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Abstract

Charged Coupled Devices (CCDs) and subsequently Complementary metal–

oxide–semiconductor (CMOS) detectors revolutionized scientific imaging. On

both the CCD and CMOS detector, the generated images are degraded by in-

evitable noise. In many applications, such as in astronomy or for satellite track-

ing, only unresolved object images are available. Strategies to estimate the

center of the non-resolved image their results are affected by the detector noise.

The uncertainty in the center is classically estimated by running prohibitively

costly Monte Carlo simulations, but in this paper, we propose analytic uncer-

tainty estimates of the center position. The expressions that depend on the pixel

size, the signal to noise ratio and the extension of the object signal relative to

the pixel size are validated against rigorous Monte Carlo simulations with very

satisfying results. Numerical tests show that our analytic expression is an effi-

cient substitute to the Monte Carlo simulation thereby reducing computational

cost.
Keywords: Space Situational Awareness

1. Introduction

Space object observation heavily relies on Charged Coupled Devices (CCDs)
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and Complementary Metal–Oxide–Semiconductor (CMOS) detectors. For im-

ages of objects that are too far away from the sensor and or too small for the

optic setup, only non-resolved images are available. Fig.2 shows a perfectly

noiseless non-resolved object image. Physically speaking, the bright dot corre-

sponds to the first maximum of the diffraction pattern, for a round aperture,

the so-called Airy disk. The main maximum contains over 80 percent of the

whole light received from the object. Higher order maxima are normally not

discernible and hence not visible on the final image.

As the sensing process, including the photon reception, the photo-electron re-

lease and the read-out process, is taking place on the quantum level, it is by

nature a stochastic process. This means that the image generated by a sensor

differs across repeated experiments despite having exactly the same amount of

light entering the detector. Classically, the detector response has been modeled

as a Poisson process with the expectation value and variance corresponding to

the nominal irradiation value entering the detector [1]. An example of four syn-

thetically generated representations of the same irradiation entering the detector

are plotted in Fig. 1. Besides the stochastic sensing process of the irradiation

received from the object, there are two additional types of noise sources that

corrupt the object images and impact object image detection and position esti-

mation. One source is the other external light sources that enter the detector

while the second source comes from noise generated by the detector itself. Given

that the detector is never at zero Kelvin, thermal motion leads to so-called dark

noise, that is even present when the shutter is not opened. Furthermore, there

is the noise generated by the read-out process itself and the truncation error, as

only integer pixel values can be recorded in ADUs. Further image processing

step such as background subtraction introduce additional noise sources. Exten-

sive description of CCD functioning is presented in [2], a good CCD signal noise

generation is available in [3].

In many applications using images featuring non-resolved signals, such as de-

tection and tracking of stellar objects or satellites, or tracking of blood cells in

microscopic imaging for example in medicine or biology, object detection and
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position estimation beyond the pixel size level is challenging [4, 5, 6, 7, 8, 9, 10].

Tracking algorithms rely on the precise estimation of the signal position at the

subpixel level. This is usually done via determining the center, often called cen-

ter, of the object signal. The center is then assumed to be the object position

at the mid-exposure time. Because of the image noise and the stochastic nature

of the detection, the center location is not straightforward. In practice, there

are two main classes of techniques to find the center of a non-resolved digital

object image: one is to fit a two-dimensional function over the pixel values of

the object images and its surrounding pixels while the second finds the centroid

of the object image [6, 1, 3]. In the former case, for slightly distorted object im-

ages, a Gaussian function fitting is often performed using a maximum likelihood

estimator[11, 12, 13, 14, 15]. However, Gaussian fitting is ill-suited to fit object

images, which significantly deviate from the Gaussian shape, respectively the

Airy disk. Object shapes can significantly deviate from the Gaussian shape due

to camera distortion, however, often times models can be applied to correct for

those in the image processing and due to atmospheric turbulence in the case of

ground-based observations and very short exposure times. Shape independent

centroiding methods include the so-called center of mass or also named centroid

methods. They produce reliable results for highly distorted images, for which

surface fitting often fails. Both methodologies require that the background of

the images has been subtracted. Description of image processing pipelines for

astrometric observations of near-Earth objects is discussed in [16, 6, 17, 18].

As with any sensing and estimation problem, the estimated center differs for

different representations of the same irradiation reaching the detector. This is

illustrated in Fig. 1 and Fig. 3. Fig. 1 shows the same object signal in four

different realizations. Fig. 3 shows the bar plot of pixel values, the fitted Gaus-

sian surface and the centers that have been determined for identical irradiation

reaching the detector. For the applications, it is of utmost interest to have a

representation of the uncertainty associated with the center. The variance in

the brightness of a pixel value can be computed using the inverse of the signal

to noise ratio [2, 3]. On the other hand, the variance in the center position is
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not just a straightforward estimation problem.

(a) Signal realization 1 (b) Signal realization 2

(c) Signal realization 3 (d) Signal realization 4

Figure 1: Four realizations of the same noiseless signal (cf Fig. 2)

As a result, center uncertainties are often determined with costly Monte

Carlo methods based on simulated images. This computationally intensive pro-

cess is sought to be avoided.

The major contribution of this paper is the derivation of an analytical approxi-

mation of center position variance that does not require any Monte Carlo simu-

lations. The derived expression is thoroughly compared to alternative expensive

methods such as Monte Carlo. The derived expressions are also compared to

existing analytical expressions [19, 20, 21]. All the tests show that the estima-

tion of the center variance is a good approximation of the Monte Carlo results

even for relatively small and cropped signals. Numerical experiments show that

the derived expression is valid for signals as small as 4 pixels per FWHM and

an SNR at 5. In this work, it is also shown that the previous estimates of this

lower bound systematically underestimate the true variance, based upon the
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Figure 2: Noiseless signal

comparison with Monte Carlo simulations. For object images, which are spread

over less than four pixels, a Bayesian formulation of the problem is introduced.

Realistic bounds on the object image center position on the sub-pixel level are

provided based on the pixel scale and the signal to noise ratio of the brightest

pixel. Finally, a look-up table with reference values is provided. Preliminary

work on this topic has been published by the authors in [22].

The paper is organized as follows: In the second section, we describe the cen-

ter estimation process of a noisy non-resolved object image on a pixel grid using

a Gaussian fitting. In the third section, the improved estimation of the center

position uncertainty is shown and analytical expressions are derived. Based on

the derivations, the fourth section provides the validation of the methodology

via comparison with Monte Carlo simulations and Bayesian estimation. In the

fifth section, application guidelines for the variance computation in observed

image frames are provided. The findings are summarized in the conclusions. In

Appendix B, a look-up table for fast application in observations can be found.
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(a) Signal realization 1 (b) Signal realization 2

(c) Signal realization 3 (d) Signal realization 4

Figure 3: Four realizations of the same signal (cf Fig. 2) with fitted Gaussians. The red line

indicates the position of the center in each case

2. Overview of Object Image Centroiding in Noisy Images

In this section, the process of finding an object image center in the presence of

noise is summarized. First, the expressions for the signal in the pixels containing

the object image are derived. Further details on the derivation of the CCD

equation and advances in the presence of ambiguous pixels can be found in

[23, 22]. Secondly, the process of the maximum likelihood estimation is shown.

Details on center determination techniques via Gaussian fitting can be found in

[11, 12, 13, 14, 15].
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2.1. Signal of the Object Image Pixels

The Gaussian or other parametrized surface is fitted to the signal after back-

ground subtraction. The total signal S of all pixels containing the object image

can be written as [22]:

S =

npix∑
i

Si +Ri −Best (1)

where npix is the number of pixels containing the object image (i.e. the diffrac-

tion Airy disk). The pixels are indexed by i. Si is the truncated signal distribu-

tion of each pixel as defined in [22]. The truncation process is due to the fact

that only integers can be reported from the CCD during the electron to ADU

conversion. Defining the gain g, one ADU corresponds to g photoelectrons. Ri

is the readout noise. Best is the estimated background that is subtracted.

Best is the estimated background defined in [22, 3] as :

Best =
1

nB

nB∑
i

Si +Ri (2)

with nB is the number of pixels used for the background estimation.

Eq. 1 is the sum of random variables that follow different distributions. The

following assumptions are made for simplification in order to approximate Eq.

1 as a sum of Gaussian random variables. Assuming that the gain is small

or alternatively that the CCD resolution is extremely high (hypothesis 1) the

truncated Poisson Si can be interpreted as a Poisson random variable with a

good level of accuracy. For the actual signal on the CCD, it can be assumed

that the mean signal intensity is such that λext,i + λobj,i + λD,i ≫ 1 ∀i (hy-

pothesis 2). The use of the Central Limit Theorem can account for modelling

both, the signal and the background as normal distributions: Si ∼ N (λext,i +

λobj,i + λD,i,
√
λext,i + λobj,i + λD,i) and Best ∼ N (λext,i + λD,i,

√
λext,i+λD,i

nb
).

In the latter, the number of pixels used in the background determination nB

is assumed to be large (hypothesis 3), which is advantageous for precise back-

ground determination, as shown in Eq.2. Note that in order to preserve the

7



homogeneity of S, we denote V ar(S) = λS,i × 1s, where 1s only carries the unit

of energy. Ri can be taken to be Gaussian as well [3, 2], and is assumed to

be constant over the signal pixels (hypothesis 4). Whereas the latter is a good

approximation for a CCD, the assumption might be violated for object images

spread out over a large number of pixel on a CMOS detector. Finally under the

assumption previously stated, the effective signal in the ith pixel Si as in Eq. 1

is the sum of three independent Gaussian random variables:

Si = λS,i − λext,i + λD,i +N

(
0, 1s ×

√
λS,i +

λext,i + λD,i

nb
+ σ2

R

)
, (3)

where σ2
R is the variance of the readout noise at the ith pixel. Note that the

noise model presented only considers noise sources due to the detector (CCD

or CMOS). Other uncertainty sources such as the atmosphere turbulence are

neglected. Nevertheless, if the noise due to the atmospheric turbulence (or any

additional noise ) is modeled by an independent Gaussian noise of amplitude

σatmo, the signal distribution is Gaussian and therefore the work presented can

be used replacing σ2
R with σ2

R +σatmo. Additionally, for extremely faint signals,

the Poisson noise may not be well approximated by a Gaussian random variable,

in this case, a sum of Gaussian and Poisson noise should be considered. This

case is out of the scope of this work and in the following we solely consider pure

Gaussian noise. Using a Maximum Likelihood Estimator, a Gaussian curve is

fitted to the signal:

G = Ae(−
1
2 (c1(xi−x0)

2+2c3(xi−x0)(yi−y0)+c2(yi−y0)
2)). (4)

noting θ = (A, x0, y0, c1, c2, c3) where A is the amplitude, x0 and y0 the center

of the fitted Gaussian on the pixel grid and c1, c2 and c3 the coefficients of the

inverse covariance matrix. The position of the object image on the pixel grid

then is denoted by x0, y0. The Gaussian fitting can be done for instance using

algorithm from [19]
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3. Uncertainty Quantification of the signal center

In this section, we derive analytical uncertainty estimates of the signal center

estimation. The Gaussian fitting can only be applied to a specific realization of

the stochastic object image generation process according to the distributions of

the terms in Eq.2. Under the assumptions discussed in the previous section, the

signal distribution is a sum of Gaussian random variables, Eq.3. As discussed

in the introduction and illustrated Fig 1 there, different realizations lead to dif-

ferent centers. Fig.3 shows the 3D representation of noise affected images with

the fitted Gaussian surface.

We present two common approaches to quantify the uncertainty in the esti-

mation of the parameters : a maximum likelihood estimation as it is carried

in [19, 24] or a Bayesian approach [25]. Both methods tackle a problem from

a different angle so the uncertainty in the estimation are in general different.

The maximum likelihood estimation focuses on estimating the deterministic pa-

rameters θtrue and then estimates the uncertainty in the estimator θ̂. On the

contrary, with the Bayesian approach, one considers the distribution of Θ for a

given set of measurements. While in the case of uniform priors, the maximum

a posteriori derived from the Bayesian posterior distribution and the ML are

equivalent, the uncertainty are only equivalent asymptotically (if the number

of pixels is large enough ) as a consequence of the Bernstein Von Mises theorem.

This difference will be illustrated for small enough signals when comparing the

Monte Carlo verification and the Bayesian approach for quantifying uncertain-

ties .

When fitting a Gaussian surface to the signal, one needs to estimate θ, which

holds the six Gaussian surface parameters, namely, A, c1, c2, c3 along with the

center x0, y0. However, often in imaging, only the center, comprising of two pa-

rameters are of major interest. Hence, the first four parameters may be treated

as nuisance parameters. The nuisance parameter estimation not only influences

the nominal values of the remaining quantities of interest, but also affects the
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variance in the parameters of interest. Uncertainty in their estimation leads to

increased uncertainty in the parameters of interest. As stated in [26] and [27]

the variance with nuisance parameters is always larger than without nuisance

parameters.

3.1. Rao-Cramer lower bound

Under regularity assumptions on the likelihood function, for any unbiased

estimator, there exists a variance lower bound [28]. In our case, the maximum

likelihood(ML) estimator asymptotically reaches this lower bound [28, 27] and

therefore this lower bound can be used as an approximation of the center position

variance. We define the Fisher information as

F (θ) = E
[

∂2l

∂2θiθj

]
, (5)

where E denotes expected value with respect to the likelihood. As explained in

[28], the Fisher information corresponds to the average amount of information

available in the sample. The Fisher information as derived in [19] is given in

Appendix C. The Rao Cramer lower bound (RCLB) variance is related through

the following inequality to the Fisher information:

V ars1..sn(θ̂) ≥ F (θ)−1. (6)

Which means that the variance of the Rao Camer lower bound is always larger

or equal to the inverse of the Fisher information. If the number of pixels used

in the ML estimation is sufficiently large, the ML estimator converges toward a

Gaussian distribution ( [24, 27]):

θ̂ ∼ N (θtrue, F (θ)−1). (7)

In that case, the lower bound will be reached, the inequality then becomes an

equality and a good analytical estimation of the RCLB variance becomes avail-

able.

In many cases, simple analytical expressions of the Fisher information are not
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available, but in our case, previous works [20, 19] have managed to derive such

expression under the following assumptions:

1. Flat noise: σ is constant over all pixels of the signal.

2. The profile is well sampled: the pixel size is constant and small compared

to the object image size. In other words we have δx, δy ≪ 1
c0.51

, 1
c0.52

where

δx and δy are the CCD pixel dimensions.

3. The entire profile of the object image is sampled

4. The irradiance at the center of the pixel corresponds to the received irra-

diance for the same pixel. In other words: ξn = δxn and ηm = δym.

5. The signal distribution is Gaussian within each pixel

Assumption 5 and 1 are tied together since the noise intensity can only be

constant when the noise is Gaussian distributed.Note that assumption 4 is not

explicitly stated in [20, 19] and it is only used when deriving an approximation

of the RCLB and does not apply to the MLE results. The profile of the object

image when approximated with a Gaussian is theoretically infinitely wide spread

over the whole pixel grid. The exact expression for the Fisher information as

derived in [19] and can be found in Appendix C. The Fisher information terms

can be decomposed into sums of the form:
npix∑

m,n=0

Rn,mξinη
j
m with j, i ≤ 4 (8)

where Rn,m =
δ2xδ

2
yE

2
n,m

2σ2 and

En,m = exp
(
− 1

2

(
c1(xn − x0)

2 + 2c3(xn − x0)(ym − y0) + c2(ym − y0)
2
))

, ξn =

xn − x0 and ηm = ym − y0.

The task now is to compute the sums. Their derivation can be involved so

most of the derivation is left in Appendix E and Appendix D while this para-

graph focuses on the assumptions made to carry out the calculations. Under

the hypotheses one through four above, [19] the sums can be approximated with

their corresponding integrals; this approach was already used in [21]. This ap-

proximation is justified by classical results on Riemann integrals and accurate
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up to the second order in δx, δy, the pixel size in x and y directions. However,

it is found that the assumptions one through four are not well justified for faint

or truncated signals, for instance when the signals overlap or when a sub-frame

technique has to be used. Assumption one is significantly violated in general,

since as shown in section 2.1, the noise squared is approximately the sum of a

Poisson noise that scales as the signal intensity and a readout noise that is con-

stant across the image. In [19] both limiting cases where the noise is constant

and when it is purely Poisson are investigated. In this work we only consider

the constant noise case that is not valid for large signals or with low readout

noise. Hypothesis two is not valid for undersampled object images where the

pixel scale is too large. The third assumption used in [19] is often challenging to

comply with in practice. Firstly, when there is more than one object image in

the whole observation frame, the object image is cropped over a finite number of

pixels. Furthermore, the background necessarily changes across the domain and

clashes with hypothesis one. In practice, a sub-frame technique with limited

size sub-frames is used and hence assumption three is violated. Assumption 4

is in general violated. A priori, the center position has no reason to be in the

center of a pixel. This is also confirmed by real observations [18]. In general,

we have ηm = uy + δym and ξn = ux + δxn, where ux and uy ∈ [0, δx
2 )× [0, δx

2 ).

In order to relax the assumptions to better fit the conditions of actual observa-

tions, a truncated signal is assumed not symmetric with the pixel grid, avoiding

assumptions three and four, while keeping assumptions one, two and five.

Denoting a and b as the cropping boundaries (ie. the portion of the considered

signal lies in the rectangle [−a; a]× [−b; b]), it is further assumed that a
√

D
c2

≫ 1

and b
√

D
c1

≫ 1. Note that D = c1c2 − c23. Due to this unsymmetrical distribu-

tion of the pixels around the center of the object and the cropping around the

center of the object image, the substitution of sums with their integrals is only

accurate up to the first order in δx, δy for some terms of the Fisher information.

In order to get improved analytical expressions for Eq. 10, ux and uy are un-
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known a priori. They are modeled with a uniform distribution U [0, δx
2 ] (resp.

U [0, δy
2 ]) [21] and the sums are approximated with its corresponding integral.

A change of variable yields the following approximation for
∑

n

∑
m Rn,mξinη

j
m

with a second order accuracy in the pixel size δx,y :

∑
n

∑
m

Rn,mξinη
j
m ≈ Jxiyj =

∫ a+ux

−a+ux

∫ b+uy

−b+uy

xiyje(−(c1x
2+2c3xy+c2y

2))dxdy

(9)

This approximation is key to derive an analytical expression for the RCLB. The

calculations in the rest of this section aim at deriving analytical expressions for

Jxiyj . Using Eq. 9, the Jxiyj are then injected in the analytical expression for

the Fisher Information Eq. C.1 from which the RCLB can be derived.

Note: The Fisher information computed in [19] only uses the constant terms in

δ (order 0th). Unfortunately, this approximation leads to a covariance matrix

where the position parameters (x0, y0) and the nuisance parameters appear to

be uncorrelated, which we know is untrue. In the appendix it is shown that, in

general
npix∑
m=0

Rmξinη
j
m =

∑
n

∑
m

Rn,mξinη
j
m = 0 + ϵ(ux, uy), if i+ j is odd, (10)

with ϵ ∝ δx,y. The sum in Eq. 10 is equal to zero, when the signal/object image

is uncropped or ux and uy are non zero. Because we do assume a cropped sig-

nal, all the terms, where i+j are even and when i+j are odd they are non-zero.

Derivation of analytic expression of Jxiyj (Eq. 9) , when i+ j is odd

We define

fi,j(x, y) = xiyje(−(c1x
2+2c3xy+c2y

2)) (11)

using the symmetries of fi,j , we have
∫
[0,a−ux]×[0,b−uy ]

fi,j(x, y)dxdy = −
∫
[0,−a+ux]×[0,−b+uy]

fi,j(x, y)dxdy

and∫
[0,−a+ux]×[0,b−uy ]

fi,j(x, y)dxdy = −
∫
[0,a−ux]×[0,−b+uy ]

fi,j(x, y)dxdy. The in-
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tegral in Eq.9 can hence be decomposed and simplified into:

Jxiyj =

∫ a+ux

a−ux

∫ b

−b

fi,j(x, y)dxdy +

∫ a

−a

∫ b+uy

b−uy

fi,j(x, y)dxdy. (12)

Note: The square of size [a, a+ux]×[b, b+uy] is included and [a−ux, a]×[b−uy, b]

is counted twice but they are small (order two in the pixel size). Assuming ux

and uy are small, Taylor series expansions around a and b leads to the following

expression:

Jxiyj = 2uxa
i exp

(
−a2D

c2

)∫ b

−b

yj exp

(
−y2D

c1

)
dy

+ 2uyb
j exp

(
−b2D

c1

)∫ a

−a

xi exp

(
−x2D

c2

)
dx. (13)

Eq. 13 shows that Jxiyj scales like uxa
i exp

(
−a2D

c2

)
that should be small ac-

cording to our hypotheses. For completeness, full calculations of the integrals

are provided in Appendix D, however their exact expressions are not necessary

for the remainder of this study as they will constitute negligible components of

the Fisher information.

Computation of the Jxiyj (Eq. 9), when i+ j is even

We now focus on the even integrals ie. the integrals for which i + j is even by

computing:

Jxiyj =

∫ a+ux

−a+ux

∫ b+uy

−b+uy

xiyje(−(c1x
2+2c3xy+c2y

2))dxdy. (14)

Unfortunately, no simpler analytical expressions are available for truncated

Gaussian integrals contrary to non truncated Gaussian integrals. Also,

Jxiyj = Nxiyj −Mxiyj (15)

where

Nxiyj =

∫ ∞

−∞

∫ ∞

−∞
xiyje(−(c1x

2+2c3xy+c2y
2))dxdy. (16)

and

Mxiyj =

∫ ∫
T

xiyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy, (17)
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with T = (−∞;−a+ux]∪ [a+ux; +∞)× (−∞;−b+uy]∪ [b+uy; +∞). Nxiyj is

the integral over the entire domain for which analytical expressions are available

in [19] and in Appendix F. Therefore, it is enough to compute the surplus Mxiyj

:

Mxiyj =

∫ a

−a

∫
[−∞;−b]∪[b;+∞]

xiyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy, (18)

While no analytical expressions are available for Mxiyj , we propose the following

upperbound. The surplus is centered with respect to the origin leading to a sec-

ond order error in the calculation. Using the symmetry fi,j(x, y) = fi,j(−x,−y),

and adding
∫∞
a

∫∞
b

fi,j(x, y)dxdy+
∫∞
a

∫ −b

−∞ fi,j(x, y)dxdy+
∫ −a

−∞
∫∞
b

fi,j(x, y)dxdy+∫ −a

−∞
∫ −b

−∞ fi,j(x, y)dxdy > 0 (since i+ j is even), the surplus is bounded by :

Mxiyj ≤ M̃xiyj , (19)

with

M̃xiyj = 2

∫ −a

−∞

∫
R

xiyje(−(c1x
2+2c3xy+c2y

2))dxdy

+ 2

∫
R

∫ −b

−∞
xiyje(−(c1x

2+2c3xy+c2y
2))dxdy. (20)

If a and b are large relative to
√

c2
D and

√
c1
D , Eq. 19 gets close to equality

so M̃xiyj can be used instead of Mxiyj . Since we overestimate the surplus

Mxiyj , the Fisher information is underestimated. As a result the variance is

overestimated. The advantage of using M̃xiyj over Mxiyj is that the integrals

have exact analytical expressions in M̃xiyj . For instance M̃x2 can be computed

directly, as outlined in Appendix D and Appendix E.

Once all the Jxiyj are computed, the Fisher information matrix is computed

using Eq. 9 and Appendix C.

3.2. Marginalization over the nuisance parameters

Since only the position variances of x0, y0 are of interest, it is beneficial to

compute the marginalized distribution over the nuisance parameters A, c1, c2
and c3, that are respectively the amplitude and shape parameters of the object
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image. Assuming the ML estimator is normally distributed with covariance

matrix K, the marginalized Fisher information for x0 and y0 is [26]

Fmarg
x0,y0

= Fx0,y0 − F[x0,y0],[A,c1,c2,c3]F
−1
A,c1,c2,c3

FT
[x0,y0],[A,c1,c2,c3]

. (21)

Eq. 21 shows that the presence of nuisance parameters leads to a loss of

information as Fmarg
x0,y0

≤ Fx0,y0
. Components of F[x0,y0],[A,c1,c2,c3] are sums

of the form
∑

xi
ny

j
m exp

(
−c1x

2
n − c2y

2
m − 2c3xnym

)
, for which i + j is odd.

It has been shown (see Eq.13) that the later sums are of the same order as

ux exp
(
−a2D

c2

)
. It follows therefore that every component of F[x0,y0],[A,c1,c2,c3]

×F−1
A,c1,c2,c3

×FT
[x0,y0],[A,c1,c2,c3]

is of the same magnitude as u2
x exp

(
−2a2D

c2

)
.

Therefore, the contribution of the nuisance parameters in the Fisher informa-

tion is extremely small and will be neglected.

Taking the inverse of Fx0,y0 ≃ Fmarg
x0,y0

, the Rao Cramer lower bound has the

following form:

Kx0,y0
=


2σ2

(
c1 c2

√
π−2D

√
D
c1

bdb

)
c2

Q − 2 c3 c1 c2σ
2

Q

− 2 c3 c1 c2σ
2

Q

2σ2
(
c1 c2

√
π−2D

√
D
c2

ada

)
c1

Q

 . (22)

With σ2 being the signal variance and

Q =
√
πA2

√
D

(
4

D2

√
c2c1

adabdb − 2c1 c2

(√
D

c2
ada +

√
D

c1
bdb

)
+ c1 π c2

)
δxδy,

(23)

da = exp
(
−Da2

c2

)
and db = exp

(
−Db2

c1

)
. In order to further simplify Eq. 22,

it is convenient to introduce the signal to noise ratio of the brightest pixel as

defined in [23]. Under the assumptions used to derive Eg 26, it can be written

as:
Sb

N
=

A exp(− 1
2 (c1u

2
x + 2c3uxuy + c2u

2
y))δxδy

σ
, (24)

where ux and uy were previously defined as the minimum distance between the

center of the Gaussian surface and the center of a pixel for a given signal. Note

that Eq. 24 does not take into account the pixel integration. It is possible
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to average ux and uy as in the derivation of the Rao Cramer Lower Bound,

however, to simplify ux and uy are set to zero. Hence, Eq. 24 becomes:

Sb

N
=

Aδxδy
σ

, (25)

and keeping only first order terms Eq. 22 becomes :

Kx0,y0 =
δxδy

(Sb/N)2
√
Dπ3/2

× 2c2
(√

π + 2
√

D
c2
ada + 2

√
D
c1
ρ2bdb

)
−2c3

(√
π + 2

√
D
c2
ada + 2

√
D
c1
bdb

)
−2c3

(√
π + 2

√
D
c2
ada + 2

√
D
c1
bdb

)
2c1

(√
π + 2

√
D
c1
bdb + 2

√
D
c2
ρ2ada

)
 ,

(26)

where ρ = c3√
c1c2

is a correlation factor between the x and y-axis. It defines

the orientation of the (elongated) Gaussian with respect to the pixel grid. Coef-

ficients c1 and c2 are parameters of the fitted Gaussian curve that quantify the

size of the signal in x and y direction while c3 accounts for the orientation of

the signal with respect to the axes. Variable A is the intensity of the brightest

pixel and D is defined as D = c1c2 − c23. Fig.4 illustrates the elongated object

image with a rotation relative to the axis and a round object image. It has to be

noted that in the observation of unknown objects without a priori information

object images appear elongated with a relative motion relative to the sensor

and is in general not aligned with the pixel grid. Stars, on the other hand,

are often aligned with the pixel grid and have elongated, but non-rotated im-

ages. In this paper, we take the most general case. In this paper the elongated

signal is represented via a non-symmetric Gaussian; other models, that more

closely match very long streaked images (relative to the pixel size), are based

on the convolution of a Gaussian with a rectangle [29, 30]. da = exp
(
−Da2

c2

)
and db = exp

(
−Db2

c1

)
account for the truncation of the signal. If the complete

object image is sampled with infinite frame bounds, db and da go to zero and

the variance simplifies to the results developed in [19]. For actual observations,

finite cropping has to be applied.
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(a) Signal in the general case

where c1 ̸= c2 (source Pur-

due Optical Ground Station

(POGS))

(b) Example of rotation invariant

signal where c1 = c2 and c3 = 0

(source Purdue Optical Ground

Station (POGS))

Figure 4: Signals received from an object.

If the signal is rotation invariant as in Fig 4b then c1 = c2 = c and c3 = 0

and Eq. 26 becomes:

Kx0,y0 =
σ2

A2π3/2

 2 (
√
π + 2

√
cada) 0

0 2 (
√
π + 2

√
cbdb)

 . (27)

Introducing the signal to noise ratio as defined in Eq. 25, assuming square pixels

and symmetrical cropping (ie. a = b) Eq. 27 becomes :

Kx0,y0 =
δ2

π3/2(Sb/N)
2

 2 (
√
π + 2

√
cada) 0

0 2 (
√
π + 2

√
cada)

 , (28)

which is a completely symmetrical expression in the x and y direction.

3.3. Bayesian approach

As a comparison, a Bayesian approach is used to estimate the object’s as-

trometric position. In this section, the joint distribution of the parameter θ
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given a set of pixel value is derived using exactly the same assumptions made

for deriving the RCLB. Using Bayes rule we have:

P (θ|g1 . . . gnpix) ∝ P (θ|g1 . . . gnpix)P (θ) (29)

with P (θ|g1 . . . gnpix
) referring to the posterior distribution and P (θ) the prior

distribution. The ML estimator does not include the notion of prior and there-

fore uniform priors are taken in the Bayesian analysis. The normalized distri-

bution θ|g1 . . . gnpix
was computed using Metropolis-Hastings algorithm based

on Monte Carlo Markov Chain (MCMC). Our implementation follows the algo-

rithm presented in [31].

4. Method Comparison and Evaluation

4.1. Posterior Distribution

The Bayesian estimation allows to determine the distribution of the object

image astrometric position even for small object images (under 5 pixels above

the background level). Fig 5 shows the distribution of y0 for an object image

composed of 4 pixels.

Since the distribution shown in Fig. 5 is symmetrical with a fast decay of

its tails it seems sufficient to know the first two moments of the distribution

to accurately represent the probability density function of the astrometric po-

sition estimate from the object image. Further computations for larger signals

show that the astrometric distribution becomes more Gaussian as the number

of integrated pixels increases, in agreement with MLE theory [28]. It is hence

sufficient to merely consider the variance to adequately quantify the uncertainty

in the center location.

4.2. Validation

The different methods for evaluating the variance in the object image center

on the pixel frame are compared. The first method is the simplified method
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Figure 5: Joint distribution of x0 and y0 for a 4 pixel signal

developed in [19] using the RCLB under the limiting assumptions that the image

center lies in the middle of a pixel and that an infinite amount of pixels is

available. The second and third methods are the improved method to compute

the RCLB introduced in this paper. One is the direct numerical evaluation of the

RCLB as the inverse of the Fisher information matrix given in Appendix C and

denoted as exact lower bound in the figures while the other one is our analytic

approximate expression, derived in Eq.26 and denoted as approximate lower

bound in the figures. Finally, the Bayesian estimation is fully numerical using

the Metropolis-Hastings algorithm [32] implementation based on MCMC [31, 33].

The MCMC method is by far more computationally demanding than previous

methods since the posterior distribution is constructed using 100 000 samples.

In contrast, the numerical computation of the exact RCLB is straightforward

as it merely requires the numerical inversion of a 6 by 6 matrix. The expression

from [19] and the RCLB that has been derived in this paper are fully analytical

expressions and are hence the fastest to compute.

As ground truth, a Monte Carlo simulation is used with 1 000 000 samples

for the SNR=30 case and 100 000 samples for the SNR=5 case. Note that for

20



the SNR=5 case with narrow signals, the likelihood presents several maxima. In

order to find a good maximum, the Newton method is initialized several times

for each case. For comparison, a centroid method is implemented. As described

in Appendix G, the centroid is not equivalent to the Gaussian fitting but is

more commonly used for small signals. The results for two different noise levels,

SNR=30 and SNR=5 (relative to the brightest pixel) are shown in Figs. 6 and

7, as a function of the full width at the half maximum (FWHM) of the object

image of the true object image. The variance is given in pixels2.

4.2.1. Results of the tests for different signal sizes and SNR

In general, the Bayesian approach and the MC verification differ for small

signals as it can be seen in Fig. 6. This is due to the theoretical difference

between the Bayesian framework and the MC verification. In both cases, the

object image has been cropped at four standard deviations in x direction and

five standard deviations in the y direction in order to simulate unsymmetrical

cropping. The noise is assumed to be constant over this cropped sub-frame. For

example, if the standard deviation of the fitted Gaussian is 5 pixels in the x

and y directions, in our test case the cropped image will be centered around

the signal, 40 pixels large in the x direction and 50 pixels wide in y direction.

More precisely, the Gaussian curve parameters are a = 4σx,b = 5σx, c1 = 1/σ2
x,

c2 = 1/σ2
y and c3 = 1

σxσy
It can be seen that the approximation of the RCLB ac-

cording to [19] constantly underestimates the variance even for very large signals,

and is hence overconfident. On the other hand, our improved method captures

the cropping effect well and follows the exact lower bound well. Even for large

signals, the Hagen estimation constantly underestimate the center variance of

about 15 % even for a signal where only 2.5 % of the intensity has been cut. This

bias comes from the truncation effects that are not considered in [19] and that

have a significant effect in this set of tests. By assuming that the entire signal

is sampled, the estimation from [19] overestimates the amount of information

available and underestimates the signal center variance. This remark justifies

the use of our more accurate expression designed for cropped signal, even when
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the signal almost completely sampled. This gain in accuracy comes from the

less restrictive set of assumptions we use to derive our expressions of the center

variance.

Although theory states that the Rao Cramer Lower Bound underestimates

the variance of the ML estimator, Fig. 6 and 7 show that in practice the RCLB

is reached even for object images with very small FWHM and low signal to

noise ratios. Consequently, even for small signals (FWHM e.g 10 pixels) the

approximate RCLB defined in Eq. 26 is a good estimation of the variance. This

remark is all the more true that the SNR is high.

For SNR=5 (see fig. 7), contrary to the high SNR case, the exact RCLB un-

derestimates the estimator variance with respect to the Bayesian approach and

the MC validation, especially for small signals. As for the previous case our ana-

lytical formulation outperforms previous analytical estimations. Unsurprisingly,

for those cases the variance sharply increases, as more and more information is

lost into one pixel. For low SNR, the RLCB (exact or our estimation) is only

valid for signals with FWHM greater than 3 pixels. The centroid method only

used as an illustration in this case where the Gaussian fitting is challenging to

use features a higher variance than the Gaussian fitting. This test is indeed fa-

vorable to the Gaussian fitting method since the numerically generated signals

are noisy Gaussian signals. This test also illustrates the differences between the

Bayesian approach and the MC verification. When the signals are small, the

two methods do not provide equivalent uncertainty estimates. In our case, the

MC consistently predicts a higher variance than the Bayesian approach.

4.2.2. Effect of truncation in the center variance

In actual observations, it is never the case that the theoretically infinite sig-

nal is sampled but only a finite pixel frame is available. The infinite support

of the signal comes from the fact that the object image is a diffraction pattern.

Furthermore, the image frame shows several sources besides the object image

of interest; other objects and most prominently stars, which each constitute a
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Figure 6: Convergence of the ML position estimation variance as a function of the FWHM

for generated signal with SNR=30
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Figure 7: Convergence of the ML position estimation variance as a function of the FWHM

for generated signal with SNR=5

diffraction pattern of their own. In actual image processing, hence, a relatively

tight area around the part of the object image that is clearly above the back-

ground is used for centroiding.

The improved accuracy of the center estimation, when not the entire signal
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can be sampled is illustrated via a direct comparison to [20, 19]. we study the

evolution of the center variance with the percentage of signal that is truncated.

We consider a square grid. The standard deviation of the signal is 8 pixel in

both x and y-direction, the grid size goes from 22 by 22 pixels where 69 % of

the signal is sampled to a grid size of 40 by 40 where 99.65 % of the signal is

sampled. The results are summarized in figure 8 where we compare Hagen es-

timation, our analytical estimation (Approximate lower bound), the exact lower

bound estimated numerically (Exact Lower Bound) and a Monte Carlo valida-

tion carried out on 100 000 samples. As already shown in [19], the exact RCLB

is able to accurately approximate the MC estimation of the center variance. In

particular, it outperforms the approximate analytical expressions derived in this

work and in [19]. The Hagen approximation is unadapted to capture the infor-

mation loss due to truncation while our approximation is able to capture the

qualitative trend. In terms of relative error, we observe that Hagen estimation

features an error of 7 % while our estimate features an error of 1.2 % when 88

% of the signal is sampled. When only 70 % of the signal is sampled, Hagen

estimation is off by 32 % whereas our estimation is 11 % off compared to MC re-

sults. Hence we recommend using the expressions derived in this work for cases

where 85-90 % of the signal is sampled. In any case, our estimate outperforms

analytical expressions found in the literature. If less than 85 % of the signal is

sampled, using the numerical exact RCLB can bring a significant gain in accu-

racy. When possible, it can be of interest to predict the expected precision loss

in the center position estimation when the signal is truncated in order to set up

the right aperture size. One can look at the amount of signal that is truncated

but a more sensible quantity to look at is the Fisher information repartition per

pixels. The Fisher information quantifies the amount of information available,

per pixels to estimate the Gaussian curve parameters. From paragraph 3.2, the

variance in the center position is mostly due to Fx0,x0
,Fy0,y0

and Fx0,y0
. In

fig 9b is represented A2Rn,m

(
(c1ξn)

2 + (c2ηm)2
)

which represents repartition

of Fx0,x0
+ Fy0,y0

used estimate the center position in the case where c3 = 0.

For comparison, the corresponding noiseless signal is represented in Fig 9a. We
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Figure 8: Evolution of the center variance function of the signal truncation level
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Figure 9: Noiseless signal and the Fisher information associated with the center position

estimation

see that the pixels that help the most to estimate the position of the centers

are not the brightest ones located in the center of the signal but they form

a ring around the most signal. As a consequence, when truncating the signal

one should try to minimize Fisher information that is removed rather than the

amount of signal that is removed. Note that this analysis is only valid when the

signal is cropped symmetrically. Otherwise, the results from paragraph 3.2 are

not valid anymore.
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Using the results derived in the previous section, one can instantaneously

estimate the uncertainty in the position of a space object without simulating

object image frames or actually doing Gaussian fits. In Appendix B, a lookup

table gives the variance of the center position given the signal-to-noise ratio, the

number of pixels above half the brightest pixel intensity (FWHM) and the ratio

of the length of the signal in the longest direction over the length in the shortest

direction counting pixels above half the brightest pixel intensity.

4.2.3. Influence of the pixel scale on the center variance

Being able to predict the uncertainty in astrometric position also helps to

gain insight on how pixel resolution and size of the signal affects the uncertainty

in the object astrometric position. In this section, we propose two experiments.

The first one investigates the influence of the pixel resolution for four different

signals at constant SNR (see eq 25 and noise level). The second one illustrates

the influence pixel resolution while keeping the integrated intensity and noise

constant. This second test objective is to suggest an optimal pixel resolution

for a given observation scenario

First test. The signal main characteristics are reported in table 1. Fig 11 shows

how the pixel resolution influences the uncertainty in signal location for four

different signals shown in Fig. 10. The first signal is contained only in a few

pixels with a high SNR, the second signal spreads over a large number of pixels

with the same high SNR. The third has the same shape as the first signal but the

SNR here is lower. The fourth one is as large as the second one but with a low

SNR. Note that for all signals the maximum amplitude is kept constant so that

signals 2 and 4 contain on average 4 times more signal intensity than signals 1

and 3 but spread over a larger number of pixels. According to Fig.11 represent-

ing the evaluation of the standard deviation of the signal position function of the

pixel resolution, large signals (signal 3 and 4) are less accurate than smaller ones

(signal 1 and 2) despite the fact that they integrate more photons. In our case,

the small low SNR (signal 2) still has a lower variance than signal 3 although

there are more pixels to fit and less noise in signal 3. Note that the signal sizes
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Table 1: Signal characteristics

Signal A c1 c2 c3 Integrated volume [pixel]2

Signal 1 100 0.8 0.4 0.2 1167

Signal 2 100 0.8 0.4 0.2 1167

Signal 3 100 0.15 0.15 0 4188

Signal 4 100 0.15 0.15 0 4188

are selected large enough such that the RCLB is reached and our expressions

valid. For significantly smaller signals, a Bayesian approach should be preferred.

Second test. In this test, we consider one observation scenario and we vary

the pixel scale. In this case, the integrated Gaussian should be kept constant.

In the case of a symmetrical signal, we have V = 2πA
c constant. Hence we

see that the SRN as defined in 25 decreases as the signal width increases at a

constant V . According to eq. 28 the variance scales like 1/c2 or 1/c3/2 if the

signal is truncated. Therefore our estimation asserts that the smaller the signal,

the lower the variance. Unfortunately for narrow signals, the formulae are not

applicable because they significantly underestimate the actual center variance,

therefore they should not be used to find the optimal pixel scale. Using the

exact RCLB and taking into account the integration bias, [21] shows that there

is an optimal pixel scale. Fig. 12 illustrates the trend predicted by our estimates

where the variance tends to decrease as the signal width increases. The results

are obtained with a symmetrical signal.

4.3. Comparison with Rule of Thumb

A rule of thumb is often used in astronomy to roughly quantify the uncer-

tainty in astrometric location. It defines the variance in astrometric position as:

K̃x =
1

(FWHMx × S/N)
2 , (30)
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Figure 10: Example of Space object signals: signal 1 represents a small high SNR example,

signal 2 is a small low SNR example, signal 3 represents a large high SNR example and signal

4 is a large low SNR example.

with an equivalent expression for the y axis. To compare it with the expressions

derived in this work, we propose to approximate K̃x function of the Gaussian

curve parameter. For simplicity, we consider the round signal with scale param-

eter c. The signal to noise ratio defined as

SNR =

∑
i Si∑
i Ni

, (31)

where Si is the signal intensity and Ni is the noise. Replacing sums with integrals

we get
∑

i Si ≃ Aπ
c . We propose to integrate the constant noise over three

standard deviations of the Gaussian signal such that
∑

i Ni ≃ 9σπ
c . Finally the

SNR scales as

SNR ≃ A

9σ
. (32)
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Figure 11: Evolution of center variance with the resolution of the CCD for the signals shown

on Fig 10.

Figure 12: Evolution of the signal center variance with the signal width at constant integrated

volume

Taking FMWHM = 2.55 1√
c
, we get for the rule of thumb :

K̃x ≃ 9c

2.55(Sb/N)2
, (33)

For Gaussian signals and constant noise, the rule of thumb, as it is defined in

this work, captures the dependencies in the SNR well but fails to account for

the influence of the signal geometry on the variance. Clearly the rule of thumb
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Figure 13: Comparison of the rule of thumb with our estimation of variance for different signal

sizes.

scales as c whereas our expression (and [20, 19]) do not have such dependency.

In Fig. 13, the variances are computed with a constant signal to noise ratio of

ten, and for different object image sizes of constant FWHM. Note that the total

signal intensity is not kept constant in this case. The results clearly show that

the rule of thumb underestimates the uncertainty in the astrometric position

in any practical situations ie. as soon as the object image is larger than two

or three pixels. The rule of thumb also wrongly goes to zero as the signal size

increases, which contradicts the Monte Carlo simulations obtained in Fig. 6.

5. Conclusions

As signal generation is a stochastic process, the identical incoming signal

from an object leads to different object image representations. Each of the

representations leads to a different center estimate. The center is furthermore

dependent on the signal to noise ratio and the pixel size relative to the spread

of the object image in pixels. To efficiently quantify the variation in the center

estimates, this paper derives rigorous expressions to compute the variance of

the extracted center, using the Rao Cramer lower bound (RCLB). While previ-

ous work has been shown to consistently underestimate the variance because of
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simplifying assumptions, in this work, improved analytic expressions for the vari-

ance have been derived. The obtain expressions depend on the signal to noise,

the pixel size and the size of the object signal relative to the pixels have been

derived. The new expressions can be used even when a limited number of pixels

are clearly above the background level whereas the expressions available in the

literature can only be used when the signal is not truncated . Furthermore, we

do not assume that the object image true center is at the center of any single

pixel of the pixel grid. The new expressions allow for fast computation of the

variance. The derived expressions have been compared to a Bayesian evaluation

using Markov Chain Monte Carlo (MCMC) method in the Metropolis-Hastings

implementation and a reference Monte Carlo estimation. The MCMC imple-

mentation is computationally intensive and performs similarly to the numerical

evaluation of the RCLB and the analytical expression of the RCLB that has

been derived in this paper albeit at much lower computational cost. Only when

the full width of half maximum of the object signal is small as 4 pixels per

FWHM does the Bayesian MCMC approach shows advantages. Note that in

most cases the simple analytical expressions derived in this work compare very

well to Bayesian and Monte Carlo calculations

In particular, the domain of validity of the Gaussian noise assumption has

been delimited. Using a Bayesian approach, it is shown that the distribution of

the position estimation is well described by its first two moments. This result

justifies the use of only the covariance matrix to quantify the uncertainties under

consideration.

Using the derived analytical expressions, it has been shown that the observa-

tion likelihood can be computed analytically, solely based on the deterministic

aspect of the observation process without expensive Monte Carlo simulations or

other numerical procedures.

For practical purposes, a simple shorthand lookup table has been created

with precomputed variances.
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Nomenclature

A Amplitude of the Gaussian

a size of the frame considered for Gaussian fitting in x direction

B Total intensity of the background pixels

b size of the frame considered for Gaussian fitting in y direction

c1 Gaussian parameter (cf Eq. A.1)

c2 Gaussian parameter (cf Eq. A.1)
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c3 Gaussian parameter (cf Eq. A.1)

c Gaussian parameter in the symmetrical case (c = c1 = c2)

D Determinant (D = c1c2 − c3
2)

Di Signal of the dark noise in pixel i

En,m En,m = e(−
1
2 (c1(xn−x0)

2+2c3(xn−x0)(ym−y0)+c2(ym−y0)
2))

erf error function

F Fisher information

FWHM Full Width at Half Maximum

gi Intensity at pixel i

fi,j fi,j(x, y) = xiyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

ηm ηm = ym − y0

G G = Ae(−
1
2 (c1(xi−x0)

2+2c3(xi−x0)(yi−y0)+c2(yi−y0)
2))

Γ Gamma function

δx pixel size on x direction

δy pixel size on y direction

δ pixel size square pixels

θ vector of the Gaussian parameters (A, c1, c2, c3, x0, y0)

θtrue Actual value of the Gaussian parameters

θMLE value of the Gaussian parameters estimated by the MLE

Jxiyj Jxiyj =
∫ a+ux

−a+ux

∫ b+uy

−b+uy
xiyj exp

(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy.

K Rao Cramer lower bound (inverse Fisher information)

K̃ center variance computed with the rule of thumb

L Likelihood

l log likelihood

λD,i Poisson parameter of the random variable SD,i

λobj,i Poisson parameter of the random variable Sobj,i

λS,i Poisson parameter of the random variable SS,i

λact,i Poisson parameter of the random variable SS,i + SD,i + Sobj,i

λb,d λb,d = λS + λD

m number of of sub-frames
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µB Mean estimated background

N Total Noise

N∗ Total noise due to the object

Nxiyj Nxiyj =
∫
R∈ xiyj exp

(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy.

nB Number of pixel used in background determination

npix Number of signal pixel

ξn ξn = xn − x0

S Total Signal

Sb intensity of the brightest pixel

S∗ Averaged total signal of the object

da da = exp
(

−a2D
c2

)
db db = exp

(
−b2D
c1

)
s Gaussian curve

si Gaussian curve evaluated at pixel i

σ CCD noise with the Gaussian fitting

Mxiyj the surplus defined Eq. 18

t Detection threshold

T integration interval T = (−∞;−a+ ux] ∪ [a+ ux; +∞)

×(−∞;−b+ uy] ∪ [b+ uy; +∞)

Q Q =
√
πA2

√
D
(
4 D2
√
c2c1

adabdb − 2c1 c2

(√
D
c2
ada +

√
D
c1
bdb

)
+ c1 π c2

)
δxδy

U Error associated to the CCD limited resolution

U uniform distribution

ux Offset in x direction of the signal center with respect

to the pixel grid

uy Offset in y direction of the signal center with respect

to the pixel grid

ρ ρ = c3√
c1c2

x0 center of the Gaussian on x direction

xn x coordinate of the m pixel

y0 center of the Gaussian on y direction
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ym y coordinate of the m pixel

Appendix A. Maximum Likelihood center Estimation

The background subtracted object image signal pattern at the sensor (see

Eq. 2) is fitted with a Gaussian curve. An example of Gaussian fitting applied

to an actual signal is given in Fig. 3. For details see [34]. The actual position

of the source can be retrieved under the assumption that it corresponds to the

center of the fitted Gaussian curve on the pixel grid. This is in general not the

center of any given pixel. More precisely,it is assumed that the fitted subspace

has the following form

G = Ae(−
1
2 (c1(xi−x0)

2+2c3(xi−x0)(yi−y0)+c2(yi−y0)
2)), (A.1)

noting θ = (A, x0, y0, c1, c2, c3) where A is the amplitude, x0 and y0 the center

of the fitted Gaussian on the pixel grid and c1, c2 and c3 the coefficients of the

inverse covariance matrix. The position of the object image on the pixel grid

then is denoted by x0, y0.

The maximum likelihood(ML) estimator has been widely used in Gaussian

fitting of signals [19, 11, 21] for its good properties: it is an unbiased, consistent

and asymptotically efficient estimator under mild assumptions [28]. Defining

the likelihood of the set of parameters θ for a signal as:

L = P (S = G|θ), (A.2)

then the maximum of likelihood is defined as:

θ̂MLE = argmaxθ (P (S = G|θ)) . (A.3)

If the noise is Gaussian independent for two different pixels, the likelihood be-

comes:

L =

npix∏
i

exp

(
−1

2

(
(Si −Gi)

2

σ2
i

))
. (A.4)

38



Gi is the Gaussian surface, Eq. A.1 and Si signal at the ith pixel, defined in

Eq.1. σi is the standard deviation of the noise distribution at pixel i. If the

noise amplitude is assumed to be constant over the signal σi is constant and

denoted σ in the rest of this article. Then the log likelihood, also called the

score is:

l = −
npix∑
i

(Si −Gi(θ))
2

2σ2
. (A.5)

Appendix B. Lookup Table

The following tables can be used to directly estimate the uncertainty in the

signal astrometric position for a specific observation setting.Sb

N is the signal to

noise ratio of the brightest pixel, FWHM x corresponds to the FWHM along

the x direction and FWHM y along the y direction. Once those quantities

have been determined the lookup table gives the variance in the astrometric

position. If needed additional values can be generated using 27. The following

table was obtain simulating Gaussian signal with fixed maximum intensity of

1000 electrons and gain of 2. To obtain different values of signal-to-noise the

background level varied between 10 and 1000 electrons and the readout noise

varied between 0.2 to 150 ADU.
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Table B.2: LOOKUP TABLE for OBJECT ASTROMETRIC POSITION VARIANCE

FWHM x FWHM y Variance in Variance in Covariance
Sb

N x × δ2

(S/N)2 y × δ2

(S/N)2 × δ2

(S/N)2

20.384705 10.531880 10.531880 129.180196 129.176305 -0.776914

20.393602 3.980677 10.531880 18.198596 18.393586 -0.110362

20.394506 2.921018 10.531880 9.796892 9.901762 -0.059411

20.394879 2.416179 10.531880 6.702544 6.774266 -0.040646

20.394970 2.106376 10.531880 5.093700 5.148196 -0.030889

9.109910 10.531880 10.531880 129.180196 129.176305 -0.776914

9.116150 3.980677 10.531880 18.198596 18.393586 -0.110362

9.116785 2.921018 10.531880 9.796892 9.901762 -0.059411

9.117046 2.416179 10.531880 6.702544 6.774266 -0.040646

9.117110 2.106376 10.531880 5.093700 5.148196 -0.030889

5.379920 10.531880 10.531880 129.180196 129.176305 -0.776914

5.383823 3.980677 10.531880 18.198596 18.393586 -0.110362

5.384219 2.921018 10.531880 9.796892 9.901762 -0.059411

5.384383 2.416179 10.531880 6.702544 6.774266 -0.040646

5.384423 2.106376 10.531880 5.093700 5.148196 -0.030889

3.782134 10.531880 10.531880 129.180196 129.176305 -0.776914

3.784920 3.980677 10.531880 18.198596 18.393586 -0.110362

3.785203 2.921018 10.531880 9.796892 9.901762 -0.059411

3.785319 2.416179 10.531880 6.702544 6.774266 -0.040646

3.785348 2.106376 10.531880 5.093700 5.148196 -0.030889

2.909595 10.531880 10.531880 129.180196 129.176305 -0.776914

2.911750 3.980677 10.531880 18.198596 18.393586 -0.110362

2.911969 2.921018 10.531880 9.796892 9.901762 -0.059411

2.912060 2.416179 10.531880 6.702544 6.774266 -0.040646

2.912082 2.106376 10.531880 5.093700 5.148196 -0.030889
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Appendix C. Fisher Information

The exact expression for the Fisher information as derived in [19] is:

F11 =

npix∑
n=0,m=0

Rn,m

F12 =A

npix∑
n=0,m=0

Rn,m(c1ξn + c3ηm)

F13 =A

npix∑
n=0,m=0

Rn,m(c2ηm + c3ξn)

F14 =− A

2

npix∑
n=0,m=0

Rn,mξ2n

F15 =− A

2

npix∑
n=0,m=0

Rn,mη2m

F16 =−A

npix∑
n=0,m=0

Rn,mξnηm

F22 =A2

npix∑
n=0,m=0

Rn,m(c1ξn + c3ηm)2

F23 =A2

npix∑
n=0,m=0

Rn,m(c2ηm + c3ξn)(c1ξn + c3ηm)

F24 =− A2

2

npix∑
n=0,m=0

Rn,mξ2n(c1ξn + c3ηm)

F25 =− A2

2

npix∑
n=0,m=0

Rn,mη2m(c1ξn + c3ηm)

F26 =−A2

npix∑
n=0,m=0

Rn,mξnηm(c1ξn + c3ηm)

F33 =A2

npix∑
n=0,m=0

Rn,m(c2ηm + c3ξn)
2

F34 =− A2

2

npix∑
n=0,m=0

Rn,mξ2n(c2ηm + c3ξn)
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F35 =− A2

2

npix∑
n=0,m=0

Rn,mη2m(c2ηm + c3ξn)

F36 =−A2

npix∑
n=0,m=0

Rn,mξnηm(c2ηm + c3ξn)

F44 =
A2

4

npix∑
n=0,m=0

Rn,mξ4n

F45 =
A2

4

npix∑
n=0,m=0

Rn,mξ2nη
2
m

F46 =
A2

2

npix∑
n=0,m=0

Rn,mξ3nηm

F55 =
A2

4

npix∑
n=0,m=0

Rn,mη4m

F56 =
A2

2

npix∑
n=0,m=0

Rn,mη3mξn

F66 =A2

npix∑
n=0,m=0

Rn,mξ2nη
2
m,

(C.1)

where Rn,m =
δ2xδ

2
yE

2
n,m

2σ2 and

En,m = exp
(
− 1

2

(
c1(xn − x0)

2 + 2c3(xn − x0)(ym − y0) + c2(ym − y0)
2
))

. ξn =

xn − x0 and ηm = ym − y0.

Appendix D. Derivation of the odd integrals

We start from :

Jxiyj =

∫ a+ux

a−ux

∫ b

−b

fi,j(x, y)dxdy +

∫ a

−a

∫ b+uy

b−uy

fi,j(x, y)dxdy (D.1)

With fi,j(x, y) = xiyj exp
(
− 1

2

(
c1x

2 + 2c3xy + c2y
2
))

. The expression of Jxiyj

is computed by integrating by part to get rid of the polynomial factor and then

integrating the univariate Gaussian function using the error function. Finally
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we get :

Jx =− uybc3π

c
3/2
1

exp

(
−Db2

c1

)(
erf

(
ac1 + bc3√

c1

)
+ erf

(
bc3√
c1

))
+

uy

c1
exp

(
−c1a

2 − c2b
2 − 2c3ab

)
(D.2)

Jx3 =− 2
uybc3π

1/2

c
5/2
1

(
3

4
+

c23b
2

2c1

)
× exp

(
−Db2

c1

)(
erf

(
ac1 + bc3√

c1

)
+ erf

(
ac1 − bc3√

c1

))
+

uxa
3
√
π

c
1/2
2

exp

(
−Da2

c2

)(
erf

(
bc2 + ac3√

c2

)
+ erf

(
bc2 − ac3√

c2

))
(D.3)

Jxy2 =− uyb
3c3π

1/2

c
3/2
1

exp

(
−Db2

c1

)(
erf

(
ac1 + bc3√

c1

)
+ erf

(
ac1 − bc3√

c1

))
+

uxa
3c23π

1/2

c
5/2
2

exp

(
−Da2

c2

)(
erf

(
bc2 + ac3√

c2

)
+ erf

(
bc2 − ac3√

c2

))
+

uxaπ
1/2

2c
3/2
2

exp

(
−Da2

c2

)(
erf

(
bc2 + ac3√

c2

)
+ erf

(
bc2 − ac3√

c2

))
(D.4)

Equivalent results are obtained for Jy, Jy3 , Jx2y.

Appendix E. Illustration computation of e Jxiyj (Eq. 9) for even case

(i+j even)

The general strategy is to use firstly to compute M̃xiyj defined in eq. 20,sec-

ondly to use Nxiyj given in Appendix F and then to compute Jxiyj using 15

and the fact that M̃xiyj ≃ Mxiyj . Since Nxiyj is already given in [19] most of

the work is on computing M̃xiyj .
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case i=2,j=0 We first compute M̃x2 . According to Eq. 19 we have :

M̃x2 =2

∫
(−∞;−a]×R

x2 exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy

+ 2

∫
R×(−∞;−b]

x2 exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy. (E.1)

We integrate along one axis in each integral and get :

M̃x2 =2

√
π

c2

∫ −a

−∞
x2 exp

(
−
(
x2D

c2

))
dx

+2
c23
√
π

c
5/2
1

∫ −b

−∞
y2 exp

(
−
(
y2D

c1

))
dy

+

√
π

c
3/2
1

∫ −b

−∞
exp

(
−
(
y2D

c1

))
dy. (E.2)

Each term can be simplified using integration by part:

2

√
π

c2

∫ −a

−∞
x2e

(
−
(
x2 D

c2

))
dx = −

√
πc2
D

[
xe(−

x2D
c2

)

]−a

−∞
+

c2
D

√
π

c2

∫ −a

−∞
e(−

x2D
c2

)dx,

=
a
√
πc2
D

e(−
a2D
c2

) +
c2
D

√
π

c2

∫ −a

−∞
e(−

x2D
c2

)dx,

(E.3)

and

2
c23
√
π

c
5/2
1

∫ −b

−∞
y2 exp

(
−
(
y2D

c1

))
dy

=
c23b

√
π

Dc
3/2
1

exp(
−b2D

c1
) +

√
πc23

Dc
3/2
1

∫ −b

−∞
exp(−y2D

c1
)dy. (E.4)

So finally summing everything leads to:

M̃x2 =
a
√
πc2
D

e(−
a2D
c2

) +
c2
D

√
π

c2

∫ −a

−∞
e(−

x2D
c2

)dx

+
c23b

√
π

Dc
3/2
1

e(
−b2D

c1
) +

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)∫ −b

−∞
e(−

y2D
c1

)dy. (E.5)

Using a integration by part and under the assumption that a and b are large

relative to
√

c2
D and

√
c1
D leads to:∫ −a

−∞
exp(−x2D

c2
) ≃ c2

2Da
exp(

−a2D

c2
), (E.6)
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This can be used to simplify E.5:

M̃x2 =
a
√
πc2
D

exp(−a2D

c2
) +

c
3/2
2

2aD2

√
π exp(−a2D

c2
)

+
c23b

√
π

Dc
3/2
1

exp(
−b2D

c1
)

+

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)
c1
2Db

exp(−b2D

c1
). (E.7)

Reordering the terms:

M̃x2 = exp(−a2D

c2
)

(
a
√
πc2
D

+
c
3/2
2

2aD2

√
π

)

+ exp(−b2D

c1
)

(
c23b

√
π

Dc
3/2
1

+

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)
c1
2Db

)
. (E.8)

Finally the truncated signal is ( assuming M̃x2 = Mx2)

Jx2 = Nx2 − M̃x2 , (E.9)

so we get :

Jx2 =
πc2

2D3/2
− exp(−a2D

c2
)

(
a
√
πc2
D

+
c
3/2
2

2aD2

√
π

)

− exp(−b2D

c1
)

(
c23b

√
π

Dc
3/2
1

+

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)
c1
2Db

)
. (E.10)

By exchanging the role of x and y in the previous derivation, an expression for

Jy2 is:

Jy2 =
πc1

2D3/2
− exp(−b2D

c1
)

(
b
√
πc1
D

+
c
3/2
1

2bD2

√
π

)

− exp(−a2D

c2
)

(
c23a

√
π

Dc
3/2
2

+

(√
πc23

Dc
3/2
2

+

√
π

c
3/2
1

)
c2

2Da

)
. (E.11)

case i=0,j=0

The calculations are very similar for M̃ . M̃ is defined as:

M̃ =2

∫
(−∞;−a]×R

exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy

+ 2

∫
R×(−∞;−b]

exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

dxdy (E.12)
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And when integrating over y for for the first integral and x for the second one

gets:

M̃ =2

√
π

c2

∫
[−∞;−a]

exp

(
−
(
D

c2
x2

))
dxdy

+ 2

√
π

c1

∫
(−∞;−b]

exp

(
−
(
D

c1
y2
))

dxdy (E.13)

Using the approximation in (E.6) we get:

M̃ =

√
πc2
Da

exp

(
−D

c2
a2
)
+

√
πc1
Db

exp

(
−D

c1
b2
)

(E.14)

Case i=1 j=1

The same technique is used to compute the surplus M̃x,y defined in Eq. 16.

In the first step:

∫ −a

−∞

∫ ∞

−∞
xy exp

(
−c1x

2 − c2y
2 − 2c3xy

)
dxdy

= −
√
πc3

2D
√
c2

exp

(
−Da2

c2

)(
a+

c2

2
√
Da

)
.

(E.15)

By exchanging the role of x and y in the previous equation we get:∫ −∞

−∞

∫ −b

−∞
xy exp

(
−c1x

2 − c2y
2 − 2c3xy

)
dxdy

= −
√
πc3

2D
√
c1

exp

(
−Db2

c1

)(
b+

c1

2
√
Db

)
.

So the surplus is approximately:

M̃xy = −
√
πc3

D
√
c1

exp

(
−Db2

c1

)(
b+

c1

2
√
Db

)
−

√
πc3

D
√
c2

exp

(
−Da2

c2

)(
a+

c2

2
√
Da

)
(E.16)

Using Eq. 15, we obtain the following expression :

Jxy = Nxy +

√
πc3

D
√
c1

exp

(
−Db2

c1

)(
b+

c1

2
√
Db

)
+

√
πc3

D
√
c2

exp

(
−Da2

c2

)(
a+

c2

2
√
Da

)
= − c3π

2D3/2
+

√
πc3

D
√
c1

exp

(
−Db2

c1

)(
b+

c1

2
√
Db

)
+

√
πc3

D
√
c2

exp

(
−Da2

c2

)(
a+

c2

2
√
Da

)
. (E.17)
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where Nxy is given in Appendix F.

Unfortunately, those expressions remain complex so it can be advantageous

to keep the dominant terms and get :

Jx2 = Nx2 −
a
√
πc2
D

exp

(
−a2D

c2

)
− c23b

√
π

Dc
3/2
1

exp

(
−b2D

c1

)
(E.18)

Jy2 = Ny2 −
b
√
πc1
D

exp

(
−b2D

c1

)
− c23a

√
π

Dc
3/2
2

exp

(
−a2D

c2

)
(E.19)

Jxy = Nxy +

√
πbc3

D
√
c1

exp

(
−Db2

c1

)
+

√
πac3

D
√
c2

exp

(
−Da2

c2

)
(E.20)

The computation of Jx2 , Jy2 , Jxy is sufficient to compute F2,2, F2,3 and F3,3.

Case i=2 j=2

We follow the same procedure as in the previous paragraph by computing. We

have: M̃x2y2 :∫ −a

−∞

∫ ∞

−∞
x2y2 exp

(
−c1x

2 − c2y
2 − 2c3xy

)
dxdy

=
2πc23 + πc2c1

8D3/2

(
1− erf

(
a
√
D

√
c2

))

+

√
πc23a

3

2Dc
3/2
2

exp

(
−a2D

c2

)
+

2aD1/2

√
πc2

π
2c3 + c1c2
4D5/2

(E.21)

and also:∫ −a

−∞

∫ ∞

−∞
x2y2 exp

(
−c1x

2 − c2y
2 − 2c3xy

)
dxdy

=
2πc23 + πc2c1

8D3/2

(
1− erf

(
b
√
D

√
c1

))
+

√
πc23b

3

2Dc
3/2
1

exp

(
−b2D

c1

)
+

2bD1/2

√
πc1

π
2c3 + c1c2
4D5/2

exp

(
−b2D

c1

)
.

(E.22)
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So the surplus becomes:

M̃x2y2 =
2πc23 + πc2c1

4D3/2

(
2− erf

(
a
√
D

√
c2

)
− erf

(
b
√
D

√
c1

))

+

√
πc23b

3

Dc
3/2
1

exp

(
−b2D

c1

)
+

4bD1/2

√
πc1

π
2c3 + c1c2
4D5/2

exp

(
−b2D

c1

)
+

√
πc23a

3

Dc
3/2
2

exp

(
−a2D

c2

)
+

4aD1/2

√
πc2

π
2c3 + c1c2
4D5/2

(E.23)

where we used the approximation:

1− erf

(
a

√
D

√
c2

)
≃

√
c2√

πDa
exp

(
−a2

D

c2

)
. (E.24)

To obtain a compact form for M̃x2,y2 we can plug in Nx2y2 from Appendix F in

Eq. E.23 and get:

M̃x2y2 =
DNx2y2

3
√
π

( √
c2

a
√
D

exp

(
−a2D

c2

)
+

√
c1

b
√
D

exp

(
−b2D

c1

))
+

4

3
√
π
Nx2y2

(
aD1/2

√
c2

exp

(
−a2D

c2

)
+

bD1/2

√
c1

exp

(
−b2D

c1

))
+

√
πc23b

3

Dc
3/2
2

exp

(
−b2D

c1

)
+

√
πc23a

3

D
exp

(
−a2D

c2

)
(E.25)

case i=4 j=0

We follow the same procedure as in the previous paragraph by computing M̃x4 .

We have : ∫ −a

−∞

∫ −∞

−∞
x4 exp

(
−c1x

2 − c2y
2 − 2c3xy

)
dxdy =

3c22
√
πc2

8D3a
exp

(
−a2

D

c2

)
−
√
πa3c23

√
c2

2D2
exp

(
−a2D

c2

)
+

3c
3/2
2 a

√
π

4D2
exp

(
−a2D

c2

)
+

a3c1c
3/2
2

√
π

2D2
exp

(
−a2D

c2

)
and∫ ∞

−∞

∫ −b

−∞
x4 exp

(
−c1x

2 − c2y
2 − 2c3xy

)
dxdy =

c3b
3π1/2

c
1/2
1 D1/2

exp

(
−Db2

c1

)

−
3c3b

√
c1π

4D2
exp

(
−Db2

c1

)
+

3

4

√
πc

3/2
1 c3

bD3
exp

(
−Db2

c1

)
(E.26)
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So the surplus becomes:

M̃x4 =2

(
1

2

√
πb3c43

c
7/2
1 D

+
3c23c2b

√
π

2c
3/2
1 D2

− 3bπ1/2c43

4c
5/2
1 D2

−
3
√
πc1c

2
2

4D3b

)
exp

(
−b2D

c1

)

+ 2

(
3c22

√
πc2

8D3a
+

3c
3/2
2 a

√
π

4D2
+

a3c
1/2
2

√
π

2D

)
exp

(
−a2D

c2

)
(E.27)

Jx4 is then computed using equation 15 and the expression for Nx4 given in

Appendix F.

Appendix F. Expressions for the Nx,y

The expressions for Nxi,yj are classical and already derived in [19]. They

are recalled here for completeness

Nx = 0. (F.1)

Nx3 = 0 (F.2)

Ny3 = 0 (F.3)

Nxy2 = 0 (F.4)

Nx2y = 0 (F.5)

Nx3y = 0 (F.6)

Ny3x = 0 (F.7)

N =
π√
D
, (F.8)
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Nx2 =
1

2

π c2
D3/2

, (F.9)

Ny2 =
1

2

π c1
D3/2

, (F.10)

Ny4 =
3

4

c1
2π

D5/2
, (F.11)

Nx4 =
3

4

c2
2π

D5/2
, (F.12)

Nxy = −1

2

c3 π

D3/2
, (F.13)

Nx2y2 =
3

4

π
(
c1 c2 + 2 c3

2
)

D5/2
. (F.14)

Appendix G. The centroid

The centroid method is a classical alternative to estimate the signal controid.

This does not make any assumption with regards to the signal shape. It is define

as

x0 =

∑
n,m xnEn,m∑
n,m En,m

(G.1)

y0 =

∑
n,m ymEn,m∑
n,m En,m

(G.2)
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