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The motivation of this paper is to conduct a comparative study on remote sensing image classification using the morphological attribute profiles (APs) and feature profiles (FPs) generated from different types of tree structures. Over the past few years, APs have been among the most effective methods to model the image's spatial and contextual information. Recently, a novel extension of APs called FPs has been proposed by replacing pixel gray-levels with some statistical and geometrical features when forming the output profiles. FPs have been proved to be more efficient than the standard APs when generated from component trees (max-tree and min-tree). In this work, we investigate their performance on the inclusion tree (tree of shapes) and partition trees (alpha tree and omega tree). Experimental results from both panchromatic and hyperspectral images again confirm the efficiency of FPs compared to APs.

INTRODUCTION

Since their first introduction to remote sensing field in early 2010's, morphological attribute profiles (APs) [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF] have been widely used thanks to their powerful multilevel modeling of spatial information from the image content and their efficient implementation via tree structures. By well preserving important spatial properties of regions and objects such as contours, shape, compactness, etc., APs characterize effectively the contextual information of the observed scene, hence relevant for remote sensing image analysis, especially for classification task. In the past few years, a great number of research studies have been devoted to improve their classification performance. Some have focused on modifying the AP construction framework [START_REF] Dalla Mura | Self-dual attribute profiles for the analysis of remote sensing images[END_REF][START_REF] Bosilj | Attribute profiles from partitioning trees[END_REF]. Other have proposed to post-process the output profiles to increase their description capacity [START_REF] Demir | Histogram-based attribute profiles for classification of very high resolution remote sensing images[END_REF][START_REF] Pham | Local feature-based attribute profiles for optical remote sensing image classification[END_REF], etc.

It is worth noting that in all standard AP-based methods, the output profiles are a set of filtered images obtained by the tree-based attribute filtering process. Hence, they are still the gray values of the connected components (CCs) w.r.t the nodes of the filtered trees. In order to provide better characterization of the CCs, the feature profiles (FPs) [START_REF] Pham | Feature profiles from attribute filtering for remote sensing image classification[END_REF] have been recently developed. Instead of reconstructing the filtered image using pixel gray values from the pruned tree as in APs, FPs extract some statistical features (i.e. mean, standard deviation, entropy, etc.), together with some geometric and shape information (i.e. area, elongation, diagonal length of bounding box, etc.), hence involving more complete information. The superior performance of FPs has been validated compared to the standard APs, i.e. constructed from component trees (max-tree and min-tree). In the present work, our objective is to investigate this behavior on other tree structures, in particular the inclusion tree (tree of shapes) and partition trees (alpha tree and omega tree). This comparative study helps to confirm the effectiveness of this promising extension.

In the remainder of this paper, the backgrounds of APs and FPs are revised in Section 2. In Section 3, we describe the experimental setup and provide comparative results of supervised classification conducted on both panchromatic Reykjavik image and hyperspectral Pavia University data. Section 4 finally concludes the paper and discusses some further work. 

MORPHOLOGICAL ATTRIBUTE PROFILES AND FEATURE PROFILES

Morphological Attribute Profiles

APs are multilevel image description tools obtained by successively applying a set of morphological attribute filters (AFs) [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF]. Unlike usual image filtering operators which are directly performed on pixel level, AFs work on CC level based on the concept of image connectivity.

In other words, an AF is a filtering operator applied on the tree's node level with regard to a specific attribute characterizing the size, shape, or other properties of objects present in the image. Given a grayscale image X : E → Z, E Z 2 , the standard generation of APs on X is achieved by applying a sequence of AFs based on a min-tree (attribute thickening operators {φ k } K k=1 ) and a max-tree (i.e. attribute thinning operators {γ k } K k=1 ). The AP descriptor of each pixel p in the definition domain of X is written:

AP(p) = φ K (X) (p), . . . , φ 1 (X) (p), X(p), γ 1 (X) (p), . . . , γ K (X) (p) . (1) 
where φ k (X) is the filtered image obtained by applying the attribute thickening φ with regard to the threshold k. Similar explanation is made for γ k (X). As observed, the feature dimension of AP(p) is (2K + 1).

Feature Profiles

In order to better characterize the region/object enclosed by the CC (i.e. which corresponds to a filtered tree's node), node features are extracted instead of the node's gray level in the recently proposed FPs [START_REF] Pham | Feature profiles from attribute filtering for remote sensing image classification[END_REF] . Fig. 1 provides an overview of how the generation of FPs differs from the standard AP technique. In fact, after obtaining the pruned tree by an attribute filtering φ k , instead of reconstructing the filtered image using the nodes' gray levels, different features are outputed to form FPs.

Specifically, for each pixel p, AP of p obtained by an arbitrary AF φ k is the gray value X (p), where X = φ k (X) is the image reconstructed from the filtered tree (cf. Eq (1)). Now, let Γ p (X) be the CC of X containing p and let f be a feature or an attribute, i.e. a function admitting a CC and outputting a real value, to be extracted. The FP of p will be f [Γ p (X )]. More formally, the generation of FPs w.r.t the feature f based on min-tree and max-tree are defined as follows:

FP f (p) = f Γ p (φ K (X)) , . . . , f Γ p (φ 1 (X)) , X(p), f Γ p (γ 1 (X)) , . . . , f Γ p (γ K (X)) . (2) 
Unlike in AP technique where only one profile is produced from a pruned tree, several features can be simultaneously extracted and stacked to form the final FP:

FP f 1 +...+fn (p) = FP f 1 (p), . . . , FP fn (p) .
(3)

APs and FPs on other trees

Instead of calculating the APs based on both max-tree and min-tree image representation as in the original work [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF], other implementations have been proposed using the inclusion tree (tree of shapes) [START_REF] Dalla Mura | Self-dual attribute profiles for the analysis of remote sensing images[END_REF] (i.e. selfdual APs or sd-APs) as well as the partition trees such as α-tree and ω-tree to produce α-APs, ω-APs, respectively [START_REF] Bosilj | Attribute profiles from partitioning trees[END_REF]. The advantage of these trees is that their self-dual property enables the attribute filtering to simultaneously access and model both dark and bright regions from the image. Thus, only one tree per image is required instead of both max-tree and min-tree as in [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF]. The dimension of their APs is therefore reduced by half. Moreover, partition trees offer the possibility to work on multivariate images only using a single tree, which is not feasible by exploiting component or inclusion trees [START_REF] Bosilj | Attribute profiles from partitioning trees[END_REF].

In this work, those different tree structures are also adopted for the implementation of FPs. The so-called self-dual FPs (sd-FPs), α-FPs, ω-FPs, respectively, are defined by generating FPs from the tree of shapes, αtree and ω-tree. The motivation is now to investigate the performance of these FP alternatives compared to their AP counterparts.

EXPERIMENTAL STUDY

Supervised classification was performed using both panchromatic and hyperspectral remote sensing images in our experiments. We first introduce the two data sets and the experimental setup. Then, the comparative evaluation of classification results achieved by APs and FPs based on different trees will be provided. bands (from 0.43 to 0.86 µm) and covers nine thematic classes: trees, asphalt, bitumen, gravel, metal sheets, shadows, meadows, self-blocking bricks and bare soil. From this image, 3921 training and 42776 test samples were split for classification experiments.

Data sets and experimental setup

For attribute filtering, we exploited two attributes including the area and the moment of inertia. Then, both statistical (standard deviation) and geometrical (area) features were extracted to form FPs. We note that other statistical or geometrical features could be extracted as well. Here, standard deviation and area were selected thanks to their stable performance from lots of our experiments. The attribute threshold values were set as in [START_REF] Pham | Feature profiles from attribute filtering for remote sensing image classification[END_REF]. For the hyperspectral Pavia image, the first four PCA components were exploited as in most of related work. To perform supervised classification, the output APs and FPs generated from different tree structures (component, inclusion and partition trees) were fed into the random forest classifier [START_REF] Liaw | Classification and regression by randomForest[END_REF]. The number of trees was set to 100. Standard implementation as well as equivalent parameter configuration were performed to ensure a fair comparison. Finally, to report the classification performance, the overall accuracy (OA) and the kappa coefficient (κ) were considered.

Comparative results and discussion

Tables 1 and2 report the classification results of the Reykjavik and the Pavia data, respectively, yielded by APs and FPs over different trees. One general remark is that these methods are quite sensitive to the types of tree and attribute to use but in most of the cases, FPs provided better results than APs. The best performance for the Reykjavik image was achieved by FPs from αtree with an OA equal to 88% and for the Pavia image, it was obtained by FPs from component trees with 96.5%. Another important remark is that when using the moment attribute, FPs could consistently and significantly improve the classification accuracy compared to APs, for both data and for all tree kinds as well. When filtering by the area, FPs outperformed APs from all trees for Reykjavik image. For Pavia, FPs are more suitable when using the component trees and the α-tree while the other two trees are in favor of APs. To summarize, the comparative results from both tables have confirmed the effectiveness and good potential of FPs compared to APs.

CONCLUSION

We have revisited the principles of APs [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF] and FPs [START_REF] Pham | Feature profiles from attribute filtering for remote sensing image classification[END_REF] with the aim to conduct a comparative study of their performance on remote sensing image classification. Our experiments have taken into account various tree structures for their generation including the component, inclusion and partition trees. Experimental results on both panchromatic and hyperspectral images have confirmed the superior performance of FPs and thus revealed a high potential of this extension. Future work may focus on investigating FPs on other kinds of remote sensing data or combining them with deep neural networks.
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Fig. 1 :

 1 Fig. 1: Generation of the APs and FPs from a grayscale image X w.r.t. the attribute filtering φ k . Here Γ p denotes the connected component (CC) containing p; X = φ k (X) is the filtered image; and f is the feature (attribute) to be extracted.

Fig. 2 :

 2 Fig. 2: Two experimental data: (a) The Reykjavik data (left to right: panchromatic, training samples and test samples); (b) The Pavia University data (left to right: false-color image made by bands 31-56-102, training samples and test samples).

Table 1 :

 1 Comparison of classification performance on the Reykjavik data yielded by APs and FPs from different trees.

	Method	Area OA	Moment κ OA	Both κ OA	κ
	AP	81.5 0.767 72.5 0.656 82.5 0.779
	FP	85.3 0.813 79.4 0.741 86.1 0.823
	sd-AP	82.5 0.780 62.5 0.530 82.3 0.778
	sd-FP	83.1 0.786 80.3 0.751 84.9 0.808
	α-AP	77.7 0.716 71.6 0.636 76.9 0.707
	α-FP	85.3 0.814 86.2 0.823 88.0 0.848
	ω-AP	77.3 0.709 75.6 0.691 77.0 0.708
	ω-FP	85.7 0.815 86.0 0.821 86.2 0.824

Table 2 :

 2 Comparison of classification performance on the Pavia data yielded by APs and FPs from different trees.

	Method	Area OA	Moment κ OA	Both κ OA	κ
	AP	93.1 0.908 78.8 0.732 93.3 0.912
	FP	96.5 0.954 84.7 0.804 96.4 0.953
	sd-AP	91.8 0.892 75.7 0.694 92.5 0.901
	sd-FP	91.4 0.888 82.7 0.778 91.7 0.891
	α-AP	90.7 0.879 88.6 0.853 92.9 0.907
	α-FP	94.7 0.923 94.9 0.926 95.3 0.930
	ω-AP	95.5 0.941 88.4 0.851 94.8 0.932
	ω-FP	91.5 0.873 95.4 0.933 92.6 0.889
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