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Abstract

Charged Coupled Devices (CCDs) and subsequently Complementary metalox-

idesemiconductor (CMOS) detectors revolutionized scientific imaging. On both

the CCD and CMOS detector, the incoming photons release photo electrons that

are then read out to produce an image. Unfortunately the generated images are

degraded by inevitable noise introduced by the stochastic nature of the electron

emission process and the read out process. Moreover, in many applications,

such as in astronomy or for satellite tracking, only unresolved object images

are available due to optical diffraction. It therefore is of integral interest to

determine the center or so-called centroid of the non-resolved signal with a

sub-pixel precision . The most common method for centroid estimation is to

fit Gaussians or other parametrized surfaces to the signal in order to find the

center of mass of the light. Because of the detector noise, the centroid estimate

is necessarily uncertain. While the uncertainty in the centroid is classically

estimated by running prohibitively costly Monte Carlo simulations, in this pa-

per, we propose analytic uncertainty estimates of the centroid position. The

expressions that depend on the pixel size, the signal to noise ratio and the

extension of the object signal relative to the pixel size are validated against

rigorous Monte Carlo simulations with very satisfying results. Numerical tests
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show that our analytic expression is an efficient substitute to the Monte Carlo

simulation thereby reducing computational cost.

Keywords: Space Situational Awareness

1. Introduction

Space object observation heavily relies on Charged Coupled Devices (CCDs)

and Complementary MetalOxideSemiconductor (CMOS) detectors. Both de-

tectors are based on the same principle. In the semiconductor material, which

can be front or back-illuminated, photo-electrons are released upon the impact

of incoming photons. In the best performance region of the sensor, the ratio

between the incoming photons and the released photo-electrons is constant while

in the low and upper end of the detector threshold, the proportionality tends to

vary leading to what is known as the non-linearity of the sensor. One of the main

differences between CCD and CMOS is the read-out process. Whereas in a CCD,

charge is shifted and one line is read out at a time, a CMOS sensor uses parallel

readout of the whole image is possible. Readout times hence are significantly

lower for CMOS compared to same sized CCD. The image is in both cases

comprised of analog-to-digital units (ADU) that, via the camera gain, transforms

the photo-electrons into digital units. For images of objects that are too far away

from the sensor and or too small for the optic setup, only non-resolved images

are available. Broadly speaking, non-resolved images consist of one bright dot

per object, that can cover one or up to several hundred pixels while not featuring

any object details. Fig.1 shows a perfectly noiseless non-resolved object image.

Physically speaking, the bright dot corresponds to the first maximum of the

diffraction pattern, for a round aperture, the so-called Airy disk. The main

maximum contains over 80 percent of the whole light received from the object.

Higher order maxima are normally not discernible and hence visible on the final

image.

As the sensing process, including reception of photons, release of photo-electrons

and the read-out process, is taking place on the quantum level, it is by nature
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a stochastic process. This means that the image generated by a sensor differs

across repeated experiments despite having exactly the same amount of light

entering the detector. Classically, the detector response has been modeled as

a Poisson process with the expectation value and variance corresponding to

the nominal irradiation value entering the detector [1]. An example of four

synthetically generated representations of the same irradiation entering the

detector are plotted in Fig. 2. Besides the stochastic sensing process of the

irradiation received from the object, there are two additional types of noise

sources that corrupt the object images and impact object image detection and

position estimation. One source is the other external light sources that enter

the detector with the light emitted or reflected off the object of interest. This

spurious light creates photo electrons identical to irradiation from the object

of interest itself and are usually modelled as Poisson distribution. The second

source comes from noise generated by the detector itself. Given that the detector

is never at zero Kelvin, thermal motion leads to so-called dark noise, that is

even present when the shutter is not opened. Furthermore, there is the noise

generated by the read-out process itself and the truncation error, as only integer

pixel values can be recorded in ADUs. Practically speaking background noises

imply that the background underneath the object images does not have a zero

pixel value. Further images disruption, such as hot or dead pixels or charged

particles impinging on the detector, so-called cosmics, are not discussed here.

In many applications using images featuring non-resolved signals, such as de-

tection and tracking of stellar objects or satellites, or tracking of blood cells

in microscopic imaging for example in medicine or biology, object detection

and position estimation is challenging [2, 3, 4, 5, 6, 7, 8]. Tracking algorithms

rely on precise estimation of the signal position at the subpixel level. This is

usually done via determining the center, often called centroid, of the object

signal. The center is then assumed to be the object position at the mid-exposure

time. Because of the image noise and the stochastic nature of the detection,

the centroid location is not straightforward. In practice, there are two main

classes of techniques to find the centroid of a non-resolved digital object image
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Figure 1: Noiseless signal

: one is to fit a two-dimensional function over the pixel values of the object

images and its surrounding pixels while the second finds the center of light

of the object image [4, 1, 9]. In the former case, for slightly distorted object

images, a Gaussian function fitting is often performed using a maximum likeli-

hood estimator[10, 11, 12, 13, 14]. The latter methodology has the advantage of

producing reliable results for highly distorted images, for which surface fitting

often fails. Both methodologies require that the background of the images

has been subtracted. Description of image processing pipelines for astrometric

observations of near-Earth objects is discussed in [15, 4, 16, 17].

As with any sensing and estimation problem, the estimated centroid differs for

different representations of the same irradiation reaching the detector. This

is illustrated in Fig. 2 and Fig. 3. Fig. 2 shows the same object signal in

four different realizations. Fig. 3 shows the histogram of pixel values, the

fitted Gaussian surface and the centers that have been determined for identical

irradiation reaching the detector. For the applications, it is of utmost interest

to have a representation of the uncertainty associated with the centroid. The

variance in the brightness of a pixel value can be computed using the inverse of

the signal to noise ratio [18, 9]. On the other hand, the variance in the centroid

position is not just a straightforward estimation problem.

As a result, centroid uncertainties are often determined with costly Monte

Carlo methods based on simulated images. This computationally very intensive

process is sought to be avoided.
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The major contribution of this paper is the derivation of an analytical ap-

proximation of centroid position variance that does not require any Monte Carlo

simulations. The derived expression is thoroughly compared to alternative expen-

sive methods such as Monte Carlo. The derived expressions are also compared to

existing analytical expressions [19, 20, 21]. All the tests show that the estimation

of the centroid variance is a good approximation of the Monte Carlo results even

for relatively small and cropped signals. In this work, it is also shown that the

previous estimates of this lower bound systematically underestimate the true

variance, based upon the comparison with Monte Carlo simulations. For object

images, which are spread over less than four pixels, a Bayesian formulation of the

problem is introduced. Realistic bounds on the object image centroid position

on the sub-pixel level are provided based on the pixel scale and the signal to

noise ratio of the brightest pixel. Finally, a look-up table with reference values

is provided. Preliminary work on this topic has been published by the authors

in [22].

The paper is organized as follows : In the second section, we describe the

centroid estimation process of a noisy non-resolved object image on a pixel grid

using Gaussian fitting. In the third section, the improved estimation of the cen-

troid position uncertainty is shown and analytical expressions are derived. Based

on the derivations, the fourth section provides the validation of the methodology

via comparison with Monte Carlo simulations and Bayesian estimation. In the

fifth section, application guidelines for the variance computation in observed

image frames are provided. The findings are summarized in the conclusions. In

Appendix A, a look-up table for fast application in observations can be found.
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(a) Signal realization 1 (b) Signal realization 2

(c) Signal realization 3 (d) Signal realization 4

Figure 2: Four realizations of the same noiseless signal (cf Fig. 1)
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(a) Signal realization 1 (b) Signal realization 2

(c) Signal realization 3 (d) Signal realization 4

Figure 3: Four realizations of the same signal (cf Fig. 1) with fitted Gaussians. The red line

indicates the position of the centroid in each case
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2. Overview of Object Image Centroiding in Noisy Images

In this section the process of finding an object image centroid in the presence

of noise is summarized. First, the expressions for the signal in the pixels

containing the object image are derived. Further details on the derivation of the

CCD equation and advances in the presence of ambiguous pixels can be found in

[23, 22]. Secondly, the process of the maximum likelihood estimation is shown.

Details on centroid determination techniques via Gaussian fitting can be found

in [10, 11, 12, 13, 14].

2.1. Signal of the Object Image Pixels

The Gaussian or other parametrized surface is fitted to the signal after

background subtraction. The total signal S of all pixels containing the object

image can be written as [? 22]:

S =

npix∑
i

Si +Ri −Best (1)

where npix is the number of pixels containing the object image (i.e. the refraction

Airy disk). The pixels are indexed by i. Si is the truncated signal distribution

of each pixel. The truncation process is due to the fact that only integers can be

reported from the CCD during the electron to ADU conversion. Defining the

gain g, one ADU corresponds to g photoelectrons. Ri is the readout noise. Best

is the estimated background that is subtracted.

The distribution of Si can be understood as [23, 22]:

P (Si = q) =

g(q+1)−1∑
k=gq

exp(−λS,i)λ
k− 1

2 g

S,i

(k − g
2 )!

=
Γ(g(q + 1

2 ), λS,i)

Γ(g(q + 1
2 ))

−
Γ(g(q − 1

2 ), λS,i)

Γ(g(q − 1
2 ))

, (2)

with λS,i = λext,i + λobj,i + λD,i where λext,i is the mean intensity from the

background noise entering the detector as external light sources that are not from

the object of interest. An example in astronomy would be the stellar background
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sources. λD,i denotes the mean intensity of the dark noise and λobj,i is the mean

intensity coming from the object itself. Γ is the gamma function defined as

Γ(n, x) =
∫∞
x
e−ttn−1dt and Γ(n) = (n − 1)!. Details of the derivation can be

found in [23].

Finally, Best is the estimated background defined in [22, 9] as :

Best =
1

nB

nB∑
i

Si +Ri (3)

with nB is the number of pixels used for the background estimation.

Eq. 1 is the sum of random variables that follow different distributions. The fol-

lowing assumptions are made for simplification in order to approximate Eq. 1 as

a sum of Gaussian random variables. Assuming that the gain is small or alterna-

tively that the CCD resolution is extremely high (hypothesis 1) the truncated Pois-

son Si can be interpreted as a Poisson random variable with a good level of accu-

racy. For he actual signal on the CCD, it can be assumed that the mean signal in-

tensity is such that λext,i+λobj,i+λD,i � 1 ∀i (hypothesis 2). The use of the Cen-

tral Limit Theorem can account for modelling both, the signal and the background

as normal distributions: Si ∼ N (λext,i + λobj,i + λD,i,
√
λext,i + λobj,i + λD,i)

and Best ∼ N (λext,i+λD,i,
√

λext,i+λD,i

nb
). In the latter, the number of pixels used

in the background determination nB is assumed to be large (hypothesis 3), which

is advantageous for precise background determination, as shown in Eq.3. Note

that in order to preserve the homogeneity of S, we denote V ar(S) = λS,i × 1s,

where 1s only carries the unit of energy. Ri can be taken to be Gaussian as

well [9, 18], and is assumed to be constant over the signal pixels (hypothesis 4).

Whereas the latter is a good approximation for a CCD, the assumption might be

violated for object images spread out over a large number of pixel on a CMOS

detector. Finally under the assumption previously stated, the effective signal in

the ith pixel Si as in Eq. 1 is the sum of three independent Gaussian random

variables:

Si = λS,i − λext,i + λD,i +N

(
0, 1s ×

√
λS,i +

λext,i + λD,i
nb

+ σ2
R

)
, (4)

9



where σ2
R is the variance of the readout noise at the ith pixel. The Gaussian

distribution signal distribution assumptions will become crucial when determining

explicit expressions of the Fisher information.

2.2. Maximum Likelihood Centroid Estimation

The background subtracted object image signal pattern at the sensor (see

Eq. 3) is fitted with a Gaussian curve. An example of Gaussian fitting applied

to an actual signal is given in Fig. 3. For details see [24]. The actual position

of the source can be retrieved under the assumption that it corresponds to the

center of the fitted Gaussian curve on the pixel grid. This is in general not the

center of any given pixel. More precisely,it is assumed that the fitted subspace

has the following form

G = Ae(−
1
2 (c1(xi−x0)

2+2c3(xi−x0)(yi−y0)+c2(yi−y0)2)), (5)

noting θ = (A, x0, y0, c1, c2, c3) where A is the amplitude, x0 and y0 the center

of the fitted Gaussian on the pixel grid and c1, c2 and c3 the coefficients of the

inverse covariance matrix. The position of the object image on the pixel grid

then is denoted by x0, y0. A note on the units: x0, y0, x, y have the same unit

as pixels, but allow for sub-pixel values for the center of the Gaussian. The

angles can be given in arcseconds. c1, c2, c3 are expressed in arcsec−2 and A

is a number of electrons per arcsec2. The pixel scale (arcseconds per pixel) is

assumed to be known.

The maximum of likelihood (ML) estimator has been widely used in Gaussian

fitting of signals [19, 10, 25] for its good properties: it is an unbiased, consistent

and asymptotically efficient estimator under mild assumptions [26]. Defining the

likelihood of the set of parameters θ for a signal as:

L = P (S = G|θ), (6)

then the maximum of likelihood is defined as:

θ̂MLE = argmaxθ (P (S = G|θ)) . (7)
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If the noise is Gaussian independent for two different pixels, the likelihood

becomes:

L =

npix∏
i

exp

(
−1

2

(
(Si −Gi)2

σ2
i

))
. (8)

Gi is the Gaussian surface, Eq. 5 and Si signal at the ith pixel, defined in Eq.1.

σi is the standard deviation of the noise distribution at pixel i. If the noise

amplitude is assumed to be constant over the signal σi is constant and denoted

σ in the rest of this article. Then the log likelihood also called the score is:

l = −
npix∑
i

(Si −Gi(θ))2

2σ2
. (9)

3. Uncertainty Quantification of the Centroid

In this section we derive analytical uncertainty estimates of the signal center

estimation. The Gaussian fitting can only be applied to a specific realization of

the stochastic object image generation process according to the distributions of

the terms in Eq.3. Under the assumptions discussed in the previous section, a

sum of Gaussian random variables, Eq.4. As discussed in the introduction and

illustrated Fig 2 there, different realizations lead to different centroids. Fig.3

shows the 3D representation of noise affected images with the fitted Gaussian

surface.

We present two common approaches to quantify the uncertainty in the esti-

mation of the parameters : a maximum of likelihood estimation as it is carried

in [19, 27] or a Bayesian approach [28]. Both methods tackle a problem from

a different angle so the uncertainty in the estimation are in general different.

The maximum of likelihood estimation focuses on estimating the deterministic

parameters θtrue and then estimates the uncertainty in the estimator θ̂. On the

contrary, with the Bayesian approach, one considers the distribution of Θ for a

given set of measurements. Therefore, even if uniform priors are used for the

Bayesian estimation both cases are not exactly equivalent and yield different

results for small signal.
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When fitting a Gaussian surface to the signal, one needs to estimate θ, which

holds the six Gaussian surface parameters, namely, A, c1, c2, c3 along with the

centroid x0, y0. However, often in imaging, only the centroid, comprising of

two parameters are of major interest. Hence, the first four parameters may be

treated as nuisance parameters. The nuisance parameter estimation not only

influences the nominal values of the remaining quantities of interest, but also

affects the variance in the parameters of interest. Uncertainty in their estimation

leads to increased uncertainty in the parameters of interest. As stated in [29]

and [30] the variance with nuisance parameters is always larger than without

nuisance parameters.

3.1. Rao-Cramer lower bound

Under regularity assumptions on the likelihood function, for any unbiased

estimator, there exists a variance lower bound [26]. In our case, the Maximum

of Likelihood (ML) estimator asymptotically reaches this lower bound [26, 30]

and therefore this lower bound can be used as an approximation of the centroid

position variance. We first introduce the Fisher information as the expectation

value of the Hessian of the score function defined in Eq. 9:

F (θ) = E
[

∂2l

∂2θiθj

]
, (10)

where E denotes expected value with respect to the likelihood. As explained in

[26], the Fisher information corresponds to the average amount of information

available in the sample. The Fisher information as derived in [31] is given in

Appendix B. The Rao Cramer lower bound (RCLB) variance is related through

the following inequality to the Fisher information:

V ars1..sn(θ̂) ≥ F (θ)−1. (11)

Which means that the variance of the Rao Camer lower bound is always larger or

equal to the inverse of the Fisher information gain. If the number of pixels used

in the ML estimation is sufficiently large, the ML estimator converges toward a

Gaussian distribution ( [27, 30]):

θ̂ ∼ N (θtrue, F (θ)−1). (12)

12



In that case, the lower bound will be reached, the inequality then becomes

an equality and a good analytical estimation of the RCLB variance becomes

available.

In many cases, simple analytical expressions of the Fisher information are

not available, but in our case, previous works [20, 19] have managed to derive

such expression under the following assumptions:

1. Flat noise: σ is constant over all pixels of the signal.

2. The profile is well sampled: the pixel size is constant and small compared

to the object image size. In other words we have δx, δy � 1
c0.51

, 1
c0.52

where

δx and δy are the CCD pixel dimensions.

3. The entire profile of the object image is sampled

4. Centroid of the signal is at the center of a pixel. In other words: ξn = δxn

and ηm = δym

5. The signal distribution is Gaussian within each pixel

The profile of the object image when approximated with a Gaussian is theoreti-

cally infinitely wide spread over the whole pixel grid. The exact expression for

the Fisher information as derived in [31] and can be found in Appendix B. The

Fisher information terms can be decomposed into sums of the form:

npix∑
m,n=0

Rm,nξ
i
nη

j
m with j, i ≤ 4 (13)

where Rn,m =
δ2xδ

2
yE

2
n,m

2σ2 and

Em = exp
(
− 1

2

(
c1(xn − x0)2 + 2c3(xn − x0)(ym − y0) + c2(ym − y0)2

))
, ξn =

xn − x0 and ηm = ym − y0.

The task now is to compute the sums. Their derivation can be involved so

most of the derivation is left in Appendix D and Appendix C while this para-

graph focuses on the assumptions made to carry out the calculations. Under

the hypotheses one through four above, [19] the sums can be approximated
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with their corresponding integrals; this approach was already used in [25]. This

approximation is justified by classical results on Riemann integrals and accurate

up to the second order in δx, δy, the pixel size in x and y directions. How-

ever, it is found that the assumptions one through four are not well justified

: assumption one is never fully satisfied, except for small object image traces

relative to the background variation. Hypothesis two neglects the cutoff effects

for extremely under-sampled object images. The third assumption used in [19]

is nearly impossible to comply with in practice. Firstly, when there is more than

one object image in the whole observation frame, the object image is cropped

over a finite number of pixels. Furthermore, the background necessarily changes

across the domain and clashes with hypothesis one. In practice, a sub-frame

technique with limited size sub-frames is used and hence assumption three is

violated. Assumption 4 is in general violated. As the irradiation enters the

detector unrestricted, the centroid is only in rare cases at the center of a pixel

or symmetric to the pixel grid but can be anywhere within the pixel grid. This

is also confirmed by real observations [17]. In general, we have ηm = uy + δym

and ξn = ux + δxn, where ux and uy ∈ [0, δx2 )× [0, δx2 ).

In order to relax the assumptions to better fit the conditions of actual ob-

servations, a truncated signal is assumed not symmetric with the pixel grid,

avoiding assumptions three and four, while keeping assumptions one, two and five.

Denoting a and b as the cropping boundaries (ie. the portion of the considered

signal lies in the rectangle [−a; a]× [−b; b]), it is further assumed that a
√

D
c2
� 1

and b
√

D
c1
� 1. Note that D = c1c2−c23. Due to this unsymmetrical distribution

of the pixels around the center of the object and the cropping around the centroid

of the object image, the substitution of sums with their integrals is only accurate

up to the first order in δx, δy for some terms of the Fisher information. In order

to get improved analytical expressions for Eq. 15, ux and uy are unknown a

priori. They are modeled with a uniform distribution U [0, δx2 ] (resp. U [0,
δy
2 ])

[25] and the sums are approximated with its corresponding integral. A change of
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variable yields the following approximation for
∑
n

∑
mRn,mξ

i
nη

j
m with a second

order accuracy in the pixel size δx,y :∑
n

∑
m

Rn,mξ
i
nη

j
m ≈ Jxiyj =

∫ a+ux

−a+ux

∫ b+uy

−b+uy

xiyje(−(c1x2+2c3xy+c2y
2))dxdy

(14)

This approximation is key to derive an analytical expression for the RCLB. The

calculations in the rest of this section aim at deriving analytical expressions for

Jxiyj . Using Eq. 14, the Jxiyj are then injected in the analytical expression for

the Fisher Information Eq. B.1 from which the RCLB can be derived.

Note: The Fisher information computed in [19] only uses the constant terms in

δ (order 0th). Unfortunately, this approximation leads to a covariance matrix

where the position parameters (x0, y0) and the nuisance parameters appear to

be uncorrelated, which we know is untrue. In the appendix it is shown that, in

general

npix∑
m=0

Rmξ
i
nη

j
m =

∑
n

∑
m

Rn,mξ
i
nη

j
m = 0 + ε(ux, uy), if i+ j is odd, (15)

with ε ∝ δx,y. The sum in Eq. 15 is equal to zero, when the signal/object

image is uncropped or ux and uy are non zero. Because we do assume a cropped

signal, all the terms, where i+j are even and when i+j are odd they are non-zero.

Derivation of analytic expression of Jxiyj (Eq. 14) , when i + j is

odd

We define

fi,j(x, y) = xiyje(−(c1x2+2c3xy+c2y
2)) (16)

using the symmetries of fi,j , we have
∫
[0,a−ux]×[0,b−uy ]

fi,j(x, y)dxdy =

−
∫
[0,−a+ux]×[0,−b+uy ]

fi,j(x, y)dxdy and∫
[0,−a+ux]×[0,b−uy ]

fi,j(x, y)dxdy = −
∫
[0,a−ux]×[0,−b+uy ]

fi,j(x, y)dxdy. The inte-

gral in Eq.14 can hence be decomposed and simplified into:

Jxiyj =

∫ a+ux

a−ux

∫ b

−b
fi,j(x, y)dxdy +

∫ a

−a

∫ b+uy

b−uy

fi,j(x, y)dxdy. (17)
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Note: The square of size [a, a+ux]×[b, b+uy] is included and [a−ux, a]×[b−uy, b]

is counted twice but they are small (order two in the pixel size). Assuming ux

and uy are small, Taylor series expansions around a and b leads to the following

expression:

Jxiyj = 2uxa
i exp

(
−a

2D

c2

)∫ b

−b
yj exp

(
−y

2D

c1

)
dy

+ 2uyb
j exp

(
−b

2D

c1

)∫ a

−a
xi exp

(
−x

2D

c2

)
dx. (18)

Eq. 18 shows that Jxiyj scales like uxa
i exp

(
−a

2D
c2

)
that should be small ac-

cording to our hypotheses. For completeness, full calculations of the integrals

are provided in Appendix C, however their exact expressions are not necessary

for the remainder of this study as they will constitute negligible components of

the Fisher information.

Computation of the Jxiyj (Eq. 14), when i+ j is even

We now focus on the even integrals ie. the integrals for which i+ j is even by

computing:

Jxiyj =

∫ a+ux

−a+ux

∫ b+uy

−b+uy

xiyje(−(c1x2+2c3xy+c2y
2))dxdy. (19)

Unfortunately, no simpler analytical expressions are available for truncated

Gaussian integrals contrary to non truncated Gaussian integrals. Also,

Jxiyj = Nxiyj −Mxiyj (20)

where

Nxiyj =

∫ ∞
−∞

∫ ∞
−∞

xiyje(−(c1x2+2c3xy+c2y
2))dxdy. (21)

and

Mxiyj =

∫ ∫
T

xiyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy, (22)

with T = (−∞;−a+ux]∪ [a+ux; +∞)× (−∞;−b+uy]∪ [b+uy; +∞). Nxiyj is

the integral over the entire domain for which analytical expressions are available

16



in [31] and in Appendix E. Therefore, it is enough to compute the surplus Mxiyj

:

Mxiyj =

∫ a

−a

∫
[−∞;−b]∪[b;+∞]

xiyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy, (23)

While no analytical expressions are available for Mxiyj , we propose the following

upperbound. The surplus is centered with respect to the origin leading to a second

order error in the calculation. Using the symmetry fi,j(x, y) = fi,j(−x,−y), and

adding
∫∞
a

∫∞
b
fi,j(x, y)dxdy+

∫∞
a

∫ −b
−∞ fi,j(x, y)dxdy+

∫ −a
−∞

∫∞
b
fi,j(x, y)dxdy+∫ −a

−∞
∫ −b
−∞ fi,j(x, y)dxdy > 0 (since i+ j is even), the surplus is bounded by :

Mxiyj ≤ M̃xiyj , (24)

with

M̃xiyj = 2

∫ −a
−∞

∫
R

xiyje(−(c1x2+2c3xy+c2y
2))dxdy

+ 2

∫
R

∫ −b
−∞

xiyje(−(c1x2+2c3xy+c2y
2))dxdy. (25)

If a and b are large relative to
√

c2
D and

√
c1
D , Eq. 24 gets close to equality

so M̃xiyj can be used instead of Mxiyj . Since we overestimate the surplus

Mxiyj , the Fisher information is underestimated. As a result the variance is

overestimated. The advantage of using M̃xiyj over Mxiyj is that the integrals

have exact analytical expressions in M̃xiyj . For instance M̃x2 can be computed

directly, as outlined in Appendix C and Appendix D.

Once all the Jxiyj are computed, the Fisher information matrix is computed

using Eq. 14 and Appendix B.

3.2. Marginalization over the nuisance parameters

Since only the position variances of x0, y0 are of interest, it is beneficial to

compute the marginalized distribution over the nuisance parameters A, c1, c2

and c3, that are respectively the amplitude and shape parameters of the object

image. Assuming the ML estimator is normally distributed with covariance

matrix K, the marginalized Fisher information for x0 and y0 is [29]

Fmargx0,y0 = Fx0,y0 − F[x0,y0],[A,c1,c2,c3]F
−1
A,c1,c2,c3

FT[x0,y0],[A,c1,c2,c3]
. (26)
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Eq. 26 shows that the presence of nuisance parameters leads to a loss of

information as Fmargx0,y0 ≤ Fx0,y0 . Components of F[x0,y0],[A,c1,c2,c3] are sums of

the form
∑
xiny

j
m exp

(
−c1x2n − c2y2m − 2c3xnym

)
, for which i + j is odd. It

has been shown (see Eq.18) that the later sums are of the same order as

ux exp
(
−a

2D
c2

)
. It follows therefore that every component of F[x0,y0],[A,c1,c2,c3]

×F−1A,c1,c2,c3
×FT[x0,y0],[A,c1,c2,c3]

is of the same magnitude as u2x exp
(
−2a

2D
c2

)
.

Therefore, the contribution of the nuisance parameters in the Fisher information

is extremely small and will be neglected.

Taking the inverse of Fx0,y0 ' Fmargx0,y0 , the Rao Cramer lower bound has the

following form:

Kx0,x0
=

2σ2
(
c1 c2

√
π − 2D

√
D
c1
bdb

)
c2

Q
,

Kx0,y0 =− 2 c3 c1 c2σ
2

Q
,

Ky0,y0 =
2σ2

(
c1 c2

√
π − 2D

√
D
c2
ada

)
c1

Q
,

(27)

With σ2 being the signal variance and

Q =
√
πA2
√
D

(
4
D2

√
c2c1

adabdb − 2c1 c2

(√
D

c2
ada +

√
D

c1
bdb

)
+ c1 π c2

)
δxδy,

(28)

da = exp
(
−Da

2

c2
D
)

and db = exp
(
−Db

2

c1
D
)

. In order to further simplify Eq.

31, it is convenient to introduce the signal to noise ratio of the brightest pixel as

defined in [23]. Under the assumptions used to derive Eg 31, it can be written

as:
Sb
N

=
A exp(− 1

2 (c1u
2
x + 2c3uxuy + c2u

2
y))δxδy

σ
, (29)

where ux and uy were previously defined as the minimum distance between the

center of the Gaussian surface and the center of a pixel for a given signal. Eq.

30 does not take into account the pixel integration as in the derivation of Eq. 27.

It is possible to average ux and uy as in the derivation of the Rao Cramer Lower

18



Bound, however, to simplify ux and uy are set to zero so Eq. 29 becomes:

Sb
N

=
Aδxδy
σ

, (30)

and keeping only first order terms Eq. 27 becomes :

Kx0,y0 =
δxδy

(Sb/N)2
√
Dπ3/2

× 2c2
(√

π + 2
√

D
c2
ada + 2

√
D
c1
ρ2bdb

)
−2c3

(√
π + 2

√
D
c2
ada + 2

√
D
c1
bdb
)

−2c3
(√

π + 2
√

D
c2
ada + 2

√
D
c1
bdb
)

2c1
(√

π + 2
√

D
c1
bdb + 2

√
D
c2
ρ2ada

)
 ,

(31)

where ρ = c3√
c1c2

is a correlation factor between the x and y axis. It defines the

orientation of the (elongated) Gaussian with respect to the pixel grid. Coefficients

c1 and c2 are parameters of the fitted Gaussian curve that quantify the size of

the signal in x and y direction while c3 accounts for the orientation of the signal

with respect to the axes. Variable A is the intensity of the brightest pixel and D

is defined as D = c1c2 − c23. Fig.4 illustrates the elongated object image with a

rotation relative to the axis and a round object image. da = exp
(
−Da

2

c2
D
)

and

db = exp
(
−Db

2

c1
D
)

accounts for the truncation of the signal. If the complete

object image is sampled with infinite frame bounds, db and da go to zero and

the variance simplifies to the results developed in [19]. For actual observations,

finite cropping has to be applied.

If the signal is rotation invariant as in Fig 4b then c1 = c2 = c and c3 = 0

and Eq. 31 becomes:

Kx0,y0 =
σ2

A2π3/2

 2 (
√
π + 2

√
cada) 0

0 2 (
√
π + 2

√
cbdb)

 . (32)

Introducing the signal to noise ratio as defined in Eq. 30, assuming square pixels

and symmetrical cropping (ie. a = b) Eq. 32 becomes :

Kx0,y0 =
δ2

π3/2(Sb/N)
2

 2 (
√
π + 2

√
cada) 0

0 2 (
√
π + 2

√
cada)

 , (33)

which is a completely symmetrical expression in the x and y direction.

19



(a) Signal in the general case

where c1 6= c2 and c3 6= 0

(source ZIMLAT,AIUB)

(b) Example of rotation invariant

signal where c1 = c2 and c3 = 0

(source ZIMLAT,AIUB)

Figure 4: Signals received from an object.

3.3. Bayesian approach

As a comparison, a Bayesian approach is used to estimate the object’s

astrometric position. In this section, the joint distribution of the parameter θ

given a set of pixel value is derived using exactly the same assumptions made

for deriving the RCLB. Using Bayes rule we have:

P (θ|g1 . . . gnpix
) ∝ P (θ|g1 . . . gnpix

)P (θ) (34)

with P (θ|g1 . . . gnpix
) referring to the posterior distribution and P (θ) the prior

distribution. The ML estimator does not include the notion of prior and therefore

uniform priors are taken in the Bayesian analysis. The normalized distribu-

tion θ|g1 . . . gnpix was computed using Metropolis Hasting algorithm based on

Monte Carlo Markov Chain (MCMC). Our implementation follows the algorithm

presented in [32]. The Bayesian approach computes the variance for a specific

realization. The MCMC approach does not solve for the posterior directly, but

only up to a scaling factor. The variance computed for example with a Monte

Carlo method is obtained by averaging over multiple realizations of the same

object signal.
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Figure 5: Joint distribution of x0 and y0 for a 4 pixel signal

4. Method Comparison and Evaluation

4.1. Posterior Distribution

Using the Bayesian estimation allows to determine the distribution of the

object image’s astrometric position even for extremely small object images (under

5 pixels above the background level). Fig 5 shows the distribution of y0 for an

object image of pixel size 4.

Since the distribution shown in Fig. 5 is symmetrical with fast decay of its

tails it seems sufficient to know the first two moments of the distribution to

accurately represent the probability density function of the astrometric position

estimate from the object image. Further computations for larger signals show

that the astrometric distribution becomes more Gaussian as the number of

integrated pixels increases, in agreement with MLE theory [26]. It is hence

sufficient to merely consider the variance to adequately quantify the uncertainty

in the centroid location.
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4.2. Validation

The different methods for evaluating the variance in the object image centroid

on the pixel frame are compared. The first method is the simplified method

developed in [19] using the RCLB under the limiting assumptions of a centroid in

the center pixel and that an infinite amount of pixels is available. The second and

third methods are the improved method to compute the RCLB introduced in this

paper. One is the direct numerical evaluation of the RCLB as the inverse of the

Fisher information matrix given in Appendix B and denoted as exact lower bound

in the figures while the other one is our analytic approximate expression, derived

in Eq.31 and denoted as approximate lower bound in the figures. Finally, the

Bayesian estimation is fully numerical using the Metropolis Hasting algorithm

[33] implementation based on MCMC [32, 34]. The MCMC method is by far

more computationally demanding than previous methods since the posterior

distribution is constructed using 100 000 samples. In constrast, the numerical

computation of the exact RCLB is straightforward as it merely requires the

numerical inversion of a 6 by 6 matrix. The expression from [19] and the RCLB

that has been derived in this paper are fully analytical expressions and are hence

the fastest to compute.

As ground truth, a Monte Carlo simulation is used with 1 000 000 samples.

The results for two different noise levels, SNR=30 and SNR=5 (relative to the

brightest pixel) are shown in Figs. 6 and 7, as a function of the full width at

the half maximum (FWHM) of the object image of the true object image. The

variance is given in pixels2. For the case SNR=5, the MC verification is not

available as the Gaussian fitted technique developed in [19] is not robust for

small noisy signals. The Bayesian approach gives an alternative estimation of

the variance.

In general, the Bayesian approach and the MC verification differ for small

signals as it can be seen in Fig. 6. This is due to the theoretical difference

between the Bayesian framework and the MC verification. For Fig. 7 however,

the Bayesian variance is averaged over all possible observations. In both cases,

the object image has been cropped at two standard deviations in x direction and
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2.5 standard deviations in the y direction in order to simulate unsymmetrical

cropping. The noise is assumed to be constant over this cropped sub-frame. For

example, if the standard deviation of the fitted Gaussian is 5 pixels in the x and y

directions, in our test case the cropped image will be centered around the signal,

40 pixels large in the x direction and 50 pixels wide in y direction. It can be seen

that the approximation of the RCLB according to [19] constantly underestimates

the variance even for very large signals, and is hence overconfident. On the other

hand, our improved method captures the cropping effect well and follows the

exact lower bound well. Although theory states that the Rao Cramer Lower

Bound underestimates the variance of the ML estimator, Fig. 6 and 7 show that

in practice the RCLB is reached even for object images with very small FWHM

and low signal to noise ratios. Consequently, even for small signals (FWHM

e.g 10 pixels) the approximate RCLB defined in Eq. 31 is a good estimation

of the variance. This remark is all the more true that the SNR is high. For

SNR=5, it appears that even the exact RCLB underestimates the estimator

variance with respect to the Bayesian approach. Using the exact expressions for

the RCLB (obtained by taking the inverse of the matrix in Eq.B.1) only shows

significant improvements for object images with FWHM lower than two pixels.

Unsurprisingly, for those cases the variance sharply increases, as more and more

information is lost into one pixel.

Using the results derived in the previous section, one can instantaneously

estimate the uncertainty in location of a space object without simulating object

image frames or actually doing Gaussian fits. In Appendix A, a lookup table

gives the variance of the centroid position given the signal-to-noise ratio, the

number of pixels above half the brightest pixel intensity (FWHM) and the ratio

of the length of the signal in the longest direction over the length in the shortest

direction counting pixels above half the brightest pixel intensity.

Being able to predict the uncertainty in astrometric position also helps to

gain insight on how pixel resolution and size of the signal affects the uncertainty

in the object astrometric position. Fig 9 shows how the pixel resolution influences

the uncertainty in signal location for four different signals shown in Fig. 8. The
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Figure 6: Convergence of the ML position estimation variance as a function of the FWHM for

generated signal with SNR=30

Figure 7: Convergence of the ML position estimation variance as a function of the FWHM for

generated signal with SNR=5

first signal is contained only in a few pixels with a high SNR, the second signal

spreads over a large number of pixels with a high SNR. The third has the same

shape as the first signal but the SNR here is much lower. The fourth one is as

large as the second one but with a low SNR. According to Fig.9 representing

the evaluation of the standard deviation of the signal position function of the
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Figure 8: Example of Space object signals: signal 1 represents a small high SNR example,

signal 2 represents a large high SNR example, signal 3 is a small low SNR example and signal

4 is a large low SNR example.

pixel resolution, large signals (signal 3 and 4) are less accurate than smaller

ones (signal 1 and 2). In our case, the small low SNR (signal 2) still has a lower

variance than signal 3 although there are more pixels to fit and less noise in

signal 3.

4.3. Comparison with Rule of Thumb

A rule of thumb is often used in astronomy to roughly quantify the uncertainty

in astrometric location. It defines the variance in astrometric position as:

K̃x =
1

(FWHMx × S/N)
2 , (35)

with an equivalent expression for the y axis. The rule of thumb captures the

dependencies in the SNR well but fails to account for the influence of the signal

geometry on the variance, as shown in Fig. 10. In this figure, the variances
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Figure 9: Evolution of the variance of the signal location with the resolution of the CCD for

the signals shown on Fig 8.

are computed with a constant signal to noise ratio of ten, and for different

object image sizes of constant FWHM. The results clearly show that the rule

of thumb underestimates the uncertainty in the astrometric position in any

practical situations ie. as soon as the object image is larger than two or three

pixels. The rule of thumb also wrongly goes to zero as the signal size increases,

which contradicts the Monte Carlo simulations obtained in Fig. 6.
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Figure 10: Comparison of the rule of thumb with our estimation of variance for different signal

sizes.

5. Conclusions

As signal generation is a stochastic process, the identical incoming signal from

an object leads to different object image representations. Each of the representa-

tions leads to a different centroid. The centroid is furthermore dependent on the

the signal to noise ratio and the pixel size relative to the spread of the object

image in pixels. To efficiently quantify the variation in the centroid estimates,

this paper derives rigorous expressions to compute the variance of the extracted

centroid, using the Rao Cramer lower bound (RCLB). While previous work has

been shown to consistently underestimate the variance because of simplifying

assumptions, in this work, improved analytic expressions for the variance have

been derived. The obtain expressions depend on the signal to noise, the pixel size

and the size of the object signal relative to the pixels have been derived. The new

expressions consider that in realistic images, only a limited number of pixels are

clearly above the background level, so-called cropping, instead of an unlimited

amount of pixels. Furthermore, we do not assume that the object image center is

centred within one pixel, but can have an arbitrary location within the brightest

pixel as it is the case in actual images. The new expressions allow for fast
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computation of the variance. The derived expressions have been compared to

a Bayesian evaluation using Markov Chain Monte Carlo (MCMC) method in

the Metropolis Hasting implementation and a reference Monte Carlo estimation.

The MCMC implementation is computationally intensive and performs similarly

to the numerical evaluation of the RCLB and the analytical expression of the

RCLB that has been derived in this paper albeit at much lower computational

cost. Only when the full width of half maximum of the object signal reaches one

pixel, i.e. when the signal that is above the background is mostly integrated in

a single pixel, does the Bayesian MCMC approach shows advantages. Note that

in most case the simple analytical expressions derived in this work compare very

well to Bayesian and Monte Carlo calculations

In particular the domain of validity of the Gaussian noise assumption has

been delimited. Using a Bayesian approach, it is shown that the distribution of

the position estimation is well described by its first two moments. This result

justifies the use of only the covariance matrix to quantify the uncertainties under

consideration.

Using the derived analytical expressions, it has been shown that the observa-

tion likelihood can be computed analytically, solely based on the deterministic

aspect of the observation process without expensive Monte Carlo simulations or

other numerical procedures. Those results can directly be implemented in multi-

target tracking algorithms to accurately evaluate the probability of detection

knowing only the signal-to-noise ratio and the detection threshold.

For practical purposes, a simple shorthand lookup table has been created

with precomputed variances.
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Nomenclature

A Amplitude of the Gaussian

a size of the frame considered for Gaussian fitting in x direction

B Total intensity of the background pixels

b size of the frame considered for Gaussian fitting in y direction

c1 Gaussian parameter (cf Eq. 5)

c2 Gaussian parameter (cf Eq. 5)

c3 Gaussian parameter (cf Eq. 5)

c Gaussian parameter in the symmetrical case (c = c1 = c2)

D Determinant (D = c1c2 − c32)

Di Signal of the dark noise in pixel i

En,m En,m = e(−
1
2 (c1(xn−x0)

2+2c3(xn−x0)(ym−y0)+c2(ym−y0)2))

erf error function

F Fisher information

FWHM Full Width at Half Maximum

gi Intensity at pixel i

fi,j fi,j(x, y) = xiyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))

ηm ηm = ym − y0
G G = Ae(−

1
2 (c1(xi−x0)

2+2c3(xi−x0)(yi−y0)+c2(yi−y0)2))

Γ Gamma function

32

http://dx.doi.org/10.1007/b138659
http://dx.doi.org/10.1063/1.1699114


δx pixel size on x direction

δy pixel size on y direction

δ pixel size square pixels

θ vector of the Gaussian parameters (A, c1, c2, c− 3, x0, y0)

θtrue Actual value of the Gaussian parameters

θMLE value of the Gaussian parameters estimated by the MLE

Jxiyj Jxiyj =
∫ a+ux

−a+ux

∫ b+uy

−b+uy
xiyj exp

(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy.

K Rao Cramer lower bound (inverse Fisher information)

K̃ centroid variance computed with the rule of thumb

L Likelihood

l log likelihood

λD,i Poisson parameter of the random variable SD,i

λobj,i Poisson parameter of the random variable Sobj,i

λS,i Poisson parameter of the random variable SS,i

λact,i Poisson parameter of the random variable SS,i + SD,i + Sobj,i

λb,d λb,d = λS + λD

m number of of sub-frames

µB Mean estimated background

N Total Noise

N∗ Total noise due to the object

Nxiyj Nxiyj =
∫
R∈ x

iyj exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy.

nB Number of pixel used in background determination

npix Number of signal pixel

ξn ξn = xn − x0
S Total Signal

Sb intensity of the brightest pixel

S∗ Averaged total signal of the object

da da = exp
(
−a2D
c2

)
db db = exp

(
−b2D
c1

)
Sb Signal of the brightest pixel
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s Gaussian curve

si Gaussian curve evaluated at pixel i

σ CCD noise with the Gaussian fitting

Mxiyj the surplus defined Eq. 23

t Detection threshold

T integration interval T = (−∞;−a+ ux] ∪ [a+ ux; +∞)

×(−∞;−b+ uy] ∪ [b+ uy; +∞)

Q Q =
√
πA2
√
D
(

4 D2
√
c2c1

adabdb − 2c1 c2

(√
D
c2
ada +

√
D
c1
bdb

)
+ c1 π c2

)
δxδy

U Error associated to the CCD limited resolution

U uniform distribution

ux Offset in x direction of the signal center with respect

to the pixel grid

uy Offset in y direction of the signal center with respect

to the pixel grid

ρ ρ = c3√
c1c2

x0 center of the Gaussian on x direction

xn x coordinate of the m pixel

y0 center of the Gaussian on y direction

ym y coordinate of the m pixel

Appendix A. Lookup Table

The following tables can be used to directly estimate the uncertainty in the

signal astrometric position for a specific observation setting. Sb

N is the signal

to noise ratio of the brightest pixel, npix corresponds to the number of pixel

above half the maximum intensity, Ratio is the ratio of the longest direction

over the shortest direction of the part of the signal with pixel intensity above

half the brightest pixel intensity. Once those quantities have been determined

the lookup table gives the variance in the astrometric position. The following

table was obtain simulating Gaussian signal with fixed maximum intensity of
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1000 electrons and gain of 2. To obtain different values of signal-to-noise the

background level varied between 10 and 1000 electrons and the readout noise

varied between 0.2 to 150 ADU.
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Table A.1: LOOKUP TABLE for OBJECT ASTROMETRIC POSITION VARIANCE

npix Ratio Variance in Variance in Covariance

Sb

N x × δ2

(S/N)2 y × δ2

(S/N)2 × δ2

(S/N)2

20.384705 69 11
9 2.008388 2.008388 -0.117197

20.393602 24 9
3 0.766788 5.317918 -0.037245

20.394506 25 10
3 0.569103 7.263146 -0.022204

20.394879 23 11
3 0.476102 8.800767 -0.014129

20.394970 10 9
2 0.419734 10.118383 -0.008623

9.109910 74 11
11 2.008388 2.008388 -0.117197

9.116150 22 10
4 0.766788 5.317918 -0.037245

9.116785 23 11
3 0.569103 7.263146 -0.022204

9.117046 17 9
3 0.476102 8.800767 -0.014129

9.117110 15 10
3 0.419734 10.118383 -0.008623

5.379920 52 10
12 2.008388 2.008388 -0.117197

5.383823 24 12
4 0.766788 5.317918 -0.037245

5.384219 25 12
3 0.569103 7.263146 -0.022204

5.384383 17 12
3 0.476102 8.800767 -0.014129

5.384423 10 9
3 0.419734 10.118383 -0.008623

3.782134 44 12
14 2.008388 2.008388 -0.117197

3.784920 22 13
5 0.766788 5.317918 -0.037245

3.785203 14 9
3 0.569103 7.263146 -0.022204

3.785319 13 11
3 0.476102 8.800767 -0.014129

3.785348 20 13
3 0.419734 10.118383 -0.008623

2.909595 32 13
12 2.008388 2.008388 -0.117197

2.911750 22 12
5 0.766788 5.317918 -0.037245

2.911969 10 10
4 0.569103 7.263146 -0.022204

2.912060 9 10
3 0.476102 8.800767 -0.014129

2.912082 11 10
2 0.419734 10.118383 -0.008623
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Appendix B. Fisher Information

The exact expression for the Fisher information as derived in [31] is:

F11 =

npix∑
n=0,m=0

Rn,m

F12 =A

npix∑
n=0,m=0

Rn,m(c1ξn + c3ηm)

F13 =A

npix∑
n=0,m=0

Rn,m(c2ηm + c3ξn)

F14 =− A

2

npix∑
n=0,m=0

Rn,mξ
2
n

F15 =− A

2

npix∑
n=0,m=0

Rn,mη
2
m

F16 =−A
npix∑

n=0,m=0

Rn,mξnηm

F22 =A2

npix∑
n=0,m=0

Rn,m(c1ξn + c3ηm)2

F23 =A2

npix∑
n=0,m=0

Rn,m(c2ηm + c3ξn)(c1ξn + c3ηm)

F24 =− A2

2

npix∑
n=0,m=0

Rn,mξ
2
n(c1ξn + c3ηm)

F25 =− A2

2

npix∑
n=0,m=0

Rn,mη
2
m(c1ξn + c3ηm)

F26 =−A2

npix∑
n=0,m=0

Rn,mξnηm(c1ξn + c3ηm)

F33 =A2

npix∑
n=0,m=0

Rn,m(c2ηm + c3ξn)2

F34 =− A2

2

npix∑
n=0,m=0

Rn,mξ
2
n(c2ηm + c3ξn)
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F35 =− A2

2

npix∑
n=0,m=0

Rn,mη
2
m(c2ηm + c3ξn)

F36 =−A2

npix∑
n=0,m=0

Rn,mξnηm(c2ηm + c3ξn)

F44 =
A2

4

npix∑
n=0,m=0

Rn,mξ
4
n

F45 =
A2

4

npix∑
n=0,m=0

Rn,mξ
2
nη

2
m

F46 =
A2

2

npix∑
n=0,m=0

Rn,mξ
3
nηm

F55 =
A2

4

npix∑
n=0,m=0

Rn,mη
4
m

F56 =
A2

2

npix∑
n=0,m=0

Rn,mη
3
mξn

F66 =A2

npix∑
n=0,m=0

Rn,mξ
2
nη

2
m,

(B.1)

where Rn,m =
δ2xδ

2
yE

2
n,m

2σ2 and

En,m = exp
(
− 1

2

(
c1(xn − x0)2 + 2c3(xn − x0)(ym − y0) + c2(ym − y0)2

))
. ξn =

xn − x0 and ηm = ym − y0.

Appendix C. Derivation of the odd integrals

We start from :

Jxiyj =

∫ a+ux

a−ux

∫ b

−b
fi,j(x, y)dxdy +

∫ a

−a

∫ b+uy

b−uy

fi,j(x, y)dxdy (C.1)

With fi,j(x, y) = xiyj exp
(
− 1

2

(
c1x

2 + 2c3xy + c2y
2
))

. The expression of Jxiyj

is computed by integrating by part to get rid of the polynomial factor and then

integrating the univariate Gaussian function using the error function. Finally
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we get :

Jx =− uybc3π

c13/2
exp

(
−Db

2

c1

)(
erf

(
ac1 + bc3√

c1

)
+ erf

(
bc3√
c1

))
+
uy
c1

exp
(
−c1a2 − c2b2 − 2c3ab

)
(C.2)

Jx3 =− 2
uybc3π

1/2

c15/2

(
3

4
+
c23b

2

2c1

)
× exp

(
−Db

2

c1

)(
erf

(
ac1 + bc3√

c1

)
+ erf

(
ac1 − bc3√

c1

))
+
uxa

3
√
π

c
1/2
2

exp

(
−Da

2

c2

)(
erf

(
bc2 + ac3√

c2

)
+ erf

(
bc2 − ac3√

c2

))
(C.3)

Jxy2 =− uyb
3c3π

1/2

c13/2
exp

(
−Db

2

c1

)(
erf

(
ac1 + bc3√

c1

)
+ erf

(
ac1 − bc3√

c1

))
+
uxa

3c23π
1/2

c25/2
exp

(
−Da

2

c2

)(
erf

(
bc2 + ac3√

c2

)
+ erf

(
bc2 − ac3√

c2

))
+
uxaπ

1/2

2c23/2
exp

(
−Da

2

c2

)(
erf

(
bc2 + ac3√

c2

)
+ erf

(
bc2 − ac3√

c2

))
(C.4)

Equivalent results are obtained for Jy, Jy3 , Jx2y.

Appendix D. Illustration computation of e Jxiyj (Eq. 14) for even

case (i+j even)

The general strategy is to use firstly to compute M̃xiyj defined in eq. 25,sec-

ondly to use Nxiyj given in Appendix E and then to compute Jxiyj using 20 and

the fact that M̃xiyj ' Mxiyj . Since Nxiyj is already given in [19] most of the

work is on computing M̃xiyj .
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case i=2,j=0 We first compute M̃x2 . According to Eq. 24 we have :

M̃x2 =2

∫
(−∞;−a]×R

x2 exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy

+ 2

∫
R×(−∞;−b]

x2 exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy. (D.1)

We integrate along one axis in each integral and get :

M̃x2 =2

√
π

c2

∫ −a
−∞

x2 exp

(
−
(
x2
D

c2

))
dx

+2
c23
√
π

c
5/2
1

∫ −b
−∞

y2 exp

(
−
(
y2D

c1

))
dy

+

√
π

c
3/2
1

∫ −b
−∞

exp

(
−
(
y2D

c1

))
dy. (D.2)

Each term can be simplified using integration by part:

2

√
π

c2

∫ −a
−∞

x2e

(
−
(
x2 D

c2

))
dx = −

√
πc2
D

[
xe(−

x2D
c2

)

]−a
−∞

+
c2
D

√
π

c2

∫ −a
−∞

e(−
x2D
c2

)dx,

=
a
√
πc2
D

e(−
a2D
c2

) +
c2
D

√
π

c2

∫ −a
−∞

e(−
x2D
c2

)dx,

(D.3)

and

2
c23
√
π

c
5/2
1

∫ −b
−∞

y2 exp

(
−
(
y2D

c1

))
dy

=
c23b
√
π

Dc
3/2
1

exp(
−b2D
c1

) +

√
πc23

Dc
3/2
1

∫ −b
−∞

exp(−y
2D

c1
)dy. (D.4)

So finally summing everything leads to:

M̃x2 =
a
√
πc2
D

e(−
a2D
c2

) +
c2
D

√
π

c2

∫ −a
−∞

e(−
x2D
c2

)dx

+
c23b
√
π

Dc
3/2
1

e(
−b2D

c1
) +

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)∫ −b
−∞

e(−
y2D
c1

)dy. (D.5)

Using a integration by part and under the assumption that a and b are large

relative to
√

c2
D and

√
c1
D leads to:∫ −a
−∞

exp(−x2D
c2

) ' c2
2Da

exp(
−a2D
c2

), (D.6)
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This can be used to simplify D.5:

M̃x2 =
a
√
πc2
D

exp(−a
2D

c2
) +

c
3/2
2

2aD2

√
π exp(−a

2D

c2
)

+
c23b
√
π

Dc
3/2
1

exp(
−b2D
c1

)

+

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)
c1

2Db
exp(−b

2D

c1
). (D.7)

Reordering the terms:

M̃x2 = exp(−a
2D

c2
)

(
a
√
πc2
D

+
c
3/2
2

2aD2

√
π

)

+ exp(−b
2D

c1
)

(
c23b
√
π

Dc
3/2
1

+

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)
c1

2Db

)
. (D.8)

Finally the truncated signal is ( assuming M̃x2 = Mx2)

Jx2 = Nx2 − M̃x2 , (D.9)

so we get :

Jx2 =
πc2

2D3/2
− exp(−a

2D

c2
)

(
a
√
πc2
D

+
c
3/2
2

2aD2

√
π

)

− exp(−b
2D

c1
)

(
c23b
√
π

Dc
3/2
1

+

(√
πc23

Dc
3/2
1

+

√
π

c
3/2
2

)
c1

2Db

)
. (D.10)

By exchanging the role of x and y in the previous derivation, an expression for

Jy2 is:

Jy2 =
πc1

2D3/2
− exp(−b

2D

c1
)

(
b
√
πc1
D

+
c
3/2
1

2bD2

√
π

)

− exp(−a
2D

c2
)

(
c23a
√
π

Dc
3/2
2

+

(√
πc23

Dc
3/2
2

+

√
π

c
3/2
1

)
c2

2Da

)
. (D.11)

case i=0,j=0

The calculations are very similar for M̃ . M̃ is defined as:

M̃ =2

∫
(−∞;−a]×R

exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy

+ 2

∫
R×(−∞;−b]

exp
(
−
(
c1x

2 + 2c3xy + c2y
2
))
dxdy (D.12)
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And when integrating over y for for the first integral and x for the second one

gets:

M̃ =2

√
π

c2

∫
[−∞;−a]

exp

(
−
(
D

c2
x2
))

dxdy

+ 2

√
π

c1

∫
(−∞;−b]

exp

(
−
(
D

c1
y2
))

dxdy (D.13)

Using the approximation in (D.6) we get:

M̃ =

√
πc2
Da

exp

(
−D
c2
a2
)

+

√
πc1
Db

exp

(
−D
c1
b2
)

(D.14)

Case i=1 j=1

The same technique is used to compute the surplus M̃x,y defined in Eq. 21.

In the first step:

∫ −a
−∞

∫ ∞
−∞

xy exp
(
−c1x2 − c2y2 − 2c3xy

)
dxdy

= −
√
πc3

2D
√
c2

exp

(
−Da

2

c2

)(
a+

c2

2
√
Da

)
.

(D.15)

By exchanging the role of x and y in the previous equation we get:∫ −∞
−∞

∫ −b
−∞

xy exp
(
−c1x2 − c2y2 − 2c3xy

)
dxdy

= −
√
πc3

2D
√
c1

exp

(
−Db

2

c1

)(
b+

c1

2
√
Db

)
.

So the surplus is approximately:

M̃xy = −
√
πc3

D
√
c1

exp

(
−Db

2

c1

)(
b+

c1

2
√
Db

)
−
√
πc3

D
√
c2

exp

(
−Da

2

c2

)(
a+

c2

2
√
Da

)
(D.16)

Using Eq. 20, we obtain the following expression :

Jxy = Nxy +

√
πc3

D
√
c1

exp

(
−Db

2

c1

)(
b+

c1

2
√
Db

)
+

√
πc3

D
√
c2

exp

(
−Da

2

c2

)(
a+

c2

2
√
Da

)
= − c3π

2D3/2
+

√
πc3

D
√
c1

exp

(
−Db

2

c1

)(
b+

c1

2
√
Db

)
+

√
πc3

D
√
c2

exp

(
−Da

2

c2

)(
a+

c2

2
√
Da

)
. (D.17)
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where Nxy is given in Appendix E.

Unfortunately, those expressions remain complex so it can be advantageous

to keep the dominant terms and get :

Jx2 = Nx2 −
a
√
πc2
D

exp

(
−a

2D

c2

)
− c23b

√
π

Dc
3/2
1

exp

(
−b

2D

c1

)
(D.18)

Jy2 = Ny2 −
b
√
πc1
D

exp

(
−b

2D

c1

)
− c23a

√
π

Dc
3/2
2

exp

(
−a

2D

c2

)
(D.19)

Jxy = Nxy +

√
πbc3

D
√
c1

exp

(
−Db

2

c1

)
+

√
πac3

D
√
c2

exp

(
−Da

2

c2

)
(D.20)

The computation of Jx2 , Jy2 , Jxy is sufficient to compute F2,2, F2,3 and F3,3.

Case i=2 j=2

We follow the same procedure as in the previous paragraph by computing. We

have: M̃x2y2 :∫ −a
−∞

∫ ∞
−∞

x2y2 exp
(
−c1x2 − c2y2 − 2c3xy

)
dxdy

=
2πc23 + πc2c1

8D3/2

(
1− erf

(
a
√
D

√
c2

))

+

√
πc23a

3

2Dc
3/2
2

exp

(
−a

2D

c2

)
+

2aD1/2

√
πc2

π
2c3 + c1c2

4D5/2

(D.21)

and also:∫ −a
−∞

∫ ∞
−∞

x2y2 exp
(
−c1x2 − c2y2 − 2c3xy

)
dxdy

=
2πc23 + πc2c1

8D3/2

(
1− erf

(
b
√
D

√
c1

))
+

√
πc23b

3

2Dc
3/2
1

exp

(
−b

2D

c1

)
+

2bD1/2

√
πc1

π
2c3 + c1c2

4D5/2
exp

(
−b

2D

c1

)
.

(D.22)
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So the surplus becomes:

M̃x2y2 =
2πc23 + πc2c1

4D3/2

(
2− erf

(
a
√
D

√
c2

)
− erf

(
b
√
D

√
c1

))

+

√
πc23b

3

Dc
3/2
1

exp

(
−b

2D

c1

)
+

4bD1/2

√
πc1

π
2c3 + c1c2

4D5/2
exp

(
−b

2D

c1

)
+

√
πc23a

3

Dc
3/2
2

exp

(
−a

2D

c2

)
+

4aD1/2

√
πc2

π
2c3 + c1c2

4D5/2
(D.23)

where we used the approximation:

1− erf

(
a

√
D
√
c2

)
'
√
c2√
πDa

exp

(
−a2D

c2

)
. (D.24)

To obtain a compact form for M̃x2,y2 we can plug in Nx2y2 from Appendix E in

Eq. D.23 and get:

M̃x2y2 =
DNx2y2

3
√
π

( √
c2

a
√
D

exp

(
−a

2D

c2

)
+

√
c1

b
√
D

exp

(
−b

2D

c1

))
+

4

3
√
π
Nx2y2

(
aD1/2

√
c2

exp

(
−a

2D

c2

)
+
bD1/2

√
c1

exp

(
−b

2D

c1

))
+

√
πc23b

3

Dc
3/2
2

exp

(
−b

2D

c1

)
+

√
πc23a

3

D
exp

(
−a

2D

c2

)
(D.25)

case i=4 j=0

We follow the same procedure as in the previous paragraph by computing M̃x4 .

We have : ∫ −a
−∞

∫ −∞
−∞

x4 exp
(
−c1x2 − c2y2 − 2c3xy

)
dxdy =

3c22
√
πc2

8D3a
exp

(
−a2D

c2

)
−
√
πa3c23

√
c2

2D2
exp

(
−a

2D

c2

)
+

3c
3/2
2 a
√
π

4D2
exp

(
−a

2D

c2

)
+
a3c1c

3/2
2

√
π

2D2
exp

(
−a

2D

c2

)
and∫ ∞

−∞

∫ −b
−∞

x4 exp
(
−c1x2 − c2y2 − 2c3xy

)
dxdy =

c3b
3π1/2

c
1/2
1 D1/2

exp

(
−Db

2

c1

)

−
3c3b
√
c1π

4D2
exp

(
−Db

2

c1

)
+

3

4

√
πc

3/2
1 c3

bD3
exp

(
−Db

2

c1

)
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So the surplus becomes:

M̃x4 =2

(
1

2

√
πb3c43

c
7/2
1 D

+
3c23c2b

√
π

2c
3/2
1 D2

− 3bπ1/2c43

4c
5/2
1 D2

−
3
√
πc1c

2
2

4D3b

)
exp

(
−b

2D

c1

)

+ 2

(
3c22
√
πc2

8D3a
+

3c
3/2
2 a
√
π

4D2
+
a3c

1/2
2

√
π

2D

)
exp

(
−a

2D

c2

)
(D.27)

Jx4 is then computed using equation 20 and the expression for Nx4 given in

Appendix E.

Appendix E. Expressions for the Nx,y

The expressions for Nxi,yj are classical and already derived in [19]. They are

recalled here for completeness

Nx = 0. (E.1)

Nx3 = 0 (E.2)

Ny3 = 0 (E.3)

Nxy2 = 0 (E.4)

Nx2y = 0 (E.5)

Nx3y = 0 (E.6)

Ny3x = 0 (E.7)

N =
π√
D
, (E.8)
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Nx2 =
1

2

π c2
D3/2

, (E.9)

Ny2 =
1

2

π c1
D3/2

, (E.10)

Ny4 =
3

4

c1
2π

D5/2
, (E.11)

Nx4 =
3

4

c2
2π

D5/2
, (E.12)

Nxy = −1

2

c3 π

D3/2
, (E.13)

Nx2y2 =
3

4

π
(
c1 c2 + 2 c3

2
)

D5/2
. (E.14)

46


	Introduction
	Overview of Object Image Centroiding in Noisy Images
	Signal of the Object Image Pixels
	Maximum Likelihood Centroid Estimation

	Uncertainty Quantification of the Centroid
	Rao-Cramer lower bound
	Marginalization over the nuisance parameters
	Bayesian approach

	Method Comparison and Evaluation
	Posterior Distribution
	Validation
	Comparison with Rule of Thumb

	Conclusions
	 Lookup Table
	 Fisher Information
	 Derivation of the odd integrals
	Illustration computation of e Jxiyj (Eq. 14) for even case (i+j even)
	Expressions for the Nx,y

