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UMR 6074, F-56000, Vannes, France
sebastien.lefevre@irisa.fr

Lorenzo Bruzzone
Dept. of Inf. Eng. Computer Science

University of Trento, I-3812 Trento, Italy
lorenzo.bruzzone@unitn.it

Abstract—Morphological attribute profiles (APs) are among
the most effective methods to model the spatial and contextual
information for the analysis of remote sensing images, especially
for classification task. Since their first introduction to this field
in early 2010’s, many research studies have been contributed
not only to exploit and adapt their use to different applications,
but also to extend and improve their performance for better
dealing with more complex data. In this paper, we revisit and
discuss different developments and extensions from APs which
have drawn significant attention from researchers in the past
few years. These studies are analyzed and gathered based on the
concept of multi-stage AP construction. In our experiments, a
comparative study on classification results of two remote sensing
data is provided in order to show their significant improvements
compared to the originally proposed APs.

Index Terms—mathematical morphology, attribute profiles,
multilevel image description, image classification, remote sensing

I. INTRODUCTION

Image classification is one of the most crucial tasks in
remote sensing imagery which serves for several applications
in land use and land cover mapping and monitoring. With
the emergence of high resolution remote sensing technology,
the exploitation of the spatial information together with the
spectral characteristics becomes more and more significant to
characterize and discriminate different thematic classes present
from the image content. Within such spatial-spectral context,
morphological profiles (MPs) [1] were extensively exploited
during the 2000’s [2]–[5] thanks to their multilevel analysis
of spatial information by applying a sequence of opening
and closing by reconstruction operators with increasing-size
structuring elements (SEs). However, their high computation
complexity prevent them to deal with large-size images. Be-
sides, SEs can only model the size and scale of regions without
their gray-level characteristics, thus not considering contextual
features such as texture and contrast.

To overcome the MPs’ shortcomings, morphological at-
tribute profiles (APs) [6] were proposed in early 2010’s as their
generalization and consist in applying a sequence of attribute

filters (AFs) which are more powerful than operators by
reconstruction. These AFs can decompose the image according
to different types of attribute (i.e. any geometric and statistical
features of regions), not only restricted to the scale and
size of SEs employed by MPs. Besides, the construction of
APs can be efficiently implemented based on the hierarchical
representation of image via tree structures (i.e. originally via
min- and max-tree [6]), hence better dealing with large-size
remote sensing images. Scalability is further ensured with
parallel implementations [7].

In the past few years, a great number of research studies
have been devoted to exploit and extend the use of APs applied
to remote sensing image analysis, especially for classifica-
tion task. These studies have been designed to improve the
classification performance by focusing on the AP construction
framework or adapting their use to different types of input
data. In this paper, we conduct a survey on recent research
studies that have been proposed and developed from the
concept and application of APs. By decomposing the AP
generation scheme into different stages, we regroup these
studies into each specific stage in order to better provide an
overview of their contribution to the general AP framework.
We note that a recent survey [8] also exists but its contribution
has focused only on the spatial-spectral approaches using
different spectral feature extraction techniques and spatial
processing by the standard APs [6]. Our survey involves more
complete and detailed investigations of different developments
and extensions from APs to improve their performance and
optimize their construction framework.

We first recall the background of APs and highlights the key
components from AP construction framework (Sec. II), before
revisiting and discussing different developments from APs
which have provided considerable contributions in the past few
years (Sec. III). An experimental study (Sec. IV) provides a
comparative evaluation of some extensions compared to the
original APs by conducting supervised classification experi-
ments on two remote sensing image data. We finally conclude
the paper and indicate future research directions (Sec. V).
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Fig. 1. The AP generation framework which involves four main stages: tree construction, attribute computation, tree-based attribute filtering (pruning) and
image reconstruction from filtered (pruned) tree.

II. PRINCIPLE OF APS

APs are multilevel image description tools obtained by suc-
cessively applying a set of morphological attribute filters (AFs)
[6]. Unlike usual image filtering operators which are directly
performed on pixel level, AFs work on connected component
(CC) level based on the concept of image connectivity. In other
words, an AF is a filtering operator applied on CCs with regard
to a specific attribute characterizing the size, shape, or other
properties of objects and regions present in the image. That
is why AFs are more general than operators by reconstruction
(which are limited to the size and shape of SEs), and why APs
are more general than MPs [1], [6].

The generation of the standard APs [6] from an input image
can be summarized as a four-step framework (see Fig. 1):

1) construct the hierarchical tree to represent the image. In
[6], the authors proposed to form one min-tree and one
max-tree to encode the image;

2) compute some relevant attributes describing the geomet-
rical and statistical features from each tree’s node which
corresponds to one connected component;

3) filter the tree by keeping/removing nodes according to
their attribute values compared to predefined thresholds;

4) reconstruct the image from the filtered tree.
Steps 3) and 4) can be done for different attributes (with
different threshold values) to finally produce a set of filtered
images (by stacking them) forming the final APs.

More formally, given a grayscale image X : E → Z, E ⊆
Z2, the standard generation of APs on X is achieved by
applying a sequence of AFs based on a min-tree (attribute
thickening operators {φk}Kk=1) and a max-tree (i.e. attribute
thinning operators {γk}Kk=1) as follows:

AP(X) =
{
φK(X), φK−1(X), . . . , φ1(X), X,

γ1(X), . . . , γK−1(X), γK(X)
}
,

(1)

where φk(X) is the filtered image obtained by applying the
attribute thickening φ with regard to the threshold k. Similar
explanation is made for γk(X). As observed, the resulted
AP(X) is a stack of (2K + 1) images including the original

image, K filtered images from the thickening profiles and the
other K from the thinning profiles.

III. RECENT ADVANCES FROM APS

As described above, the construction of APs involves four
main stages which are in fact the key components that have
been focused for improvements by different literature studies
within the past few years. In addition, since APs basically
work on panchromatic images, some pre-processing or specific
adaptation procedures are required when dealing with other
input data (multi-channel images, radar data, etc.). Then,
spatially post-processing the output profiles to increase their
description capacity for classification has also drawn attention
of researchers in several research studies.

We now revisit the recently proposed developments that
have provided significant contributions to adapt and improve
the AP framework for remote sensing image classification
(Sec. III-A to Sec. III-E). Here, our investigation will focus
on three main key features:

• the adaptation of APs to other input data, in particularly
to multi-channel images (Sec. III-A);

• the construction of APs using various tree representation
structures (Sec. III-B);

• the AP post-processing using different feature enhance-
ment techniques (III-E).

For other related extensions (Sec. III-C and Sec. III-D), we
provide standard concepts and refer readers to the related
references for further details.

A. Input data

Since APs were originally proposed to deal with panchro-
matic images [6], their adaptation to other kinds of remote
sensing data becomes quite significant. In particular, the ap-
plication of APs to the classification of multi-channel images
(multispectral and hyperspectral) has become one of the hottest
research topics in this field. The idea is to perform a spatial-
spectral approach for classification by combining rich spectral
information from these data with efficient spatial modeling
capacity of APs.



The standard extension of APs on hyperspectral images was
proposed in [9] by first applying the principal component
analysis (PCA) on the image and then extracting APs from
some first principal components. The advantage of PCA is
that this low-complexity technique can compress most spectral
information from the hyperspectral image into only some
first principal components. Hence, applying APs on these
components may perform a basic spectral-spatial feature ex-
traction of the data. Other alternatives have been proposed
to replace the PCA with the independent component analysis
(ICA) [10], the kernel PCA (KPCA) [11] or other supervised
methods such as the discriminant analysis feature extraction
(DAFE) [12], the non-parametric weighted feature extraction
(NWFE) [13], Sparse Hilbert Schmidt Independence Criterion
and surrogate kernel (HSIC) [14], etc. These methods can
capture more spectral relations among hyperspectral bands and
hence provide better spectral information than the PCA.

Recently, the vector strategy [15] has been investigated
to effectively adapt APs on multispectral and hyperspectral
image. The motivation of that work is to replace the marginal
strategy, i.e. independently applying APs on each image band
(or each component yielded by the aforementioned feature ex-
traction methods) and stacking them to form the extended APs,
with the vector strategy which can simultaneously process all
available bands based on predefined vector-ordering relations.
As a result, tree construction can be done once per multivariate
image and the proposed vector APs (VAPs) become promising
to deal with such hyperspectral data.

While the application of APs to optical remote sensing data
has been strongly focused on, their exploitation to other remote
sensing data is quite limited. One may witness some tentative
work on polarimetric SAR images [16], multispectral image
derived features such as NDVI [17] or edge information [7] as
well as on LiDAR data [17], [18]. This is still an opened topic
for on-going and future research in remote sensing imagery
field.

B. Tree formation

Tree formation is the first principal stage of the AP con-
struction framework (Fig. 1). As described in Sec. II, the
standard APs [6] were computed based on one max-tree and
one min-tree (i.e. both are component trees). Other work
has been proposed to exploit the inclusion tree (i.e. tree of
shapes) [19] in order to form the self-dual APs (SDAPs). The
advantages of using such a tree of shapes are twofold. First,
its self-dual property enables the attribute filtering operators
to simultaneously access and model both dark and bright
regions from the image. And secondly, by using only one
tree of shapes to replace both min-tree and max-tree [6], the
feature dimension of SDAPs is reduced to half of that of APs.
Consequently, SDAPs have been proved to be more efficient
than APs in many research studies [13], [19], [20].

Since the above component and inclusion trees both rely
on an ordering relation of the image pixels, their construction
from multivariate images (e.g. multi- and hyperspectral data)
is not straightforward. That is why the authors in [21] have

recently investigated and proposed to use the partition trees
such as α-tree and ω-tree to compute the α-APs, ω-APs,
respectively. These profiles have been proved to provide fair
performance compared to the standard APs. Moreover, they
offer the possibility to work on multivariate images only using
a single tree. Furthermore, it is also possible to rely on training
samples to perform metric learning so as to provide the basic
elements required for a partitioning tree [22].

C. Node attributes and threshold selection

The selection of tree node attributes as well as their thresh-
olds for filtering on tree plays also an important role. Node
attributes are usually related to the geometrical (such as size,
shape) and statistical features (pixel distribution, texture, etc.)
of the CC corresponding to the node. In the literature, four
attributes have been used in most studies related to remote
sensing image classification: area, standard deviation, moment
of inertia, diagonal length of bounding box.

After deciding which attributes to calculate from nodes, the
setting of their threshold values has been also concerned. Early
work [6], [10], [19] usually set attribute thresholds manually
based on experiments on some specific image data. However,
since those values might be not applicable to other data,
automatic threshold selection has drawn attention from many
researchers. Some interesting studies have been proposed to
automatically compute attribute thresholds using fixed formu-
las [23], [24], supervised approaches [25], [26] as well as
granulometric characteristic functions [27], [28]. Readers are
referred to the mentioned papers for further details about these
attribute selection strategies.

D. Tree filtering

Once the tree is formed and the attributes together with
their thresholds are selected, the next stage is to evaluate each
node in order to filter (i.e prune) the tree. Basically, there are
two filtering rules including the pruning strategy (min, max,
Viterbi decision rules) and the non-pruning strategy (direct,
subtractive rules) [6]. Studies on the effect of different filtering
rules have been done by [20], [29].

E. Post-processing of output profiles

The output AP features, i.e. sequence of filtered images in
Eq. (1), can be directly fed into supervised classifiers such
as SVM or Random Forest for classification task. Such direct
application has provided better performance compared to MPs
[1] in terms of classification accuracy as well as computa-
tional cost. However, since APs still involve quite redundant
information within their high-dimension features, the post-
processing of these profiles to improve their performance
has been addressed in several studies. First and foremost,
many studies have proposed to apply different feature selection
techniques on APs to extract highly informative features and
reduce their dimension. In [11], [12], [24], both linear (PCA,
ICA) and nonlinear methods (ICA, KPCA, DAFE, DBFE,
NWFE, etc.) have been investigated. A general framework
as well as a systematic survey on spatial-spectral approaches



combining APs with these feature selection techniques have
been investigated in [8].

Other work has focused on extra spatial processing of APs
for better characterization of structural and textural informa-
tion from the image content. Recent studies believe that when
dealing with VHR remote sensing images from which regions
and objects become more heterogeneous, APs may not provide
a complete spatial characterization of pixels. Therefore, some
efforts have been proposed to replace each AP sample response
by the histogram or some first-order statistical features of the
local patch around that AP’s pixel position. As a result, the
local histogram-based APs (HAPs) [30], [31] and the local
feature-based APs (LFAPs) [32], [33] have been proposed
and proved to be more efficient for better dealing with local
textures. Then, the extensions of these extra spatial processing
methods on the self-dual profiles (using the tree of shapes) as
well as on hyperspectral images have been provided [32].

Last but not least, we refer readers to some other frame-
works using the sparse representation [34] or the deep learning
approach [35] for post-processing of AP features. Also, some
ensemble methods [36], [37] have been applied to better
exploit and combine AP features to improve the classification
performance.

IV. EXPERIMENTAL STUDY

This section describes our experimental study to evaluate
the performance of the standard APs as well as some of
their improvements and extensions. Supervised classification
has been carried out on both panchromatic and hyperspectral
image data in order to provide a comparative study. We first
introduce the two data sets and the experimental setup. Then,
classification results will be provided.

A. Data description
1) Reykjavik data set: The first data set is a panchromatic

image of size 628 × 700 pixels acquired by the IKONOS
Earth imaging satellite with 1-m resolution in Reykjavik,
Iceland. This data consists of six thematic classes including
residential, soil, shadow, commercial, highway and road. The
image was provided with already-split training and test sets
(22741 training samples and 98726 test samples). The input
image together with its thematic ground truth map for testing
and training sets are shown in Fig. 2(a).

2) Pavia University data set: The second data set is the
hyperspectral image acquired by the ROSIS airborne sensor
with 1.3-m spatial resolution over the region of Pavia Uni-
versity, Italy. The image consists of 610 × 340 pixels with
103 spectral bands (from 0.43 to 0.86 µm) and covers nine
thematic classes: trees, asphalt, bitumen, gravel, metal sheets,
shadows, meadows, self-blocking bricks and bare soil. For this
image, 3921 training samples and 42776 test samples were
split for classification task. The false-color image (made by
combining the bands 31, 56 and 102), the ground truth map
and the training set are shown in Fig. 2(b). As previously
discussed, for this data set, we first performed the PCA on the
image and the first four PCs (involving more than 99% of the
total variance) were preserved for our experiments.
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Commercial

Highway

Road
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Trees
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Fig. 2. Two data sets used in our experimental study. (a) The 628 × 700
Reykjavik data (left to right: panchromatic, thematic ground truth with 6
classes and training set); (b) The 610 × 340 Pavia University data (left to
right: false-color image made by bands 31-56-102, ground truth including
nine thematic classes and training set).

B. Setup

Supervised classification was conducted on the two data sets
using the random forest classifier [38] with 100 trees. The
number of variables involved in the training was set to the
square root of the feature vector length. In order to evaluate
and compare classification accuracy of different approaches,
overall accuracy (OA), average accuracy (AA), and kappa
coefficient (κ) have been taken into account. For attribute
filtering, we exploited two attributes including the area and
the moment of inertia. Ten area thresholds were adopted for
the Reykjavik data as proposed by several papers [20], [39],
[40]. For the Pavia University data, fourteen thresholds were
automatically computed according to [24]. We have:

λa,Rey = {25, 100, 500, 1000, 5000, 10000,
20000, 50000, 100000, 150000},

λa,Pav = {770, 1538, 2307, 3076, 3846, 4615, 5384,
6153, 6923, 7692, 8461, 9230, 10000, 10769}.

Next, the manual settings used in many studies [9], [13], [15]
were adopted for the moment of inertia attribute as follows:

λi,Rey = λi,Pav = {0.2, 0.3, 0.4, 0.5}.



In the following subsection, we report and compare the clas-
sification results yielded by the APs generated from different
kinds of tree including: the max-tree (AP-maxT), the min-tree
(AP-minT), one max-tree and one min-tree (standard APs)
[6], the SDAPs [19], the α-APs and ω-APs [21]. We also
provide the results of some effective post-processing tech-
niques including the HAPs/HSDAPs [30], LFAPs/LFSDAPs
[32] and the deep learning approach (deep-APs) [35]. Then,
for the hyperspectral Pavia data, VAPs [15] are evaluated as
well. Here, we perform standard implementation as well as
equivalent parameter configuration of these methods to ensure
a fair comparison.

C. Results

Tables I and II report the classification results of the Reyk-
javik and the Pavia data, respectively, yielded by the above
mentioned methods. The calculation of each method’s feature
dimension can be consulted from the related papers. Here, we
provide some remarks in terms of classification performance.
For both data sets, we observe that those extension methods
can provide extra classification accuracy compared to the
standard APs but behave differently for each image.

TABLE I
CLASSIFICATION RESULT OF THE REYKJAVIK DATA OBTAINED BY
DIFFERENT METHODS USING RANDOM FOREST WITH 100 TREES.

Method Dimension Classification result
OA (%) AA (%) κ

PAN 1 63.21 53.58 0.5237
AP-maxT 16 73.31 68.23 0.6597
AP-minT 16 72.37 64.63 0.6449
AP 30 82.02 78.42 0.7730
α-AP 16 77.38 70.19 0.7101
ω-AP 16 76.68 70.23 0.7024
SDAP 16 86.06 82.36 0.8237
HAP 180 84.67 81.89 0.8055
HSDAP 96 86.05 81.67 0.8234
LFAP 60 87.44 85.21 0.8411
LFSDAP 32 89.17 87.08 0.8631
Deep-AP 1024 86.09 83.01 0.8230

For Reykjavik image, efforts on changing the tree formation
have provided some considerable effects. Indeed, the α-APs
and ω-APs could outperform APs on each single max-tree
or min-tree but still falls below the standard APs. Then, by
using the tree of shapes, SDAPs significantly improved the
accuracy with approximately 4% in OA (86.06% compared
to 82.02%) and 5% in κ (0.824 compared to 0.773). Next, by
post-processing the output profiles, techniques like HAP, LFAP
and deep-AP have also provided important improvements.
Consequently, the best classification result was obtained by
using the local feature-based profiles with OA = 87.44% (κ =
0.841) using min-tree and max-tree (LFAP) and OA = 89.17%
(κ = 0.863) using the tree of shapes (LFSDAP). Compared to
the standard APs, an OA enhancement of 5.42% and 7.15%,
respectively, was achieved.

For the hyperspectral Pavia data, we observe that APs
built from different tree structures yielded different behaviors

TABLE II
CLASSIFICATION RESULT OF THE PAVIA UNIVERSITY DATA OBTAINED BY

DIFFERENT METHODS USING RANDOM FOREST WITH 100 TREES.

Method Dimension Classification result
OA (%) AA (%) κ

4 PCs 4 70.62 80.37 0.6375
AP-maxT 80 83.66 88.52 0.7936
AP-minT 80 81.48 86.11 0.7596
AP 152 91.66 93.96 0.8891
SDAP 80 94.28 93.96 0.9234
α-AP 80 94.52 94.11 0.9293
ω-AP 80 96.10 95.66 0.9403
HAP 912 94.14 94.40 0.9234
HSDAP 480 94.53 92.64 0.9266
LFAP 304 93.57 93.50 0.9149
LFSDAP 160 95.25 94.49 0.9363
VAP 152 96.30 95.64 0.9500
Deep-AP 1024 99.02 98.54 0.9790

compared to the Reykjavik image. This time, the α-APs and
ω-APs outperformed both APs and SDAPs. In particular, by
using the ω-tree, one can achieve an OA = 96.10%, i.e. 4.44%
and 1.82% better than standard APs and SDAPs, respectively.
For post-processing methods, VAPs and deep-APs provided
better performance compared to HAPs and LFAPs. These
methods have been proved to be efficient within a spatial-
spectral context usually applied to hyperspectral data. As a
result, the best classification accuracy was achieved by deep-
APs with OA = 99.02% and κ = 0.979. Compared to the
standard APs, an enhancement of 7.36% in OA and 9% in κ
was adopted.

V. CONCLUSION

We have conducted a survey on recent developments from
morphological attribute profiles in the context of remote
sensing image classification. Three key components have
been focused including the AP adaptation on multi-channel
image data, the use of different tree representations and the
various AP post-processing procedures. Experimental study
on one panchromatic and one hyperspectral image has been
performed to provide a general evaluation of different methods
compared to the original framework. This paper may serve as
an overview of AP recent advances to readers as well as a
guidance to researchers working on this framework and its
alternatives within their work. We believe the exploitation and
adaptation of APs in remote sensing imagery still remains an
open research topic for on-going as well as future work.
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filtering for remote sensing image classification,” IEEE J. Sel. Topics
Appl. Earth Observations Remote Sens., vol. 11, no. 1, pp. 249–256,
2018.

[40] P. Ghamisi, R. Souza, J. A. Benediktsson, X. X. Zhu, L. Rittner, and
R. A. Lotufo, “Extinction profiles for the classification of remote sensing
data,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 5631–5645,
2016.


