * i P n i ≤ 1, ( 41 
)
with ã * i := j∈V (i)   P * ρ n+1 upw ij (Q * • n) ij -P * ij -P * i n ij • u n+1 i   S φ ij .
Proof. The proof is identical to the one of Property 5.3 thanks to the suitable change of variables (see Remark 5.9), for all Ω i , P i = P i + Π ∞ and ρ i = ρ i i -Π ∞ in the proof of Property 5.3 and thus in the discrete internal energy balance equation (40).

Remark 5.10. Note that, when considering a locally constant pressure, the CF L + condition (41) boils down to:

(γ -1)∆t n max i∈{1,...,N cell } 1 Ω φ i j∈V (i) (Q * • n) ij ρ n+1 ij upw S φ ij ≤ 1,
the CF L + number (41) is thus approximately equal to (γ -1)CF L u , and (γ -1) is of the same order of magnitude as one.

Numerical results

6.1. Verification test cases: one-dimensional Riemann problems 6.1.1. Sod shock tube This section is dedicated to the verification case of the basic configuration without obstacles: the so-called Sod shock tube, which is an one-dimensional Riemann problem. The computational domain is Ω = (-200, 200) and consists of a one-dimensional tube with a membrane in the middle which separates two different constant fluid states. At the time t = 0, the membrane bursts. The ideal gas EOS is considered with γ = 1.4 (diatomic gas). The numerical solution is compared with the exact solution, which is composed of a 1-rarefaction wave followed by a 2-contact discontinuity and a 3-shock wave. This solution is derived in [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations[END_REF].

All meshes used to solve this Riemann problem are uniform. The meshes contain N cells with N = 800, 1600, 3200, 6400, 12800, 25600 or 51200. The CF L u number, based on the material velocity u and defined by Equation (33), is equal to 0.1. In the sequel, the space step dx is defined in m, the density ρ in kg.m -3 , the velocity u in m.s -1 and the pressure P in P a.

Initial conditions are, for the left and right states:

(ρ L , u L , P L ) = (1, 0, 10 5 ) , (ρ R , u R , P R ) = (0.125, 0, 10 4 ) . (42) 
For a qualitative study, the profiles of density, velocity, pressure and enthalpy are presented in Figure 4 at a time t = 0.3 s such that all waves are visible in the computational domain. The exact profiles are recovered with numerical diffusion for the rarefaction, contact discontinuity and shock waves. To check the convergence order, we plot in Figure 5 the logarithm of the relative L 1 error 1 as a function of the logarithm of the mesh size N (see Table 1). The numerical rates of convergence are about 0.6 for the density, 0.9 for the velocity and the pressure, and slightly more than 0.5 for the enthalpy (see Table 2). Theoretically the convergence order is 1 for a rarefaction wave and shock wave, and 1 2 for a contact discontinuity. This verification shows the ability of the fractional step scheme to correctly capture discontinuous solutions.

dx N ρ u P h 5.0e-1 800 8.497e-3 9.778e-3 5.308e-3 9.099e-3 2.5e-1 1600 5.427e-3 5.627e-3 3.010e-3 6.180e-3 1.25e-1 3200 3.472e-3 3.078e-3 1.679e-3 4.169e-3 6.25e-2 6400 2.237e-3 1.668e-3 9.272e-4 2.831e-3 3.125e-2 12800 1.456e-3 9.269e-3 5.095e-4 1.943e-3 1.5625e-2 25600 9.571e-4 5.070e-4 2.780e-4 1.342e-3 7.8125e-3 51200 6.354e-4 2.660e-4 1.496e-4 9.273e-4 Table 1: L 1 error for variables (ρ, u, P, h) for all the considered meshes for the Sod shock-tube. 1 The discrete relative L 1 error is defined as: e L 1 (Ω) (ψ) = (ρ L , u L , P L ) = (800, 0, 1.65 × 10 7 ) , (ρ R , u R , P R ) = (797, 6.827, 5.0 × 10 6 ) .

(43)

This test case corresponds to a low Mach number flow. The Mach number is such that:

M = |u| c ∈ [0, 10 -2 ]
. The exact solution is composed of a 1-rarefaction wave followed by a 2-contact discontinuity and a 3-shock wave. The uniform meshes contain N = 800, 1600, 3200, 6400, 12800, 25600 and 51200 cells. For the first test, CF L u is equal to 0.0084, i.e. CF L + = 0.015 (CF L + defined by Equation (31)). The second test is run with CF L u equal to 0.54 (CF L + = 1). The simulation ending time is 0.1 s. As expected, the numerical simulation matches the exact profile with numerical diffusion at discontinuities (see Figure 6 and Table 3). The greater is the CF L u value, the greater is the diffusion, excepted for the contact discontinuity profile which maintains sharp (see Figure 8 and Table 5). In accordance with the theory for a stiffened gas EOS, we note that the L 1 convergence order is 1 2 for all waves (see Table 4, 6 and Figure 7,9). The semi-implicit pressure correction scheme allows to release the explicit stability constraint due to the acoustic waves and thus to increase the CF L u value. 

Verification test cases: one-dimensional shock tube interaction with a wall

The aim here is to simulate the interaction between a shock wave generated by a subsonic shock tube experiment and a wall. The shock tube experiment has been presented in the previous Section 6.1. In this second test case, the computational domain contains a wall boundary on the right located at x = x 1 ; here, a wall boundary condition is applied. The 3-shock wave is reflected by the wall, and then the reflected shock interacts with the 2-contact discontinuity at time t 1 in x = x * = x 1 -σ 3 (t 1 -t 0 ) = x 0 + u 1 t 1 , where t 0 denotes the time when the initial 3-shock wave hits the wall and u 1 and σ 3 the celerity of the contact discontinuity and the reflected shock wave respectively. The computed configurations are:

• the interaction of the initial shock wave with the wall,

• the interaction of the initial contact discontinuity with the reflected shock wave.

The localisation of the different constant fluid states is given in Figure 10. The state ( 3) is created by the shock wave reflection on the wall and the states (4) and ( 5) are created by the interaction of the contact discontinuity (1) and the reflected shock (3).

x x 1 x * + t x 0 W L W R u 1 -c 1 u L -c L u 1 = u 2 σ 2 -σ 3 t 0 t 1 (1) (2) (3) 
(4) [START_REF] Aubry | The THYC three-dimensional thermal-hydraulic code for rod bundles: recent developments and validation tests[END_REF] wall Appendix C presents the calculation of the analytic solution (hence computing exact values for W 3 , W 4 and W 5 ) based on an exact solving of two distinct Riemann problems. In the following section, the numerical solution is compared with this analytic solution in order to check the numerical scheme error and to investigate convergence rates.

Interaction of the initial contact discontinuity with the reflected shock wave for an

ideal gas EOS The computational domain is initialized with the Sod shock-tube configuration. The discontinuity between the initial left and right states is located at x 0 = 50 m. Initial conditions are:

(ρ L , u L , P L ) = (1, 0, 10 5 ) , (ρ R , u R , P R ) = (0.125, 0, 10 4 ) . ( 44 
)
and: P = (γ -1) ρ , with γ = 7 5 . The convergence study is performed with uniform meshes. The mesh contains N cells with N = 800, 1600, 3200, 6400, 12800, 25600 or 51200. The material CF L u value is equal to 1. The computation final time is 0.42 s such that the reflected shock wave has interacted with the initial contact discontinuity. Numerical diffusion affects obtained profiles, but these latter are in quite good agreement with the exact solution (dark dashed line), see Figure 11 and Table 7. The L 1 convergence orders are close to 0.5 for the density, and close to 0.6 for the pressure and the velocity (see Figure 12 and Table 8). For N = 12800, the numerical wall pressure is P num wall = 78038.0843 P a to be compared with the theoretical value P exact wall = 78038.3071 P a (arising from Appendix C). The relative error is 2.9×10 -6 .

- dx N ρ u P h 5.0e-1 800 5.143e-02 5.508e-02 3.673e-02 3.938e-02 2.5e-1 1600 3.680e-02 3.631e-02 2.332e-02 2.774e-02 1.25e-1 3200 2.562e-02 2.294e-02 1.468e-02 1.906e-02 6.25e-2 6400 1.781e-02 1.495e-02 9.649e-03 1.322e-02 3.125e-2 12800 1.209e-02 9.426e-03 6.181e-03 9.107e-03 1.5625e-2 25600 8.247e-03 6.062e-03 4.003e-03 6.290e-03 7.8125e-3 51200 5.569e-03 3.766e-03 2.507e-03 4.320e-03 Table 7: L 1 error for variables (ρ, u, P, h) for all the considered meshes for the Sod shock-tube interaction case. 8: L 1 convergence order for variables (ρ, u, P, h) for all the considered meshes for the Sod shocktube interaction case.

Shock wave reflection on a wall for a stiffened gas EOS

The verification test case is still a shock tube experiment that interacts with a wall, now considering a stiffened gas EOS. The stiffened gas parameters are:

γ SG = 5 and Π ∞ = 1.345951 × 10 8 P a.
The membrane is located at x 0 = 50 m. Initial conditions are:

(ρ L , u L , P L ) = (762.8, 0, 1.65 × 10 7 ) , (ρ R , u R , P R ) = (762.8, 0, 1.55 × 10 7 ) . (45) 
This test case corresponds to a low Mach number flow. Indeed the Mach number varies from 0 to 10 -3 . The convergence study is performed with the same uniform meshes. CF L u is equal to 0.005 (i.e. CF L u+c ≈ 5). The CF L u value is chosen small enough to capture accurately the shock wave profile. The computation final time is 0.21 s such that the reflected shock wave has been generated by interaction with the wall. The field values of the shock after the wall reflection fit the exact solution (see Figure 13 and Table 9). The expected L 1 convergence orders are recovered: approximately 0.5 for the density, the pressure and the velocity (see Figure 14 and Table 10). For N = 12800 cells, the numerical wall pressure after the reflection on the wall is P num wall = 16500348 P a to be compared with the theoretical value P exact wall = 16500335 P a (arising from Appendix C). The relative error is 7.8 × 10 -7 .
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Figure 13: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for the shock-tube reflection case with a SG EOS at t = 0.21 s.

dx N ρ u P h 5.0e-1 800 5.401e-05 1.059e-01 2.504e-03 2.147e-04 2.5e-1 1600 3.857e-05 7.607e-02 1.776e-03 1.525e-04 1.25e-1 3200 2.714e-05 5.377e-02 1.253e-03 1.076e-04 6.25e-2 6400 1.915e-05 3.793e-02 8.840e-04 7.589e-05 3.125e-2 12800 1.351e-05 2.673e-02 6.230e-04 5.350e-05 1.5625e-2 25600 9.501e-06 1.880e-02 4.382e-04 3.763e-05 7.8125e-3 51200 6.668e-06 1.319e-02 3.075e-04 2.641e-05 Table 9: L 1 error for variables (ρ, u, P, h) for all considered meshes for the shock-tube reflection case with a SG EOS. 10: L 1 convergence order for variables (ρ, u, P, h) for all considered meshes for the shock-tube reflection case with a SG EOS.

Integral formulation validation test case

EDF R&D has set up research programmes in order to investigate accidental situations in a major context of nuclear safety and security expertise for PWR (Pressurized Water Reactor) conditions, including RIA (Reactivity Initiated Accident) [START_REF]Reactivity-Initiated Accident (RIA)[END_REF].

The aim of the current test case is to assess the integral formulation with obstacles, while mimicking the RIA situation. Thus, the numerical test case consists in simulating a fluid flow induced by the fuel during a RIA fast transient, where a shock wave impacts a fuel assembly, gathering a few rods. Actually, the desired physical quantity is the resultant pressure force on fuel rods in order to evaluate the mechanical properties of the rod cladding. Both the CFD fluid approach, where the mesh perfectly matches the rods, and the new integral approach, where fluid cells are obstructed by the rods, are used in this study. Results are thus compared to validate the integral approach. The CFD study provides the reference values.

Case description

The numerical test consists in a shock wave impacting rigid obstacles. The compressible fluid is assumed to be inviscid, and the flow is unsteady. The two-dimensional computational domain Ω is a large tube with a membrane in the middle which separates two discontinuous constant fluid states W L and W R initially at rest. Both tube ends are closed by walls. Symmetry boundary conditions are imposed at the top and the bottom of the computational domain to enforce a periodic condition in the y-direction. An obstructed area composed of four solid rods is set on the right of the shock tube membrane. A sketch of the test case is displayed in Figure 15. The obstacles are squares of 1 cm edge. We perform several computations with Cartesian meshes:

• The reference 2D CFD computation using a fine fluid mesh including 87 millions of square cells, such that 2000 cells mesh the height h of the tube (see Figure 15).

• The integral formulation computations using coarse porous meshes with square cells. N h cells mesh the height h of the tube: N h = 1, 2, 3, 4, 5 or 6. Thus the obstructed pattern of size h × L/8 is meshed with 3.5 × N 2 h square cells (see Figure 15). The total number of cells in Ω is:

N cell = 8 × 3.5 × N 2
h . The first mesh size (N h = 1) is representative of the one used for a "component" computation with THYC or FLICA 4 codes for instance. Unlike with the CFD computation where the solid boundary is explicitly meshed (a wall boundary condition is enforced on the obstacle surface), the obstacles with the integral approach are included or partially included in the cells. The simulation is performed with a stiffened gas EOS modelling the liquid water thermodynamic in the PWR core. The stiffened gas parameters are: 

γ SG = 1.
CF L + is equal to 0.006 (i.e. CF L u+c ≈ 1). The CF L + value is chosen small enough to capture accurately shock and rarefaction waves. The final time is 0.17 ms. Hence the fast waves (rarefaction and shock waves) do not hit the left and right wall boundaries. The CFD unsteady pressure field is plotted in Figure 16. Note that explicit-in-time schemes, such as the one described in [START_REF] Hérard | An integral approach to compute compressible fluid flows in domains containing obstacles[END_REF] would lower computational cost results for the same level of accuracy in this case, where the acoustic CF L u+c number is close to one, in order to be accurate on pressure loads associated with fast waves. However this test case validates the ability of the semi-implicit algorithm to deal with unsteady situations involving sharp genuinely non-linear shocks. 16: Pressure field obtained with the local CFD approach (870 000 cells), t f inal = 0.17 ms.

Numerical results

In order to validate the integral approach for the fluid variables, the unsteady profiles of the density, the x-velocity component and the pressure, for the coarse mesh integral approach computations, are compared, at t f inal = 0.17 ms, with the local CFD profiles in Figure 17. These one-dimensional profiles, along the x-direction, are obtained as a volume-average of the fluid fields in the y-direction. We retrieve the plateau values for the pressure, the velocity and the density for x ∈ [-0.15, -0.05]. These values are exactly those obtained when solving the one-dimensional Riemann problem associated with the current initial conditions (46). The profiles in the obstructed area, for x ∈ [0.07, 0.14], give satisfactory profiles for the fluid variables, when compared with the CFD reference.

In order to compare the integral approach and the local approach on the quantity of interest, the pressure force exerted by the pressure shock wave on the surface of the four rods is computed from the numerical simulations with both the integral approach and the CFD reference simulation. Figure 18 presents a mesh refinement study for the pressure force using several meshes (N cell = 87 × 10 4 , 3.48 × 10 6 , 13.92 × 10 6 or 87 × 10 6 ). The maximal relative difference between the finest and the coarsest CFD mesh is 14%. The finest CFD computation with N cell = 87 × 10 6 is the reference.

The x-component of the pressure force F x (t) is defined as:

F x (t) = Γ w P (x, t) ndΓ • e x ,
where for the integral approach P (x, t n )| Γ w is equal to P n i for all wall interfaces in the cell Ω i , according to the 0 th -order approximation [START_REF] Eymard | TP or not TP, that is the question[END_REF]. For each mesh, the pressure force as a function of time F x (t) is plotted in Figure 19; in addition the time integral of the force, called impulsion, as a function of time is given in Figure 20. The impulsion is defined as:

J x (t) = t 0 F x (τ )dτ.
The results reveal that:

• For all computations, the maximal resultant force with the integral approach is underestimated for the rods 1, 2, 3, 4 and their sum, when compared with the CFD reference; however the resultant force with the integral approach has the same order of magnitude as the one with the CFD reference. Note that the maximal value of the sum of the forces exerted on the rods is less underestimated than the one exerted rod by rod, see Figure 19. Besides, we observe that the convergence towards the CFD reference computation is not monotonous for coarse porous meshes. ) x-Velocity u (m.s -1
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Figure 17: Fluid fields, at t f inal = 0.17 ms, averaged in the y-direction using the integral approach with different coarse meshes -comparison with the CFD reference (black line).

• The impulsion approximation on the coarse meshes is slightly overestimated for all computations when compared with the CFD reference, see Figure 20.

• As expected, Figure 21 shows that the integral approach converges towards the CFD approach when refining the mesh.

• Figure 22 and 23 show the quantities of interest (force and impulsion) computed with the 1 st -order approximation (26) of the wall pressure in the algorithm, and using the post-treatment: P (x, t)| Γ w = P i + ρ i c i u i • n on the wall boundary of the cell Ω i . The latter values are actually different from those obtained with the 0 th -order approximation on very coarse meshes (see Figure 24); as expected, they are almost identical on very fine meshes, since u i • n tends to zero close to the wall. Moreover, when compared with the CFD reference, the maximal value of the sum of the forces exerted on the rods and the impulsion, using the 1 st -order approximation [START_REF] Dubois | Boundary conditions and the Osher scheme for the Euler equations of gas dynamics[END_REF], are overestimated on very coarse meshes.
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Figure 18: Resultant pressure force F x (t) using different meshes with N cell cells -CFD approach.
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Figure 20: Pressure force impulsion J x (t) using the integral approach with different coarse meshescomparison with the CFD reference (black line).
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CFD reference (e) Rods sum Figure 22: Resultant pressure force F x (t) using the integral approach with different coarse meshes and the 1 st -order approximation of the wall pressure -comparison with the CFD reference (black line).
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CFD reference (e) Rods sum Figure 23: Pressure force impulsion J x (t) using the integral approach with different coarse meshes and the 1 st -order approximation of the wall pressure -comparison with the CFD reference (black line).
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Conclusion

The multi-dimensional integral formulation has been introduced to approximate solutions of the Euler equations in a domain cluttered up by small solid obstacles compared with the global size of the domain. Thus, the obstacles may not be explicitly meshed in the computational domain. The integral formulation uses an original pressure-correction method in a co-located semi-implicit finite volume conservative scheme. The preservation of the positivity of the density and the internal energy under a CF L condition, based on the material velocity, is proved.

Numerical verification tests presented herein are shock tube problems, for gas or liquid, either in a free domain or in a domain closed by a wall reflecting the incident shock wave. These tests indicate a stable and consistent behaviour of the algorithm, for Mach numbers ranging from 10 -3 to 1. Indeed, the numerical scheme enables to capture correct shock waves and contact discontinuities, and also to reproduce the correct pressure, density and velocity profiles in rarefaction waves. We emphasize that the numerical rate of convergence is similar to those obtained with classical exact or approximate Riemann solvers.

The numerical validation test, representative of a safety industrial experiment, shows the ability of the integral approach, with porous coarse meshes, to obtain integral quantities, such that forces acting on tube bundles, with the same order of magnitude than the fine CFD solution. The zero and the first order approximation of the wall pressure in the integral approach are tested. Furthermore, the integral approach naturally converges towards the CFD approach when the mesh is refined.

Hence, by simply defining mesh geometric quantities like fluid volumes and fluid surfaces, the integral formulation allows to unify the porous and the fluid representation by construction. Thus a wide range of computational meshes, from the coarsest porous mesh for the "component" scale to the finest fluid mesh for the "local" scale, can be continuously treated. The current integral approach is an alternative to the standard porous approach in order to compute fluid flows in an obstructed medium, including the sharp transition between a free and an obstructed medium, as it occurs when the fluid flow enters the PWR core. Numerical tests involving comparisons with results performed with the component scale software THYC, using the standard porous approach, will be carried out in the near future.

Current work aims at extending the integral formulation to compressible and incompressible viscous fluid flows governed by the Navier-Stokes equations. Viscous effects would be taken into account thanks to wall functions which vanish when the mesh is refined.

Appendix B. Riemann problem with mirror state

A popular method to treat numerically solid wall boundary conditions is the "mirror state" technique. It consists in defining a virtual state W n i outside the multidimensional fluid domain, which is deduced from the state W n i in the nearest wall cell with the same density, pressure, but opposite normal velocity. The half Riemann problem consists in solving an exact one-dimensional Riemann problem with respect to this virtual state in the normal direction to the wall (see This problem is used to compute the wall pressure with a priori any EOS where n is the outward normal from the cell to the wall and τ a tangent vector to the wall. Since Euler system (1) is invariant under frame rotation and translation along the τ direction, the wall pressure is the solution of the local one-dimensional Riemann problem (B.1) in the n-direction:

   ∂ t W + ∂ n (F n (W )) = 0, x • n ∈ R, t ∈ R + , W (x • n, 0) = W L if x • n < 0, W R if x • n > 0, (B.1)
where the left state W L and the right state W R are such that:

W L = W n i (real cell i), W R = W n i (virtual cell, mirror of W n i ), (B.2)
and F n (W ) = F (W ) • n is the normal flux. For the two-dimensional Euler system:

W =   ρ ρu E   and F n (W ) =   ρu • n (ρu • n) u + P n (u • n) (E + P )   .
Note that u = [u, v] t , where u = u•n is the normal velocity and v = u•τ is the tangential velocity.

The discrete conservative variable is W n i = [ρ n i , ρ n i u n i , ρ n i v n i , E n i ] t and so the corresponding mirror state is W n i = [ρ n i , -ρ n i u n i , ρ n i v n i , E n i ] t . Two possible cases may appear: • a double symmetric rarefaction wave if u n i • n ≤ 0,

• a double symmetric shock wave if u n i • n > 0.

x x 1 x * + t x 0 W L W R u -c u 1 t 0 t 1 (1) (2) 
(3) -σ 3 < 0 x * n W 1

(1)

W 3 (3) 
(4) We wish to compute intermediate states W 4 and W 5 (see Figure C.32). We recall that we have u 3 = 0 and P 3 > P 1 . Moreover the unknowns are such that u 4 = u 5 and P 4 = P 5 . The jump relations for the 1-shock yield:

σ 4 (5) 
    
(u 1 -u 4 ) 2 = (P 1 -P 4 )(τ 4 -τ 1 ),

µ 1 = P 4 P 1 = βz 1 -1 β -z 1 > 1, with z 1 = ρ 4 ρ 1 = τ 1 τ 4 > 1, τ = 1
ρ is the specific volume. We derive:

z 1 = 1 + βµ 1 β + µ 1 and u 1 -u 4 = τ 1 P 1 β -1 (µ 1 -1) 1 √ 1 + βµ 1 .
The Riemann invariants of the 3-rarefaction are:

   u 3 - 2 γ -1 c 3 = u 5 - 2 γ -1
c 5 with c = γP τ , s 3 (P 3 , τ 3 ) = s 5 (P 5 , τ 5 ) ⇒ P 3 τ γ 3 = P 5 τ γ 5 .
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 012 Figure 1: 2D fluid model.

Figure 3 :

 3 Figure 3: A (blue) control volume Ω i includes (gray) obstacles numbered from 1 to 5. Obstacles may: overlap part of the boundary of Ω i (1); partially occupy fluid cell (2); fully cross Ω i and halve it (3); be totally included in Ω i (4); or be aligned with part of the boundary of Ω i (5). The dashed blue surface corresponds to the fluid part Γ φ i of the boundary of Ω i .

Remark 5 . 7 .> 0

 570 The positivity of the pressure holds under the CFL-like conditions (30) and (35): for all Ω i , under the CF L + condition (30) and n+1 i ≥ 0 under the CF L + condition (35).Remark 5.8. if Ω φ i = 0, then ∀ j ∈ V (i), S φ ij = 0. We thus conclude that ρ n+1 i all Ω i .
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 4 Figure 4: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for the Sod shock-tube at t = 0.3 s.

Figure 6 :

 6 Figure 6: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for a Riemann problem with a SG EOS at t = 0.1 s (CF L + = 0.015).

Figure 10 :

 10 Figure 10: Wave interactions with the wall (subsonic case: u 1 -c 1 < 0).

Figure 11 :

 11 Figure 11: Comparison of the numerical solutions for 800, 1600 and 3200 cells with the exact solution for the Sod shock-tube interaction case at t = 0.42 s.

  66512803 and Π ∞ = 3.7258761468 × 10 8 P a. Initial conditions are, for left and right states: (ρ L , u L , P L ) = (713.187, 0, 200 × 10 5 ) , (ρ R , u R , P R ) = (729.614, 0, 155 × 10 5 ) .
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 15 Figure 15: Sketch of the Ω domain of size h × L obstructed by four internal solid rods (in grey) and periodic in the y-direction. The pressure shock wave propagates from the middle of the domain towards the right end.
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  Figure16: Pressure field obtained with the local CFD approach (870 000 cells), t f inal = 0.17 ms.
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 25 Figure B.25: Riemann problem with mirror state in the immersed obstacle into the cell Ω i .

Figure C. 31 :

 31 Figure C.31: Interaction of the reflected shock wave with the initial contact discontinuity (subsonic case: u 1 -c 1 < 0).

Figure C. 32 :

 32 Figure C.32: Riemann problem: 1-shock / 3-rarefaction.

Table 2 :

 2 L 1 convergence order for variables (ρ, u, P, h) for all the considered meshes for the Sod shocktube.6.1.2. Riemann problem with a stiffened gas EOSThis verification test case is a one-dimensional Riemann problem with a stiffened gas EOS. The stiffened gas parameters are computed for a liquid water at a 165 bar pressure and 583.15 K temperature: γ SG = 1.85768 and Π ∞ = 4.243468 × 10 8 Pa. Initial conditions are, for the left and right states:

	10 -1
	error
	L 1

Table 3 :

 3 L 1 error for variables (ρ, u, P, h) for all the considered meshes for a Riemann problem with a SG EOS (CF L + = 0.015).

	Test case 1 with CF L + = 0.015				
	dx	N	ρ	u	P	h
	5.0e-01	800 1.927e-04 2.546e-02 1.534e-02 1.684e-04
	2.5e-01	1600 1.352e-04 1.786e-02 1.073e-02 1.182e-04
	1.25e-01	3200 9.449e-05 1.244e-02 7.477e-03 8.260e-05
	6.25e-02	6400 6.570e-05 8.634e-03 5.189e-03 5.744e-05
	3.125e-02 12800 4.534e-05 5.943e-03 3.571e-03 3.965e-05
	1.5625e-02 25600 3.100e-05 4.049e-03 2.433e-03 2.712e-05
	7.8125e-03 51200 2.093e-05 2.722e-03 1.635e-03 1.832e-05

Table 4 :

 4 L 1 convergence order for variables (ρ, u, P, h) for all the considered meshes for a Riemann problem with a SG EOS (CF L + = 0.015). L 1 convergence curves for a Riemann problem with a SG EOS (CF L + = 1).

	10 -1
	error
	L 1

Figure 7: L 1 convergence curves for a Riemann problem with a SG EOS (CF L + = 0.015).

Table 5 :

 5 L 1 error for variables (ρ, u, P, h) for all the considered meshes for a Riemann problem with a SG EOS (CF L + = 1).

	dx	N	ρ cnv. order u cnv. order P cnv. order h cnv. order
	5.0e-1	800				
	2.5e-1	1600	0.5327	0.3542	0.5364	0.5343
	1.25e-1	3200	0.5214	0.4797	0.5250	0.5245
	6.25e-2	6400	0.5129	0.5116	0.5149	0.5132
	3.125e-2 12800	0.5202	0.5097	0.5253	0.5211
	1.5625e-2 25600	0.5089	0.5010	0.5103	0.5094
	7.8125e-3 51200	0.5108	0.5115	0.5118	0.5111

Table 6 :

 6 L 1 convergence order for variables (ρ, u, P, h) for all the considered meshes for a Riemann problem with a SG EOS (CF L + = 1).

  L 1 convergence of for Sod shock-tube interaction case.

		10 -1				
					order 1	
					order 1/2	
					Density	
					Velocity	
					Pressure	
					Enthalpy	
	error					
	L 1					
	Figure 12: dx N	ρ cnv. order u cnv. order P cnv. order h cnv. order
	5.0e-1	800				
	2.5e-1	1600	0.4829	0.6012	0.6557	0.5056
	1.25e-1	3200	0.5226	0.6626	0.6671	0.5411
	6.25e-2	6400	0.5244	0.6182	0.6057	0.5281
	3.125e-2 12800	0.5594	0.6649	0.6427	0.5377
	1.5625e-2 25600	0.5516	0.6368	0.6269	0.5338
	7.8125e-3 51200	0.5663	0.6868	0.6748	0.5419
	Table					

  L 1 convergence curves for the shock-tube reflection case with a SG EOS.

		10 0				
					order 1	
					order 1/2	
					Density	
					Velocity	
					Pressure	
					Enthalpy	
	error					
	L 1					
	Figure 14: dx	N	ρ cnv. order u cnv. order P cnv. order h cnv. order
	5.0e-1	800				
	2.5e-1	1600	0.4855	0.4778	0.4958	0.4934
	1.25e-1	3200	0.5073	0.5006	0.5025	0.5037
	6.25e-2	6400	0.5028	0.5034	0.5037	0.5034
	3.125e-2 12800	0.5040	0.5049	0.5047	0.5045
	1.5625e-2 25600	0.5075	0.5078	0.5078	0.5077
	7.8125e-3 51200	0.5107	0.5110	0.5110	0.5109
	Table					

  e) Rods sum Figure19: Resultant pressure force F x (t) using the integral approach with different coarse meshescomparison with the CFD reference (black line).
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Appendix A. Mass balance non linear scheme for liquid

The mass balance step of the pressure-correction algorithm (see Section 3.1) is modified for a real Equation Of State (EOS) of a liquid.

Appendix A.1. Time scheme

At the time step ∆t n , pressure and density are implicit, while entropy is always considered frozen, s n+1 = s n . Integration of the mass balance equation between t n and t n+1 and over Ω φ i gives the following implicit time scheme:

where the implicit mass flux Q * is computed as (see Equation ( 13)):

The relation between pressure and density is henceforth non linear: ρ n+1 i = ρ(P * i , s n i ). Equation (A.1) is written with the unknown pressure P * i as follows:

Remark Appendix A.1. The relation ρ n+1 i = ρ (P * i , s n i ) must be used for the update of the density to conserve mass over time.

Appendix A.2. Space scheme

The space discretization of the mass balance equation (A.2) is identical to the scheme described in Section 4.1. The explicit mass flux is discretized by an upwind scheme:

with:

and the pressure gradient is discretized with a two-point flux approximation:

Thus the pressure prediction scheme holds:

Equation (A.5) yields a non-linear algebraic system:

with the vector X = (P * i ) i∈{1,...,N cell } and N cell the total number of cell (or degrees of freedom). ∀ i ∈ {1, ..., N cell }, the diagonal operator coefficients are:

∀ i, j ∈ {1, ..., N cell } with j = i, the off-diagonal coefficients are:

The right hand side coefficients are:

Appendix A.

Property of positivity

The non linear operator M is coercive (therefore invertible) if the pressure is positive, i.e. for all i, P * i ≥ 0. The sufficient condition of positivity of both the pressure and the density is the classical CFL-like condition (A.6) only based on the mass flux rather than the thermodynamic coefficient γ = ρc 2 P > 1. Property Appendix A.1 (Positivity of the density and the pressure). If the initial conditions are such that ρ n i > 0 and P n i > 0, then the density ρ n+1 i and the pressure P * i will remain positive for all i, provided that the time step ∆t n complies with the CFL-like condition (A.6):

Proof. The proof is similar to the proof of Property 5.1 in Section 5. The inverse operator 

and on the conservation of three Riemann invariants of the 1-wave:

We deduce from Equations (B.3) and (B.4c) that:

allowing to retrieve the density ρ ≤ ρ n i of the intermediate state, and then the pressure P using Equation (B.4b), such that:

The expression of the function f depends on the thermodynamic law of the fluid, but for any EOS:

. Ideal gas EOS

For an ideal gas such that ρ = P γ-1 , with γ > 1 the heat capacity ratio:

. Stiffened gas EOS

For a stiffened gas such that ρ = P +γΠ∞ γ-1 , with Π ∞ ≥ 0 the reference pressure:

Appendix B.1.3. First order expansion of the function f for any EOS For all ξ ∈ R -, the function f (ξ) and its derivative f (ξ) are evaluated in the neighbourhood of zero in order to get a first order expansion for any EOS.

Noting f (ξ) = P -P n i P n i (ξ), and using the mean value theorem and Equation (B.4b),

ρ ∈ [ρ , ρ n i ] exists such that:

i ) exists such that:

We conclude that:

-when ξ → 0 -. Hence the function f is differentiable in ξ = 0 -such that, for any EOS: 

where for any field Ψ, the jump is defined as: [Ψ] i = Ψ -Ψ n i and σ is the speed of the shock wave.

This system of jump relations (B.5) gives: which allows to determine the intermediate density ρ > ρ n i and the intermediate pressure P . For any EOS, the pressure reads as follows:

The function g verifies:

Ideal gas EOS

For an ideal gas, the solution is detailed in [START_REF] Buffard | A sequel to a rough Godunov scheme: application to real gases[END_REF]. We get the solution of the intermediate state, writing:

Appendix B.2.2. Stiffened gas EOS For a stiffened gas, the solution of the intermediate state is:

First order expansion of the function g for any EOS

For all ξ ∈ R + , the function g(ξ) = P -P n i P n i (ξ) is evaluated to get a first order expansion for any EOS. The mean value theorem suggests that ρ ∈ (ρ n i , ρ ) and ∈ ( n , ) exist and such that:

and Equation (B.6c) gives:

. 48 Thus, we conclude:

Hence the function g is differentiable in ξ = 0 + and such that, for any EOS:

g(0 + ) = 0 and g (0

Property Appendix B.1. For any EOS such that P = P(ρ, ), the fitting between the double symmetric shock solution and the double symmetric rarefaction solution is C 1 :

and the derivative value is:

. Initial condition: the shock tube

The analytic solution is based on the exact solution of 1D Riemann problems for the Euler equations. The calculation is performed with an ideal gas or a stiffened gas EOS. At the beginning of the computation, the shock tube apparatus contains a membrane (x = x 0 ) separating two different initial constant fluid states at rest: the right state W R and the left state W L (see Figure C.28). The tube is closed on the right side: x = x 1 . The solution of this Riemann problem can be computed using [START_REF] Smoller | Shock Waves and Reaction-Diffusion Equations[END_REF] in order to evaluate the two intermediate states W 1 and W 2 respectively on the left and the right side of the contact discontinuity travelling at speed u 1 = u 2 > 0. Since u L = u R = 0 and P L > P R , the unique solution is a 1-rarefaction wave that propagates towards the left side, and a 3-shock wave travelling at the celerity σ 2 that moves to the right. We assume in addition that the initial pressure ratio P L /P R is such that u 1 -c 1 < 0.

Appendix C.2. Shock wave reflection with the wall for an ideal gas

The shock wave generated by the shock tube hits the wall in x = x 1 at time t = t 0 (see Figure C.29):

where σ 2 is the celerity of the 3-shock wave. In order to evaluate the state W 3 , we need to calculate the Riemann problem for t > t 0 with the initial condition (see Figure C.30):

with u 2 > 0, obtained above by solving the shock tube Riemann problem. This 1D Riemann problem is solved with the primitive variables:

the reflected shock wave on the wall. The Rankine-Hugoniot jump relations of the Euler equations and the symmetry of the problem give:

.29: Reflection of the shock wave on the wall (subsonic case:

-σ 3 < 0 For an ideal gas EOS, P = (γ -1)ρ , it implies the following equation with respect to z = ρ 3 ρ 2 :

using the standard notation β = γ+1 γ-1 > 1. There exists a unique solution z 0 ∈ [1, β) of Equation (C.3):

The state Z 3 = [ρ 3 , u 3 , P 3 ] t is thus known.

Appendix C.3. Interaction of the contact discontinuity with the reflected shock wave for an ideal gas The initial contact discontinuity created by the shock tube interacts with the reflected shock wave in x = x * at the time t = t 1 (see Figure C.31), such that:

with σ 3 > 0.

For t > t 1 , there exists a unique solution of the Riemann problem since the initial condition:

is such that: u 3 -u 1 = -u 1 < 0 < 2 γ-1 (c 1 + c 3 ). Since u 1 > u 3 = 0 and P 1 = P 2 < P 3 (pressure increases through a shock), the unique solution of this Riemann solution cannot involve a 1-rarefaction wave. The solutions can be either:

The whole set of relations implies:

since the 3-wave is a rarefaction wave, so µ 2 = P 5 P 3 ≤ 1. The final scalar equation with respect to µ 1 that needs to be solved is:

where the function l is defined by l(µ 1 ) = A 1

2γ -1 , with:

We remark that µ 1 µ 2 = a, since P 5 = P 4 . In the current wave configuration, µ 1 ∈ (1, a], since µ 1 = P 4 P 1 > 1 and µ 2 = µ 1 a ≤ 1 thus µ 1 ≤ a. The function l(µ 1 ) is strictly increasing over the interval (1, a] from l(1) < 0 to l(a) > 0. Thus, if u 1 ∈ (0, l(a)], the unique solution is the present configuration with a 1-shock / 3-rarefaction configuration, else, if u 1 > l(a), the solution is the 1-shock / 3-shock configuration as detailed below.

Appendix C.3.2. 1-Shock / 3-shock solution

The jump relations for the 3-shock give:

Similarly, it follows z 2 = 1 + βµ 2 β + µ 2 . So the scalar non-linear equation to be solved for the 1-shock / 3-shock configuration is:

This equation has a unique solution if and only if

Hence, two configurations are identified:

, the solution is the 1-shock-3-rarefaction configuration with

This completely determines states W 4 and W 5 .

Appendix C.4. Shock wave reflection with the wall for a stiffened gas EOS The calculation of the analytic solution is now performed with a stiffened gas thermodynamic law.

The method of calculation is the same as with an ideal gas EOS. A 1D Riemann problem is solved, thanks to the jump relations. For a stiffened gas, the EOS is: [τ ] 3 2 = 0. The same system than for the ideal gas EOS is recovered. The solution is then identical. The unknown is always the ratio z = ρ 3 ρ 2 and the equation to be solved is:

The unique solution of this equation is called z 0 > 1 and the relation P 3 + Π ∞ P 2 + Π ∞ = βz 0 -1 βz 0 allows to retrieve the pressure variable:

Remark Appendix C.1 (low velocity situation). In the case of low Mach number, b 1, then a first order approximation of the solution is: