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Boundary-element modeling of two-plate interaction at subduction zones: scaling laws and application to the Aleutian subduction zone

The subduction interface strength strongly affects the kinematics of the subducting plate. The plate speed depends logarithmically on the plate length • Overriding plate deformation occurs by a combination of extension/compression and bending. Back-arc extension is observed only for a positively buoyant overriding plate • We estimate an interface viscosity η SI = (0.96-1.72) × 10 20 Pa s for the central Aleutian subduction zone

Introduction

Understanding the subduction of a dense lithospheric plate (subducting plate, SP) beneath an overriding plate (OP) is a major challenge in current geodynamics. Although this phenomenon represents one of the main ingredients of global-scale mantle convection, various aspects of it remain to be clarified.

As a preliminary, we note that much progress in our understanding of subduction has come from models that consider an isolated SP without an OP. In particular, this approach has provided insight into the the origin of the different modes of subduction that have been observed in both analog and numerical models. A number of recent studies have shown that the viscosity contrast (λ ≡ η 1 η 0 ) between the SP (η 1 ) and the surrounding mantle (η 0 ) is one of the key parameters controlling the different styles of subduction [START_REF] Kincaid | An experimental study of subduction and slab migration[END_REF][START_REF] Di Giuseppe | Slab stiffness control of trench motion: Insights from numerical models[END_REF][START_REF] Schellart | Evolution of subduction zone curvature and its dependence on the trench velocity and the slab to upper mantle viscosity ratio[END_REF]. On the basis of laboratory experiments, [START_REF] Di Giuseppe | Slab stiffness control of trench motion: Insights from numerical models[END_REF], identified two critical ranges of λ that delimit two styles of subduction: λ ≫ 10 4 where subduction always occurs in the so-called 'trench-retreating' mode, and 10 2 ≤ λ ≤ 10 4 where both trench-retreating and trench-advancing modes are observed depending on the geometry and the buoyancy of the SP. According to [START_REF] Bellahsen | Dynamics of subduction and plate motion in laboratory experiments: insights into the "plate tectonics" behavior of the earth[END_REF], narrow, thin and heavy plates tend to subduct in trench-retreating mode, while wide, thick and light plates prefer the trench-advancing mode. A more detailed phase diagram was proposed by Schellart [2008a] in terms of λ and the ratio D h between the depth D of the mantle layer and the SP thickness h. Using both these parameters, the author was able to classify a broad range of data from different laboratory studies [START_REF] Bellahsen | Dynamics of subduction and plate motion in laboratory experiments: insights into the "plate tectonics" behavior of the earth[END_REF][START_REF] Funiciello | Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking[END_REF][START_REF] Schellart | Kinematics of subduction and subduction-induced flow in the upper mantle[END_REF]. He identified four main modes of subduction: 1) trench retreating at low λ; 2) slab folding, 3) trench-advancing, and 4) trench-retreating at high λ. The same phase diagram was reproduced qualitatively by [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF] using a 2-D boundary-element (BEM) numerical model and quantitatively by [START_REF] Li | Dynamics of free subduction from 3-d boundary element modeling[END_REF] using a 3-D BEM model. They found that the boundaries separating the different modes reported by Schellart [2008a] are the contour lines of the function θ D = fct (λ, D h), where θ D is the dip of the subducting slab as it impinges on the base of the experimental tank (a rough analog of the 660 km dis-continuity). [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF] and [START_REF] Li | Dynamics of free subduction from 3-d boundary element modeling[END_REF] also clarified the role of λ in the dynamics of the SP by identifying a key dimensionless parameter, the SP's 'flexural stiffness' St ≡ λ (h b )
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, where b is the length of the portion of the SP where the deformation is dominated by bending. They showed that the slab's sinking speed V Sink is controlled by the ambient mantle viscosity η 0 when St ≤ 1, and by the SP viscosity η 1 when St ≫ 1.

However, even if models of an isolated SP are useful to capture meaningful features of subduction, adding an OP to the system appears crucial for more realistic modeling of natural subduction zones. In this context three main questions arise: i) how does the presence of the OP influence the kinematics of the SP? ii) what controls the interplate stress state along the subduction interface? iii) what drives the deformation and motion of the OP [START_REF] Schellart | Subduction zone trench migration: Slab driven or overriding-plate-driven?[END_REF][START_REF] Van Dinther | Role of the overriding plate in the subduction process: Insights from numerical models[END_REF][START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF]Garel et al., 2014;Holt et al., 2015;[START_REF] Krien | Gravity above subduction zones and forces controlling plate motions[END_REF][START_REF] Butterworth | Influence of overriding plate geometry and rheology on subduction[END_REF]?

As for the case of an isolated SP, both 'forced' and 'free' systems have been widely used for analog and numerical modeling of subduction with an OP. In the first (forced) case, the model is partially or totally forced by a boundary condition imposed as a kinematic constraint. Commonly, the subduction rate of the SP is imposed, either with a piston that pushes the SP toward the OP in analog models [e.g. [START_REF] Shemenda | Subduction of the lithosphere and back arc dynamics: Insights from physical modeling[END_REF] or by prescribing it as a boundary condition in numerical models [e.g. [START_REF] Rodríguez-González | The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction[END_REF]He, 2012]. This approach is useful to study specific features of subduction, and also when one wants to mimic the effect of far-field driving forces [Schellart & Strak, 2016]. However, it lacks self-consistency since there is an external source that continuously adds energy to the system. In the second (free) case, the motion and deformation of the plates are controlled entirely by the internal forces in the system. Usually, the only driving force taken into account is slab pull since ridge push is one order of magnitude smaller [Turcotte & Schubert, 2002]. This type of approach is useful for understanding the natural evolution of subduction systems and the causal link between the forces and the velocities observed within them.

In recent years, several authors have used 3-D analog and numerical models of the free class to address the question of the mechanism of deformation of the OP, focussing in particular on the controlling factor for back-arc extension. In general, it is found that backarc extension is strongly correlated with trench retreat [START_REF] Meyer | Three-dimensional dynamic models of subducting plateoverriding plate-upper mantle interaction[END_REF][START_REF] Schellart | A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow: Results from dynamic subduction models with an overriding plate[END_REF][START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF][START_REF] Chen | Does subduction-induced mantle flow drive backarc extension?[END_REF]. A possible mechanical interpretation of this result is that slab rollback induces a toroidal mantle flow that exerts shear stresses on the base of the OP that in turn lead to back-arc opening. The rate of extension in the back-arc zone depends on whether the OP is free to move or is fixed at its end on the opposite side from the trench [START_REF] Chen | Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the calabria subduction zone[END_REF]. Interestingly, back-arc extension is also observed in the 2-D (toroidal flow absent by definition) numerical model of Holt et al. [2015] when the OP is positively buoyant. For such a case, if the poloidal flow suddenly becomes weaker due to interaction of the slab with a viscosity increase at 660 km depth, a shift from extension to compression in the back-arc zone may occur.

Another feature that has been explored recently is the influence of the subduction interface on the deformation of the OP and the rate of subduction of the SP. Based on analog models, [START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF] and [START_REF] Chen | Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the calabria subduction zone[END_REF] concluded that interplate stresses at the interface are the primary control on forearc deformation within the OP. The forearc can be compressional or extensional depending on the magnitude of those stresses, whereas backarc deformation is insensitive to them. [START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF] also found that the subduction rate of the SP is controlled by the rheology of the subduction interface, decreasing strongly as the viscosity of the interface increases due to enhanced mechanical coupling between the plates.

Turning finally to the influence of the OP on the kinematics of the SP, Holt et al. [2015] showed that the OP viscosity does not influence significantly any of the characteristic velocities of the SP. They also found that increasing the OP's thickness decreases the rate of slab rollback, but does not affect the subduction rate or the slab's sinking speed. The same correlation between trench motion and the thickness of the OP is also found in the 2-D numerical model of Garel et al. [2014]. By systematically varying the ages (i.e., the thicknesses) of both plates and following the time evolution of subduction in a viscosity-stratified mantle, Garel et al. [2014] were able to determine a phase diagram that reproduces a wide range of deep slab morphologies observed in nature.

Despite the impressive recent progress in modeling SP/OP interaction, a full picture that can convincingly describe the underlying mechanics is still missing. Here we endeavor to shed light on this problem using a 2-D numerical model of free subduction in which a SP and an OP interact across a relatively weak interface. Our work differs from previous numerical approaches in several ways. First and most importantly, we treat the subduction interface strength as a variable parameter and explore its influence systematically, whereas most previous numerical models treat it as constant [e.g. [START_REF] Van Hunen | A thermo-mechanical model of horizontal subduction below an overriding plate[END_REF][START_REF] Babeyko | High-resolution numerical modeling of stress distribution in visco-elasto-plastic subducting slabs[END_REF][START_REF] Bottrill | Insight into collision zone dynamics from topography: numerical modelling results and observations[END_REF][START_REF] Rodríguez-González | The role of the overriding plate thermal state on slab dip variability and on the occurrence of flat subduction[END_REF]Holt et al., 2015]. Second, we focus on the determination of quantitative scaling laws that express relations among key dimensionless parameters characterizing the system. Third, we systematically employ concepts of thin viscous-sheet theory to interpret our results. Finally, we solve the model equations using a somewhat unusual numerical technique, the BEM, whose considerable advantages are described in § 3.

The outline of the paper is as follows. After introducing the model setup and the BEM, we set the stage with an overview of time-dependent subduction without and with an OP. This section makes clear the critical influence of the subduction interface strength. Next, we exploit the quasi-static character of Stokes flow to examine instantaneous solutions of the model equations, for both the SP O and the SP+OP cases. A key result here is that the surface speed of the SP always depends logarithmically on the ratio of the surface plate length to the slab length. We also determine a scaling law for the convergence rate as a function of the flexural stiffness of the SP and the dimensionless subduction interface thickness. We then turn to an analysis of the deformation state of the OP, using instantaneous BEM solutions interpreted in terms of thin viscous-sheet theory. These solutions show that the deformation of the OP is dominated by compression, bending, and (in some cases) extension as one moves from the forearc to the backarc region. Finally, we apply our results by using BEM solutions with realistic geometry to infer the long-term strength of the subduction interface in the central Aleutian subduction zone.

Model

Figure 1 shows the initial configuration (t = 0) of the model, and table 1 summarizes the notation adopted. The domain is 2D, infinitely deep and bounded at x 2 = 0 by a freeslip surface (i.e. impermeable and free of shear traction). Two thin sheets are immersed in the ambient fluid half-space. Their cross-sectional areas are S 1 , S 2 and their interfacial contours are C 1 , C 2 , respectively, where the subscript 1 represents the SP and 2 the OP.

The viscosity of the SP is η 1 = λ 1 η 0 , where η 0 is the ambient fluid viscosity. Its density is ρ 1 = ρ 0 + ∆ρ 1 , where ρ 0 is the ambient fluid density and ∆ρ 1 > 0 is the density excess of the SP relative to the ambient fluid. The viscosity of the OP is λ 2 η 0 and its density ρ 2 can be equal or smaller than ρ 0 , depending on whether the OP is neutrally or positively buoyant, respectively.

The SP comprises a flat portion of length L SP and a bent piece (the slab) of length whose leading end subducts with an initial angle θ 0 . The plate has a constant thickness h SP except for the two rounded ends. The SP's midsurface lies halfway between its upper and lower surfaces, and the arclength coordinate along the midsurface is s ∈ [0, L SP + ]. At t = 0, the shape of the slab's midsurface is analytically specified by its dip θ(s), given by θ(s

) = θ 0 ŝ2 (3 -2 ŝ) 3 (1)
where ŝ = s -L SP . Eq. ( 1) ensures that the midsurface curvature K(s) = -dθ ds is initially zero at both s = L SP and s = L SP + .

The OP comprises at t = 0 a central flat portion with constant thickness h OP and length L OP , bounded on the right by a rounded end and on the left by a triangular portion separated from the SP by a gap (lubrication layer) of constant width d 2 . The exact shape of the triangular piece depends on the choice of and d 2 . Sharp corners that could reduce the accuracy of the numerical method are avoided by rounding two of the corners of the triangular piece. The arclength coordinate on the OP's midsurface is

s OP ∈ [0, L OP ].
Referring again to figure 1, we point out that another lubrication layer of thickness d 1 is present above the SP and the OP. Its role is to allow an 'earthlike' lateral movement of the plates. According to lubrication theory, strong normal stresses develop in the thin layer and resist the vertical motion of the plates when they are subjected to a vertical force. In the case of the negatively buoyant SP, an upward-directed normal stress ∼ h SP g∆ρ 1 ) is set up in the layer and exactly compensates the negative buoyancy of the flat portion of the plate, which is then free to move laterally in response to slab pull [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. The situation is opposite for a positively buoyant OP: downward-directed normal stresses ∼ h OP g∆ρ 2 prevent the OP from rising towards the free-slip surface, and allow it to deform freely in response to its buoyancy and the influence of the nearby slab.

BEM formulation

Because inertia is negligible in the mantle, the flow within the plates and outside them is governed by the Stokes equation of motion. Stokes flow problems with deformable fluid/fluid interfaces can be efficiently solved using the boundary-element method (BEM). This numerical technique is based on the boundary-integral representation of Stokes flow, whereby the flow in a given domain is expressed in terms of weighted integrals of the tractions and velocities on the boundaries of the domain. The method is especially well adapted to tracking fluid-fluid interfaces having continuous curvature, like the ones shown in figure 1. The BEM has several advantages: unwanted wall effects are entirely absent, the dimensionality of the problem is reduced by one (from 2-D to 1-D in our case), and it is easy to obtain high (fourth-order) accuracy of the solutions for the velocity at each time step.

The model problem sketched in figure 1 comprises three distinct fluid regions, two of which are singly connected. For this geometry, the boundary-integral representation allows one to derive the following integral equation for the flow field [START_REF] Manga | Buoyancy-driven interactions between two deformable viscous drops[END_REF][START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF]:

χ 0 (x)u (0) (x) + χ 1 (x)λ 1 u (1) (x) + χ 2 (x)λ 2 u (2) (x) = = ∆ρ 1 η 0 C 1 (g ⋅ y)n(y) ⋅ J(y -x)dl(y) + ∆ρ 2 η 0 C 2 (g ⋅ y)n(y) ⋅ J(y -x)dl(y) + +(1 -λ 1 ) C 1 u (1) (y) ⋅ K(y -x) ⋅ n(y) dl(y) + (1 -λ 2 ) C 2 u (2) (y) ⋅ K(y -x) ⋅ n(y) dl(y). (2)
In (2), u (i) (x) (i = 0,1 or 2) is the velocity of the fluid at the point x ∈ S i . The density differences are ∆ρ i = (ρ i -ρ 0 ), and n(y) is the unit vector normal to the contour that points out of the plates. The coefficients χ i (x) for i = 1 and 2 have the values 0, 1/2 or 1 if x ∉ S i , x ∈ C i or x ∈ S i , respectively. The coefficient χ 0 (x) is 0 for x ∉ S 0 , 1/2 for x ∈ C 1 ∨ x ∈ C 2 and 1 for x ∈ S 0 . J(yx) and K(yx) are Green's functions that represent singular solutions of the Stokes equation for the velocity and the stress, respectively, at the point y due to a line force at x. In order to satisfy the free-slip condition at x 2 = 0, they are defined as:

J i j (y -x) = J * i j (y -x) + (-1) j+1 J * i j (y -x IM ) (3) 
K i jk (y -x) = K * i jk (y -x) + (-1) j+1 K * i jk (y -x IM ) (4) 
where x IM ≡ x -2x 2 e 2 is the mirror image of the point x across the boundary x 2 = 0 and

J * i j (r) = 1 4π -δ i j ln r + r i r j r 2 , K * i jk (r) = - 1 π r i r j r k r 4 (5)
are the Green's functions for a line force in an infinite fluid.

Adopting the dimensionless (hatted) variables

(x, ŷ) = h -1 SP (x, y), û(i) = η 0 h 2 SP g∆ρ 1 u (i) (i = 1, 2) (6)
and then suppressing the hats to simplify the notation, we may write the dimensionless form of eq.( 2) as

C 1 -(e 2 ⋅ y)n ⋅ Jdl -Γ C 2 (e 2 ⋅ y)n ⋅ Jdl + (1 -λ 1 ) C 1 u (1) ⋅ K ⋅ n dl+ +(1 -λ 2 ) C 2 u (2) ⋅ K ⋅ n dl = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ u (0) (x) if x ∈ S 0 λ 1 u (1) (x) if x ∈ S 1 λ 2 u (2) (x) if x ∈ S 2 (1 + λ 1 ) 2 u (1) (x) if x ∈ C 1 (1 + λ 2 ) 2 u (2) (x) if x ∈ C 2 (7)
where e 2 = -g g is the (upward-pointing) vertical unit vector, Γ ≡ ∆ρ 2 ∆ρ 1 , and the arguments of u, n, J, K and dl have been suppressed to simplify the notation.

Equations ( 7) allow for a complete calculation of the flow field in the whole space domain. The first step is to consider points x ∈ C 1 and x ∈ C 2 , for which (7) reduces to a pair of coupled Fredholm integral equations of the second kind for the interfacial velocities of the plates. Then, once u (1) and u (2) on the surfaces of the plates are known, the velocity within the plates or in the ambient fluid can be determined by solving the equations of (7) for the regions of interest. Finally, if we are interested also in time dependent solutions, we can advance in time the material points x ∈ C 1 and x ∈ C 2 according to:

dx dt = u(x) (8) 
where the dimensionless time is

t = h SP g∆ρ 1 η 0 t. (9) 
The numerical solution procedure adopted for the solution of (7) when x ∈ C 1 and x ∈ C 2 consists of the following steps. First, the integrals are regularized by subtracting the singularity at y = x [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF], which yields:

C i (e 2 ⋅ y)n ⋅ J dl = C i e 2 ⋅ (y -x)n ⋅ Jdl (10) C i u (i) (y) ⋅ K ⋅ n dl = C i [u (i) (y) -u (i) (x)] ⋅ K ⋅ n dl - 1 2 u (i) (x) (11) 
where i = 1 and 2. Next, the contours C 1 and C 2 are discretized using three-node curved elements C n 1 (n 1 = 1, 2, ..., N 1 ) and C n 2 (n 2 = 1, 2, ..., N 2 ), over each of which y, n and u vary as

y(ξ) = ∑ 3 m=1 φ m (ξ)y m , n(ξ) = ∂ ξ y × e 3 ∂ ξ y × e 3 , u(ξ) = ∑ 3 m=1 φ m (ξ)u m , (12) 
where y m are the (known) nodal coordinates, u m are the (unknown) nodal velocities and φ m (ξ) are quadratic basis functions defined on a master element ξ ∈ [-1, 1]. Substitution of ( 12) into (7) transforms the integrals over C 1 and C 2 into sums over the elements C n 1 and C n 2 , each of which is evaluated on ξ ∈ [-1, 1] using 6-point Gauss-Legendre quadrature. The resulting system of 4(N 1 + N 2 ) coupled linear equations is solved iteratively using the biconjugate gradient algorithm of [START_REF] Press | Numerical recipes in fortran 77: the art of scientific computing[END_REF], yielding the nodal velocities u m with fourth-order-accuracy. Finally, the evolution in time of the shape of the plates is obtained by solving (8) with a second-order Runge-Kutta (midpoint) method.

We emphasize that the element size (mesh resolution) is variable along the two contours, being smaller along the portions that adjoin the thin lubrication layers. This is done in order to avoid the loss of numerical accuracy that occurs when the distance between the observation point y and the source point x of the Green's functions is smaller then the element size (see Appendix C: for more details).

To test the accuracy of the model, we ran simulations for a geometry comprising two effectively solid (λ 1 = λ 2 = 10 5 ) cylinders of radius R with Γ = 1, located at the same depth and separated by a horizontal distance d 2 . We computed the horizontal (u 1 ) and vertical (u 2 ) components of the velocity of the cylinders as well as their spin ω, as functions of increasing d 2 . In the limit d 2 R ≫ 1, u 1 → 0 and ω → 0, and u 2 approaches the prediction of the analytical solution of [START_REF] Wakiya | Application of bipolar coordinates to the two-dimensional creeping motion of a liquid. ii. some problems for two circular cylinders in viscous fluid[END_REF] for a solid cylinder sinking normal to a free-slip surface (figure provided by the authors upon request).

Unsteady subduction

We begin our study with an overview of the qualitative features of the temporal evolution of the system. For reference, we first examine the unsteady subduction of an isolated SP (from now on the SP O case), adding the OP later to see how its presence influences the dynamics. We shall refer to the latter case as the SP+OP case.

Figure 2 shows the initial and final states of three simulations starting from initial configurations given in table 2. Figure 2a shows the subduction of an isolated SP to t = 21.5, at which time the slab's tip is at a depth 6.8h SP (corresponding to a dimensional depth 660 km for h SP = 100 km and d 1 h SP = 0.2.) We then add the OP and run the simulation for the same dimensionless time t = 21.5. The cases shown in figs. 2b and 2c differ only in the thickness d 2 of the lubrication layer between the plates, which is 0.2h SP for the former case and 0.08h SP for the latter.

Comparing the SP O case and both SP+OP cases, we immediately see that the presence of the OP leads to an overall slowing down of the subduction process, as indicated by the reduced convergence rate and trench rollback speed. Moreover, the slowingdown is more pronounced for the smaller lubrication gap thickness. This is indicated by the depths reached by the slabs at t = 21.5, which are 340 km for d 2 h SP =0.2 and 275 km for d 2 h SP =0.08. Furthermore, the OP moves seaward as subduction proceeds, indicating the strong mechanical coupling of the OP and the SP across the lubrication gap separating them.

A useful parameter for illustrating the evolution of subduction is the length s of the sheet's midsurface that is below the depth x 2 = -h SP -d 1 of the base of the plate. The derivative d s dt is then the instantaneous convergence rate. Figure 3(a) shows ˆ s = s /h SP for the three cases of figure 2. The convergence rate is an increasing function of d 2 at all times. This reflects the influence of the viscous drag exerted on the SP by the subduction interface, which increases as d 2 decreases for a given magnitude of the relative tangential velocity between the SP and the OP. The subduction interface drag force works against the slab pull, leading to slower subduction. This effect is emphasized in figure 3b, which shows the instantaneous convergence rate (d s dt) t=0 at the initial time as a function of the dimensionless thickness of the subduction interface. The convergence rate strongly decreases as the subduction interface becomes thinner.

The dominant role of the parameter d 2 h SP becomes even clearer if we examine the influence of the geometry and physical properties of the OP on the evolution of s .

To do so, we fix d 2 h SP = 0.2 and we explore individually the effects of the OP length L OP h SP ∈ [8 -32], its thickness h OP h SP ∈ [0.75 -1.25], its viscosity λ 2 ∈ [150 -600] and its density Γ ∈ [-0.5 -0]. It turns out that all the different curves s (t) remain identical to the one depicted in fig. 3(a), thus proving that none of the OP properties listed above have any influence on the convergence rate. Only the thickness h OP shows a certain effect for long times ( t ≥ 10), with a higher value of h OP resulting in a lower value of the subducted length ˆ s and vice versa (figure provided by the author upon request). However, this variation is small (2-3%) compared to the effect of varying d 2 h SP , which is therefore the dominant parameter controlling s (t).

To conclude this section, we highlight an interesting feature of the geometry of the lubrication gap at the end of our SP+OP simulations. While the gap initially has a constant thickness d 2 , it evolves during subduction so that it is narrower at the bottom than at the top (inset of 2c). This aspect is quantified in figure 4 where we track the time evolution of the maximum (d max ) while thinning at the bottom (decreasing d min 2 ). This means that subduction of the SP drags fluid from the wider to the narrower part of the gap. According to lubrication theory, this is precisely the condition required to build up a positive excess pressure in the gap that keeps the two plates apart.

Thin-sheet analysis: SP kinematics

We begin by recalling the property of instantaneity of slow viscous flow with negligible inertia. A consequence of this property is that the dynamics of the two interacting plates are entirely determined at each instant by the geometry of the system at that instant and by the fluid properties (i.e. density and viscosity of the ambient fluid and of the plates). Thus, in order to study the mechanics of SP-OP interaction it makes sense first to examine quasi-static configurations, without the added complexity of the purely kinematic time evolution. Following this approach, in this section and in § 6 we shall refer only to instantaneous solutions of the model (eq. ( 7)) whose geometrical parameters (e.g. θ 0 , , L SP , h OP etc.) will be varied in order to represent different subduction zones at some arbitrary instant in time.

In order to better highlight the effect of the OP, we first review the case of free subduction of an isolated SP, recalling existing results and obtaining some new ones.

Instantaneous solutions: SP only

The crucial dimensionless parameter that controls the free subduction of an isolated SP can be determined using a simple scaling analysis of the forces acting on the portion of the SP that deforms by bending [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. The analysis is carried out for a subducting plate whose leading end dips at an angle θ 0 and sinks with a vertical velocity V Sink . Three forces act on the bending portion of the plate: the negative buoyancy of the slab, the internal viscous resistance to bending, and the traction applied by the external fluid. Balancing the negative buoyancy and the external traction yields a typical sinking speed V Sink ∼ V Stokes , where

V Stokes = h SP g∆ρ 1 η 0 . (13) 
The characteristic ratio of the internal viscous resistance to the external traction is the 'flexural stiffness'

St = η 1 η 0 h SP b 3 , ( 14 
)
where b is the 'bending length', defined as the distance from the leading end of the SP's midsurface to one characteristic zero of the function K(s) that quantifies the rate of curling of the SP's midsurface. See figure 5 of [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF] for details. In geodynamical terms, b is the sum of the slab length and the length of the region seaward of the trench where flexural bulging occurs. [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF] showed that the sinking speed V Sink obeys a scaling law of the form

V Sink V Stokes = fct(St, θ 0 ), (15) 
which states that two SPs are dynamically similar if they have the same values of St and θ 0 . The requirement that θ 0 be the same for both SPs is the condition for geometrical similarity of the slab's midsurface. Numerical solutions [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF] show that V Sink does not depend on L SP , which implies that geometrical similarity of the midsurface of the whole plate is not required.

As an illustration of the scaling law (15), fig. 5 shows V Sink V Stokes vs. St for θ 0 = 30 ○ , obtained from BEM solutions for different values of d 1 h SP , h SP , and η 1 η 0 . All the points collapse onto a single master curve, validating (15). The master curve has two distinct limits. In the 'Stokes' limit St ≤ 1, the slab's negative buoyancy is balanced by the external traction. The slope of the curve is zero, meaning that the sinking speed is controlled entirely by the viscosity η 0 of the ambient fluid. In the 'flexural' limit St ≫ 1, by contrast, the negative buoyancy is balanced by the internal resistance to bending. The slope of the curve is -1, and the sinking speed is controlled by the viscosity η 1 of the SP.

With the definition of St in hand, we now determine a scaling law for the plate speed U SP , defined as the average horizontal velocity of the midsurface of the flat por-tion of the SP. Unlike V Sink , U SP depends on the plate length L SP , because a longer plate is subject to a greater drag force from the underlying mantle. Accordingly, the analog of the scaling law ( 15) is

U SP V Stokes = fct St, θ 0 , L SP . ( 16 
)
Both θ 0 and L SP appear in the list of arguments because both are necessary to define the geometrical similarity of the sheet's whole midsurface.

Guided by the proposed scaling law ( 16), we plot in fig. 6 the dimensionless SP speed U SP V Stokes as a function of L SP for several values of St and θ 0 = 30 ○ . The flexural stiffness St was adjusted by varying both the viscosity ratio λ 1 and the slab length , which directly affects b . Three aspects of the results are noteworthy. First, the six curves in fig. 6 are nonintersecting and appear from top to bottom in order of increasing St, which validates the assumed form ( 16) of the scaling law. Second, each curve on this semi-log plot is a nearly perfect straight line, indicating that the plate speed depends logarithmically on the plate length for a wide range of values of St. Third, the transition from the Stokes to the flexural limit is manifest in the decreasing slopes of the curves from top to bottom. For low values of St, an increase of L SP increases the drag force on the base of the plate, and therefore strongly affects U SP since it is the external viscosity η 0 that governs the plate's dynamics. On the other hand, for St ≫ 1 U SP becomes much less sensitive to L SP since it is the internal viscosity η 1 (and no longer the basal drag) that controls the plate motion.

Both the slope α and the intercept β of the lines in fig. 6 obviously depend on St. Quantifying these relations, we find the more detailed scaling law

U SP V Stokes = β(St) + α(St) log (L SP ) (17) 
where α(St) and β(St) are shown in fig. 7. For St ∈ [0.1, 20] and L SP ∈ [2, 10], the numerical solutions for U SP V Stokes collapse onto the universal curve (17) to within an error of ± 5 %.

To conclude our analysis of the SP O case, we quantify the convergence speed V Conv ≡ d s dt. A numerically stable value of this speed is obtained by running the code for three time steps and defining V Conv as the best-fitting slope of the curve s (t). The results are shown in fig. 8. The numerical solutions show that V Conv , like V Sink , does not depend on the plate length L SP . However, we find that V Conv depends on the ratio h. The scaling law therefore has the general form

V Conv V Stokes = fct St, θ 0 , h . ( 18 
)
The presence of h in the list of arguments means that dynamical similarity depends on the geometry of the whole slab, and not just the geometry of its midsurface.

Instantaneous solutions: SP+OP

The next task is to determine how the presence of the OP influences the reference scaling laws ( 16) and ( 18) for the SP alone. In order to reduce the number of parameters involved, we shall vary only the OP geometry and the width of the lubrication layer between the two plates, leaving fixed the OP viscosity ratio λ 2 = 10 4 (quasi-rigid OP) and its buoyancy ratio Γ = 0 (neutrally buoyant OP). This choice is partly motivated by previous results showing that the viscosity and buoyancy of the OP play a crucial role in determining its stress state but only weakly influence the SP kinematics [Holt et al., 2015].

We begin by examining the influence of different geometrical parameters on the dimensionless plate speed U SP V Stokes , following the approach used to build figure 6. However, we now fix both the dip of the slab (=30 ○ ) and its viscosity ratio (=10 3 ), which give a nearly constant value of St for all configurations having the same slab length. While St depends somewhat on the OP thickness and the thickness of the lubrication layer between the two plates, the dependence on h SP and λ 1 is much stronger, and so it is plausible to consider St constant unless otherwise specified. Fig. 9 shows the dimensionless plate speed U SP V Stokes as a function of L SP for the SP+OP case. The two solid lines are for the SP O and SP+OP reference cases whose parameters are given in table 3. The four dashed lines are for variations of the SP+OP reference case with respect to the parameter indicated.

The first noteworthy aspect of fig. 9 is that all the curves are straight lines. The dimensionless plate speed therefore depends logarithmically on L SP , just as it did for the SP O case. We find that this dependence is general, independently of the geometry of the system.

Next, we focus on the two solid lines of figure 9 labeled as SP+OP R and SP O , whose parameters are given in table 3. We see that the presence of the OP decreases U SP , but more strongly for a shorter SP. This means that the dimensionless SP speed depends on the ratio L SP L OP of the lengths of the two plates. This is confirmed by comparing the SP+OP R curve with the curve for a shorter overriding plate (L OP h SP = 10). We choose the point with L SP = 5.45 on the SP+OP R curve (black star), and draw a horizontal line that meets the curve for L OP h SP = 10 at the point with L SP = 3.15 denoted by the white star. We find that the two starred points have similar values of the ratio

L SP L OP ∈ [2.2, 2.4].
Turning to the dependence of U SP on the other geometrical parameters, we see first that it is essentially independent of h OP . Next, the normalized SP speed U SP V Stokes increases when the slab length decreases from 7h SP to 5h SP . This is surprising at first sight, since for a SP alone a shorter (hence stiffer) slab is associated with a lower value of U SP V Stokes (fig. 6). The cause of this counterintuitive behavior lies in the presence of the OP, whose trenchward velocity decreases when h SP decreases (figure 10a). Since the SP and the OP are strongly coupled by the lubrication force in the gap between them, the SP necessarily moves faster (to the right in fig. 1) when the OP moves more slowly (to the left).

Finally, we see in fig. 9 that an increase in the lubrication gap thickness d 2 from 0.1h SP to 0.2h SP increases U SP by a large factor ∼ 1.6. This occurs because increasing d 2 decreases the lubrication force at the subduction interface that is responsible for the coupling between the two plates.

In view of the discussion above, we can finally write the scaling law for the SP speed in the presence of an OP in the general form

U SP V Stokes = fct St, θ 0 , L SP , h SP , L SP L OP , d 2 h SP . ( 19 
)
Obviously a scaling law with six arguments is too complicated to explore fully, and so we content ourselves with the results presented above.

Before turning to an examination of the convergence rate V Conv , we mention two interesting features that have emerged from our analysis of the SP speed. The first concerns the driving mechanism for the motion of the OP. Two forces act on the OP: the tractions applied by the subduction-induced flow beneath its base, and the lubrication force in the subduction interface. The subduction-induced tractions are obviously the driving force, as confirmed by the fact that the OP speed is an increasing function of the parameter h SP that represents the importance of slab pull (fig. 10a). Because the sum of the forces is zero, the lubrication force must necessarily be a resisting force. This is confirmed by the fact that U OP decreases as the subduction interface becomes narrower (fig. 10a). Figure 11 shows the subduction-induced flow for h SP = 7 along with the velocity at the lower sur-face of the OP. The vertical gradient of the horizontal velocity near the SP corresponds to a shear stress that drives the OP leftward.

The second feature concerns the dependence of U SP on the interplate gap width for values d 2 > 0.2h SP . Fig. 10b shows the dimensionless SP speed U SP V Stokes as a function of d 2H h SP for the reference case, where d 2H is the horizontal separation between the SP and the OP. The dashed line shows the value of U SP V Stokes for the corresponding SP O case. Surprisingly, we find that the presence of the OP slows down the SP only for small separations d 2H h SP ≤ 0.65. For larger separations, the presence of the OP makes the SP move faster by up to 75%. In the limit d 2H h SP → ∞ the SP O case is recovered.

We now turn to the influence of the OP on the dimensionless convergence speed V Conv V Stokes . Numerical solutions show that V Conv is controlled only by the geometries of the slab's midsurface and the lubrication gap, and is independent of L SP , L OP , and h OP . In the presence of the OP, therefore, the generalized form of the scaling law ( 18) is

V Conv V Stokes = fct St, θ 0 , h SP , d 2 h SP ( 20 
)
Since the gap thickness d 2 controls the lubrication forces arising at the subduction interface, we expect that parameter to be a critical determinant of the convergence speed. As a final remark, we note that fig. 12 confirms the crucial role played by the plate's stiffness St in controlling the kinematics of the SP, as we already saw in fig. 6 for the SP speed U SP . Both V Conv and U SP decrease strongly as St increases, reflecting the overall slowing down of subduction associated with greater plate stiffness (fig. 5).

Thin-sheet analysis of OP deformation

In this section we focus on the subduction-induced deformation of the OP. As in the previous section, we consider only instantaneous solutions of the Stokes equations for the geometry shown in fig. 1. To simplify the notation, the arclength coordinate s OP will be denoted by s.

To understand the deformation of a thin viscous sheet, it suffices to characterize the deformation of its midsurface. To do this, we solve equation ( 7) for points x located on the OP midsurface to obtain the midsurface velocity U(s)s + W(s)z, where s and z are unit vectors parallel to and perpendicular to the midsurface, respectively. The deformation of the midsurface is then characterized by the rate of stretching ∆ and the rate of change of curvature ('curling rate') K, which for a flat sheet are

∆ = U ′ , K = W ′′ , (21) 
where primes denote d ds. The quantities ∆ and K measure the rates of deformation of the midsurface by stretching (or shortening) and by bending, respectively.

Useful measures of the intensities of the stretching and bending deformations of a thin sheet are the rates of viscous dissipation of energy associated with each. Per unit area of the OP midsurface, these are

φ s = 4η 2 h OP ∆ 2 , φ b = 1 3 η 2 h 3 OP K 2 , ( 22 
)
where the subscripts s and b refer to stretching/shortening and bending, respectively. The relative magnitudes of φ b (s) and φ s (s) indicate which mode of deformation is dominant as a function of arclength. We note for future reference that

φ b = -MK, M = - 1 3 η 2 h 3 OP K, ( 23 
)
where M is the bending moment.

In the rest of this section, all quantities referred to are dimensionless, having been nondimensionalized using h SP as the length scale and g∆ρ 1 h 2 SP η 0 as the velocity scale. Consequently, the rates of viscous dissipation of energy will scale as:

φ = η 0 h 3 SP (g∆ρ 1 ) 2 φ (24)
Our first task is to explore how the properties of the SP influence the deformation of the OP. Our numerical simulations show that the OP deformation depends neither on L SP nor on L OP , and so we set these arbitrarily to L SP = L OP = 16h SP . We then fix the viscosity ratios of both plates (λ 1 = λ 2 = 350), the OP thickness (h OP = h SP ) and the interplate gap width (d 2 h SP = 0.1), which allows us to focus on the SP dip θ 0 and slab length h SP .

Fig. 13, at the top, shows K(s) and ∆(s) as function of θ 0 for h SP = 7 and Γ = 0. The steeper the subduction, the higher the magnitude of the bending moment in the OP. However, the length of the portion of the OP where the bending moment is significant (= bending length) is independent of θ 0 . The stretching rate ∆ does not vary monotonically with the slab dip: its magnitude increases from θ 0 = 30 ○ to 60 ○ , and then decreases from 60 ○ to 90 ○ . For θ 0 = 30 ○ there is weak backarc extension for s > 2.7.

The bottom part of fig. 13 shows K(s) and ∆(s) as functions of h SP for θ 0 = 30 ○ and Γ = 0. The magnitude of the bending moment does not vary significantly with the slab length, but the bending portion of the OP becomes longer as the slab length increases. The magnitude of the compression ∆ < 0 is greater for longer slabs, while shorter slabs cause weak extension in the OP. The shorter the slab, the longer the portion of the OP deforming in extension (s > 1.5 for h SP = 5, s > 2.7 for h SP = 7.)

On the left of fig. 14 is shown ∆(s) for two values of Γ, θ 0 = 30 ○ , and h SP = 5. In the previous figures, we saw that a short and shallowly dipping slab leads to relatively small bending and stretching deformations of the OP. However, the same two conditions are precisely those that lead to back-arc extension (around 300 km from the trench assuming h SP = 100 km). The left-side of fig. 14 shows that the transition between compression and extension is further encouraged by OP buoyancy. For example, when Γ = -0.25 (∆ρ 2 = -18 kg/m 3 assuming ∆ρ 1 = 70 kg/m 3 ), the stretching rate curve shifts upward and the length of the extension zone increases. By contrast, numerical solutions show that the curling rate K is unaffected. Fig. 15 shows the rates of energy dissipation φ b and φ s for the configurations of the left part of fig. 14. The deformation changes from compression-dominated close to the trench to bending-dominated further away, a general pattern that we find for many choices of the dimensionless parameters of the model. Only for steep angles of subduction and (mainly) long slabs is the deformation of the OP almost exclusively compressiondominated. For the particular case of a positively buoyant OP (Γ < 0), fig. 15 shows that there is an additional extension-dominated domain in the backarc region beyond the bending zone.

To conclude this section, we examine the influence of the thickness of the OP and of the interplate gap on the OP deformation. As one would expect, varying the OP thickness within the range h OP ∈ [0.75, 1.25] changes K and ∆ substantially, simply because the resistance of the OP to deformation is proportional to h OP (for stretching) and h 3 OP (for bending). Figures showing this will be provided by the authors upon request.

As for the effect of the subduction channel width d 2 , it is significant only very close to the trench. To show this, we extend leftward the OP midsurface (figure 1) into the triangular endpiece, which allows us to calculate K and ∆ for -1 ≤ s ≤ 0. We report in the right part of fig. 14 ∆ for three different values of d 2 h SP for a case with h SP = 5, θ 0 = 30 ○ and Γ = 0. The differences among the three curves are confined essentially to -1 ≤ s ≤ 1. In the near-trench (forearc) region -1 ≤ s ≤ 0, ∆ increases in magnitude as d 2 h SP diminishes, reflecting the increase of the lubrication pressure in the subduction interface. The influence of the lubrication force on the deformation of the OP essentially disappears beyond s = 1. The same holds true for the K curves (not shown to save space).

Geophysical application: evaluation of the interface viscosity of the central Aleutian slab

In this section we apply our BEM model to a real subdction zone in order to constrain the effective value of the strength of the subduction interface. We start by defining the dimensionless interface strength of a subduction zone as

γ = η SI η 0 h SP d 2 (25)
where η SI is the viscosity of the fluid in the subduction interface channel. Equation ( 25) arises from the definition of the shear force acting on the SP across the subduction interface, and implies that the interface strength can be increased either by increasing its viscosity or decreasing its thickness d 2 . In our model, η SI ≡ η 0 is constant, but this does not matter because only the ratio η SI d 2 is dynamically significant. Thus we can vary the strength of the subduction interface by varying d 2 alone.

The next step is to choose a subduction zone that can be reasonably approximated by our model. Perusing the database of [START_REF] Lallemand | On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones[END_REF], we decided to focus on the central Aleutian subduction zone. There are two main reasons for this choice. First, this portion of the Aleutian slab is far from the edges of the subduction zone, making it reasonable to use a 2-D model with no toroidal flow. This approximation is validated by the similarity of the geometries and subduction rates among the three neighboring central Aleutian transects listed in table 4. Second, the central Aleutian slab extends to depths of only 500-550 km, and so has not yet interacted with a potential viscosity jump at the 660 km discontinuity. Our model with a constant mantle viscosity is therefore reasonable for subduction in the Aleutian region. The particular value of the viscosity that we choose is discussed below.

Having selected the subduction zone, we specify the corresponding configuration of our BEM model by averaging the properties given for the three transects CALE4, CALE5 and CALE6 tabulated by [START_REF] Lallemand | On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones[END_REF]. Table 4 gives the relevant parameters for these transects, together with a list ('BEM-segment') of the parameters adopted for the simulation. The lengths L SP and L OP of the two plates have been computed as the square roots of the approximate areas of the subducting Pacific plate (≈ 10 8 km 2 ) and the overriding North American plate (≈ 8 × 10 7 km 2 ). However, the choice of the two lengths is somewhat arbitrary since the target parameter of our analysis, V Conv , depends neither on L SP nor on L OP ( § 5.2).

Having defined the geometry of the subduction zone, we then run the model for a reasonable range [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF] of the viscosity ratios of the two plates, λ 1 = λ 2 ∈ [150-450], and for a range of values of the dimensionless interface strength γ ∈ [0.5-20]. This yields curves of the dimensionless convergence rate as a function of γ. Next, we dimensionalize the calculated convergence rates by multiplying by the velocity scale V Stokes given by equation ( 13). To calculate V Stokes , we assume h SP = 100 km and ∆ρ 1 = 70 kg m -3 , and take η 0 to be the depth-averaged viscosity in the range 0-1000 km inferred by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF]. Taking into account the error bars on the viscosities estimated by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF], we find that the minimum, best-estimate, and maximum values of η 0 are η 0(-) ∼ 3.92 × 10 20 Pa s, η 0(Best) ∼ 5.44 × 10 20 Pa s, η 0(+) ∼ 6.95 × 10 20 Pa s.

(26) Thus, we can now obtain the corresponding value of V Conv V Stokes for the 'BEM-segment' as a function of the mantle viscosities given in ( 26) and find the range of γ on the curves V Conv V Stokes = fct (γ) that predicts the observed convergence rate. Figure 16 shows the final result, where we find γ ∈ [1. 97-6.25]. To estimate the corresponding viscosity of the subduction interface, we assume d 2 h SP ∼ 0.07, which is equivalent to assuming that the subduction interface is the oceanic crust. We then find from equation ( 25) that η SI = 0.96-1.72×10 20 Pa s.

Discussion

The main goal of this study has been to get a clearer picture of the mechanics of subduction, and particularly to explore the role played by the subduction interface. Consider first the SP and its characteristic velocities V Conv and U SP . Figure 17 helps understand the critical role of the subduction interface thickness ratio d 2 h SP that appears in the scaling laws (20) for V Conv and ( 19) for U SP . Once the slab's geometrical parameters (θ 0 and h SP ) are fixed and a certain value of the flexural stiffness St ≡ F int /F D(Slab)- is obtained, the remaining forces affecting the SP are the drag force F D(SP)-on its trailing (non-bending) portion and the lubrication forces F t and F n on the interface. However, we saw in § 5.2 that the length of the trailing part of the SP, and therefore also the drag force F D(SP)-, has no influence on V Conv . Accordingly, it is mainly the shear force F t that opposes the convergence. Since F t ∝ η SI d 2 , V Conv is smaller for a thinner (stronger) lubrication gap and larger for a thicker (weaker) one. Turning now to U SP we recall that this velocity, unlike V Conv , does depend on the trailing plate length and hence also on F D(SP)-. More precisely, U SP is influenced by the sum of F D(SP)-and the horizontal resultant of the lubrication forces F t and F n . Thus, again, lower values of d 2 will generally decrease U SP , while higher ones will increase it.

In the derivation of the scaling law ( 19) for U SP , two other interesting features have emerged. The first is that U SP , unlike V Conv , depends also on the horizontal speed of the OP as explained in § 5.2. It follows that two different geometrical configurations will have the same value of U SP only if the value of U OP does not change, i.e., if U SP U OP is constant. This explains why the ratio L SP L OP appears in the scaling law ( 19). Among the forces acting on the OP, the only one that depends on L OP is the resisting drag F D(OP)-, since the driving shear force F D(OP)+ is determined by the mantle return flow within the wedge and is always confined to the forearc region of the OP. Thus when we vary L SP or L OP with all other geometrical parameters held constant, only the two drag forces that oppose the motion of the two horizontal plates change. Accordingly, configurations with the same ratio L SP L OP will also have the same ratio F D(SP)-F D(OP)-and, consequently, a constant speed ratio U SP U OP . This is confirmed by table 5 for the configurations with different values of L SP L OP that were shown in § 5.2, fig. 9.

The second noteworthy aspect of the scaling law ( 19) is the near-perfect logarithmic dependence of U SP on the ratio L SP . Although U SP is still correlated with the negative buoyancy (F b ∝ ) that drives the plate and with the resisting drag force measured by the plate length L SP , the dependence between these two quantities turns out to be surprisingly weak, namely logarithmic. This feature seems to agree with observations in nature, where the speeds of plates attached to subducting slabs are poorly correlated with their lengths [START_REF] Conrad | Effects of plate bending and fault strength at subduction zones on plate dynamics[END_REF].

Turning now to the OP, our first result concerns the forces that drive its motion. Some studies [e.g. [START_REF] Chen | Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the calabria subduction zone[END_REF] conclude that the interplate lubrication force, depending on the configuration of the system, may drive, rather than resist, the motion of the OP. However, we find that the opposite is always the case. As shown in fig. 2c (inset), the subduction interface evolves so that it is narrower at the bottom than at the top. The downgoing plate therefore drags fluid from the wider to the narrower part of the gap. According to lubrication theory, this is just the condition for the existence of a positive pressure within the gap, which is what keeps the two plates apart. Accordingly, the normal force in the gap resists, rather than drives, the leftward motion of the OP, regardless of the geometry of the plates or the initial gap thickness. The role of the gap thickness is underlined by fig. 10a, which shows that U OP decreases as the lubrication force increases with decreasing d 2 . Now, since F D(OP)-represents an additional resisting force associated with the mantle flow below most of the OP, we conclude that the sole driving force is the shear force F D(OP)+ . This force is related to the vertical gradient of horizontal velocity beneath the forearc region of the OP (visible in fig. 11). This means that the only way to increase U OP is to increase the slab length , which leads to a more vigorous return flow below the OP and a larger F D(OP)+ .

A second result concerns the mechanism of deformation of the OP. According to thin viscous-sheet theory, the deformation of a thin sheet occurs by a combination of stretching/shortening and bending. The relative importance of these two deformation modes is measured by the rates of viscous dissipation of energy (φ s and φ b , respectively) associated with them. Calculating these as a function of arclength along the midsurface of the OP, we found the general pattern shown in fig. 15. Within a distance 1-1.5h SP from the trench (s = 0-0.5h SP ) the deformation is always dominated by compression. This is due to the opposing actions of the (rightward) horizontal resultant of the interplate lubrication force and the (leftward) driving shear force below the forearc region. Further from the trench, bending usually becomes dominant (fig. 18). The exception is for larger values of the slab length and the initial dip θ 0 , for which compression may dominate over bending everywhere. This is seen in table 6, where the case h SP =7 and θ 0 = 60 ○ has no region dominated by bending.

Still further from the trench, in the back-arc region of the OP, both compression and bending are negligible if the OP is neutrally buoyant (Γ = 0). However, when the OP is positively buoyant (Γ < 0), significant stretching of the back-arc region occurs (fig. 14, on the left). In particular, a simple lubrication-theory model for an isolated OP (Appendix A: ) shows that the dimensionless stretching rate ∆ of the back-arc region is

∆ = - d 1 Γ 4λ 2 , (27) 
which is positive (extensional) if Γ < 0. This result is only indicative because the model of an isolated OP treated in Appendix A: ignores the substantial shear traction generated below the forearc region of the OP by the slab-induced mantle flow. Nevertheless, eq. ( 27) is consistent with the fact that back-arc extension only occurs in numerical solutions when Γ < 0. A similar result has been reported by Holt et al. [2015] for a model in which the upper surface of the OP is itself a free-slip surface. We show in Appendix B: that the horizontal extensional stress found numerically by Holt et al. [2015] agrees almost exactly with the prediction of a simple plug-flow model for a spreading viscous gravity current.

The last result regarding the OP deformation concerns the influence of the subduction interface. Our model confirms the short-range nature of the lubrication forces that develop within the subduction interface, as also reported by [START_REF] Duarte | Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology[END_REF] and [START_REF] Chen | Overriding plate deformation and variability of fore-arc deformation during subduction: Insight from geodynamic models and application to the calabria subduction zone[END_REF]. In fact, as reported at the end of § 6 varying the thickness of the lubrication layer (i.e. the magnitude of the lubrication forces) influences both the shortening (right of fig. 14) and the bending of the OP, but only in the forearc region.

In conclusion, we compare the range of values of the dimensionless interface strength γ constrained by our work with values assumed in or constrained by other published subduction models. As shown in table 7, these values vary by a factor 90 0.13 ∼ 700, with our inferences (2.0-6.3) being squarely in the middle of the range. Two important aspects of the numbers in table 7 require some comments.

First, we note that three studies (denoted by asterisks) infer values of γ from natural data. Of these, the study of [START_REF] Duarte | How weak is the subduction zone interface?[END_REF] stands out on account of its very large estimate γ ≈ 90. However, in this study there is a large uncertainty concerning the characterization of the interface between the two plates. The laboratory experiment starts with the two plates separated by a horizontal distance d 2H ∼ 1 cm that is comparable to the thickness h SP ∼ 1.6 cm of the SP. As subduction proceeds, the two plates move closer together, until they are separated by a thin (≈ 1 mm) interface when the SP approaches the bottom of the tank. The ratio d 2 h SP thus varies within a range [0.06, 0.63] in the course of the experiment. The value γ ≈ 90 in table 7 is calculated for the smallest value of d 2 h SP = 0.06. Second, when plate velocities observed in nature are used to infer γ the assumed value of the viscosity ratio λ 1 between the SP and the mantle is critical [START_REF] Duarte | How weak is the subduction zone interface?[END_REF]. This is clear in fig. 16, where the point of intersection between the horizontal lines (= real velocity of the transect) and the curves for different λ 1 varies significantly. This can be explained using the scaling law (20) for the convergence speed of the SP. Once the slab's geometry is fixed, V Conv depends on the flexural stiffness St and the ratio d 2 h SP (or γ if we also take into account the viscosity ratio η SI η 0 ). Now since the geometry is fixed, eq. ( 14) shows that St depends only on λ 1 , because the bending length b itself does [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. We can therefore write

V Conv = fct (λ 1 , γ) (28) 
for a model configuration where the geometry is known. Thus, if we fix V Conv to a value obtained from natural data, the value of λ 1 will be crucial in determining the corresponding value of γ. In physical terms, lower values of λ 1 speed up the SP so that a stronger interface (higher γ) is needed for a given V Conv , and vice versa. Accordingly, a better constraint on the interface strength of real subduction zones requires a more precise knowledge of the viscosity ratio between the SP and the underlying mantle.

Conclusions

In this work we studied the dynamics of subduction by means of a numerical model based on the boundary-element method (BEM). Systematically interpreting the results in the light of thin-viscous sheet theory, we explored the kinematics of the SP and the deformation of the OP, particularly focusing on the influence of the subduction interface on those aspects.

Regarding the kinematics of the SP, we first found a scaling law that describes the convergence speed of the descending slab. Neither the length of the SP nor that of the OP influences the convergence rate, which is instead controlled by the slab's shape, the flexural stiffness St of the plate, and the strength of the subduction interface. The convergence rate increases as either the stiffness of the plate or the strength of the subduction interface decreases. Next, we considered the horizontal speed U SP of the flat portion of the plate. For the case of an isolated SP, U SP obeys the scaling law U SP V Stokes = α(St) + β(St) log(L SP ), where α and β are logarithmic functions of St. Adding the OP to the system, the scaling law becomes rather complex, with both the strength of the interface and the length of the OP now being dynamically relevant. However, numerical solutions still show a perfect logarithmic dependence of U SP V Stokes on L SP . This very weak correlation between plate speed and plate length for plates attached to subducting slabs seems to be in agreement with natural observations. Turning to the OP, we found a three-zone pattern of deformation that is similar for the majority of cases we explored. Close to the trench, the OP is always under strong compression due to the opposing actions of the horizontal resultant of the lubrication force within the subduction interface and the shear force below the forearc region of the OP. The latter force derives from the mantle return flow and is the sole force driving OP motion. Further from the trench is a second zone of deformation dominated by bending, except for long subducting slabs and steep subduction angles for which compression continues to dominate. Finally, significant extension appears in the back-arc region when the OP is positively buoyant, a result that we explained using simple analytical thin-layer models.

We concluded by using the BEM model to constrain the interface viscosity η SI of a natural subduction zone, the central portion of the Aleutian subduction zone. For a realistic range of values of the viscosity ratio between the SP and the underlying mantle, we found η SI = 0.96 -1.72 ×10 20 Pa s for a corresponding range of mantle viscosities η 0 = 3.92 -6.95 × 10 20 Pa s.

A: Stretching rate of a thin-viscous sheet below a lubrication layer bounded by a free-slip surface

Our goal is to show that a positively buoyant OP beneath a thin lubrication layer tends to deform in extension. For this purpose, we consider an isolated OP, and assume that the shear stress acting on its upper surface is much larger than that on its lower surface. To simplify the notation, we set x 1 → s, x 2 → z, and u 1 → u. The global force balance in the horizontal (s-) direction is [START_REF] Ribe | Bending and stretching of thin viscous sheets[END_REF] 

(4η 2 h OP U ′ ) ′ + σ sz z=-d 1 = 0 (A.1)
where primes denote d ds, σ sz x 2 =-d 1 is the shear stress acting on the upper surface of the OP, and the quantity in parentheses is the integral of the fibre stress σ ss across the OP. To determine σ sz in the lubrication layer, we start from the s-component of the momentum equation in the lubrication limit, which is

p ′ = η 0 ∂ 2 u ∂z 2 (A.2)
Since the OP is much more viscous than the lubrication layer, the effective boundary condition on the horizontal velocity is u z=-d 1 = 0. Integrating eq. (A.2) subject to that condi-tion and the free-slip surface condition ∂u ∂z z=0 = 0, we obtain

σ sz (s, -d 1 ) ≈ η 0 ∂u ∂z (s, -d 1 ) = -p ′ d 1 η 0 . (A.3)
Eq. (A.1) then becomes 4η 2 h OP U ′′ -p ′ d 1 = 0 (A.4) Now integrate eq. (A.4) once subject to the condition that both U ′ and p vanish at s = 0, which yields

U ′ = d 1 4η 2 h OP p. (A.5)
Now the pressure in the OP is given by the solution of [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF], viz.,

p h OP g∆ρ 2 = -1 + exp (-s 0 ) - 2 √ 3 exp (-s 2 0 ) sin √ 3s 2 0 , (A.6) where 0 = λ 2 h 3 OP d 3 1 9 1 6 . (A.7)
Combining (A.5) and (A.6), we obtain 4η 2

d 1 g∆ρ 2 U ′ = -1 + exp (-s 0 ) - 2 √ 3 exp (-s 2 0 ) sin √ 3s 2 0 . (A.8)
Eq. (A.8) describes the stretching rate of an OP that is sufficiently long that the two ends do not influence each other. Far from the ends of the OP (s ≫ 0 ), the stretching rate is

U ′ = - d 1 g∆ρ 2 4η 2 , (A.9)
which shows that the OP deforms by extension (U ′ > 0) if it is positively buoyant (∆ρ 2 < 0).

We now verify our assumption that the shear stress on the lower surface of the OP (= F - s ) is negligible compared to that on the upper surface (= F + s ). Consider the portion of the OP of length ∼ 0 adjoining the end s = 0, where the shear stress on the bottom surface is largest. From the above solution, we already know that

F + s ∼ p ′ d 1 ∼ h OP g∆ρ 2 0 , (A.10)
where the scale for p ′ comes from eq. (A.6). Now, the shear stress on the base of the OP is A.11) where the scale for W comes from eq. (B6) of [START_REF] Ribe | Bending mechanics and mode selection in free subduction: A thin-sheet analysis[END_REF]. Taking the ratio of the two stresses and using eq. (A.7), we obtain

F - s ∼ η 2 W 0 ∼ d 3 2 1 g∆ρ 2 λ 2 h OP , ( 
F - s F + s ∼ λ -1 3 2 d 1 h OP . (A.12)
For small values of d 1 h OP and large viscosity contrasts λ 2 (as in our study), F - s F + s ≪ 1. The analysis above is for an isolated OP, and succeeds in showing that a positively buoyant OP should deform in extension. However, in our BEM model the OP is not isolated, but is strongly influenced by the shear stress induced on its base by the sinking of the neighboring slab. This additional shear stress is much larger than F + s , and so our assumption F - s ≪ F + s breaks down. The results of the derivation above should therefore be interpreted as indicative rather than as an accurate reflection of the BEM model.

B: Spreading gravity current below a free-slip surface

Inspired by the model of Holt et al. [2015], we consider a buoyant layer of fluid (the OP) bounded above by a free-slip surface. The OP has thickness h OP , density ρ OP and viscosity η OP , while the underlying fluid has density ρ M = ρ OP -∆ρ and viscosity η M ≪ η OP . To lowest order, the horizontal velocity is constant across the layer (plug flow). The horizontal force balance within the layer is [START_REF] Canright | Buoyant instability of a viscous film over a passive fluid[END_REF]]

∂ ∂s h 2 OP + 8h OP η OP g∆ρ U ′ = 0 (B.1)
where U ′ = ∂U ∂s. Integrating (B.1) once, we obtain

h 2 OP + 8h OP η OP g∆ρ U ′ = F, (B.2)
where F is a constant. At the ends of the OP, U ′ = h OP = 0, which requires F = 0. Therefore

U ′ = - h OP g∆ρ 8η OP . (B.3)
Now from thin viscous-sheet theory, the horizontal normal stress in the OP is σ ss = 4η OP U ′ , or 

σ ss = - h OP g∆ρ 2 . ( B 

C: Numerical implementation

We ran all the simulations using a non-uniform mesh with increased resolution along the upper surfaces of the plates and along the portions adjoining the subduction interface (figure 19). This choice follows from the requirement that the distance between the observation point and the integration point in the Green's functions used in the BEM approach must always be larger than the size of the element in order to avoid loss of accuracy [START_REF] Pozrikidis | Boundary integral and singularity methods for linearized viscous flow[END_REF]. In our problem, this requires paying particular attention to the discretization of the subduction interface where two surfaces are close together.

With these considerations in mind, we built our mesh as follows. We began by choosing the lower limit of the interface thickness upon which to calibrate the corresponding resolution at the interface. Once this is done, we can safely go to wider interfaces being sure that the accuracy criterion explained above is satisfied. We fixed this value at d 2 = 0.08h SP , which represents a robust limit to simulate sufficiently strong interfaces (γ = 12.5) in a wide range of viscosity ratios, i.e. 102 ≤ λ i ≤ ×10 5 , i = 1 or 2. Thinner interfaces (e.g., d 2 = 0.05h SP ) could have been adopted but not in combination with high viscosity ratios (λ i > 5 × 10 4 ) for which we obtained unphysical flow fields. Next, we imposed a reasonable resolution for the lower surface of the plates (=0.1h SP ) and we quadrupled it at the interface obtaining a constant element size of ≈ 0.025h SP . For the instantaneous solutions of the model, this mesh represents a good balance between accuracy and computational cost: decreasing the resolution by a factor of 2 led to an average error of 10% while increasing it by the same factor resulted in exactly the same flow field but with a significant slowdown in the computational time.

Finally, we made sure that the mesh maintained adequate resolution during timedependent simulations. In principle, the natural evolution of the interface (not constrained with any 'contact algorithm') could reduce the thickness of the lubrication layer to below the fixed element size 0.025h SP . To verify that this does not occur, we started from an initial SI thickness d 2 = 0.08h SP and let the system evolve until the slab's tip reached the depth x 2 = -6.6h SP , keeping track of the minimum distance d min 2 (t) between the two plates. We observed that d min 
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2D model geometry of free subuduction of a dense subducting plate (SP) with viscosity η 1 = λ 1 η 0 and density ρ 1 beneath an overriding plate (OP) with viscosity η 2 = λ 2 η 0 and density ρ 2 in an ambient fluid with viscosity η 0 and density ρ 0 . The ambient fluid is infinitely deep and is bounded at x 2 =0 by a freeslip surface. The arclength coordinate along the SP's midsurface is s ∈ [0, L SP + ], while it is s OP ∈ [0, L OP ] for the OP arclength coordinate. The symbol b identifies the 'bending length' of the SP, equal to the sum of the slab length and the length of the seaward portion of the SP where flexural bulging occurs (see section 5.1 for more details). [0.37, 14] were obtained using the following parameters: h=7 ( , , ), h=5 ( , , ) and λ=10 2 ( , ), λ=10 3 ( , ), λ=10 4 ( , ). ized using the range of mantle viscosities given by [START_REF] Mitrovica | A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data[END_REF]. See text for more details.

2)

  and minimum (d min 2 ) thickness of the subduction interface for the model of fig. 2c. The lubrication layer quickly widens at the top (increasing d max 2

  Fig. 12 shows V Conv V Stokes as a function of the dimensionless horizontal SP/OP separation d 2H h SP for four values of the flexural stiffness and θ 0 = 60 ○ . V Conv V Stokes increases strongly with the gap width d 2H h SP ∈ [0.05, 0.35], and then reaches a plateau for d 2H h SP ≈ 1 where the SP O case (open squares) is recovered. Unlike the SP speed (fig. 10b), the convergence speed V Conv never exceeds its SP O value.

  Figure 17 is a schematic diagram of the overall dynamical picture that arises from our work.

  .4) With the values h OP = 80 km and ∆ρ = -130 kg m -3 used by Holt et al. [2015], eq. (B.4) gives σ ss ≈ 50 MPa. This agrees almost exactly with the numerical prediction of fig. 15a of Holt et al. [2015].
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 23456 Figure 2. Time evolution of free subduction for different configurations: (a) SP O case, (b) SP+OP case with d 2 h SP =0.2, (c) SP+OP case with d 2 h SP =0.08. In all cases the thin solid line represents the initial configuration of the system specified in table 2, while the thick solid line corresponds to the final state of the sheets at the dimensionless time t = th SP g∆ρ 1 η 0 = 21.5. The vertical coordinate x2 of the deepest point on the slab and its equivalent in km are indicated. The inset of (c) is a zoomed-in view of the final state of the system.

Figure 9 .

 9 Figure 9. Dimensionless plate speed U SP V Stokes as a function of L SP (semi-log plot) for the SP+OP case. Solid lines: SP O and SP+OP reference cases whose configuration is given in table 3. Dashed lines: variations of the SP+OP reference case with respect to the parameter indicated. L SP L OP ≈ 2 along the line (☀, ), while L SP L OP ≈ 4 along the line (∎, ◻).

Figure 10 .Figure 13 .Figure 14 .

 101314 Figure 10. (a) Dimensionless OP speed vs. dimensionless subduction interface thickness d 2 h SP , for h SP = 5, 6, 7. The ratio L SP = 3.2 is constant. The parameters not specified explicitly are given in table 3. (b) Dimensionless plate speed U SP V Stokes as a function of d 2H h SP for the reference case, where d 2H is the horizontal (as opposed to normal) separation between the SP and the OP. The slab length is h SP = 5 and L SP = 3. The other parameters are those given in table 3. The dashed line indicates the value of U SP V Stokes for the corresponding SP O case.

Figure 15 .Figure 16 .

 1516 Figure 15. Rates of energy dissipation due to bending (φ b , solid line) and stretching/shortening (φs, dashed line) of a positively buoyant OP with Γ = -0.25. For comparison, the dotted line shows the stretching/shortening curve for a neutrally buoyant OP (Γ = 0).

Table 1 .

 1 Notation

	Variable	Definition	Units
	d 1 d 2 h SP h OP L SP L OP θ 0	Lubrication layer thickness above the plates Lubrication layer thickness between the plates SP thickness OP thickness SP length OP length Slab length Initial dip of the slab's tip	[m] [m] [m] [m] [m] [m] [m] [

Table 2 .

 2 Initial configurations SP OP θ 0 L SP /h SP /h SP λ 1 d 2 h SP L OP /h SP h OP /h SP λ 2

	Γ

Table 3 .

 3 Configuration of the reference cases SP OP θ 0 /h SP λ 1 d 2 h SP L OP /h SP h OP /h SP

	SP O SP+OP R	30 ○ 30 ○	7 7	10 3 10 3	-0.1	-16	-1

Table 4 .

 4 Geometry and convergence rates of the 3 transects of the central Aleutian slab derived from Lallemand et al.[2005]. We assume h SP ∼ 100 km. The last line ('BEM-segment') describes the configuration adopted for the simulation and it reports the corresponding value of V Conv adopted for the comparison.

			Observed parameters		
		V Conv [mm yr -1 ]	θ 0		[km]	Depth [km]
	CALE4 CALE5 CALE6	61.00 61.00 59.00	58.00 ○ 59.00 ○ 62.00 ○	704 708 640	550 550 500
		Simulation parameters		
		V Conv [mm yr -1 ]	θ 0	/h SP L SP /h SP L OP /h SP h OP /h SP	Γ
	'BEM-segment'	60.33	59.67 ○ 6.84 100.00	70.00	1.25	-0.25

Table 5 .

 5 Horizontal speed ratio of the configurations shown in § 5.2 fig.9Points L SP L OP U SP U OP

	☀, ∎, ◻	2 4	0.49 0.38

never went below ≈ 0.068, so that the accuracy criterion was fulfilled. We also verified that doubling the resolution of the mesh did not result in any significant changes in the computed flow field.
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Free-slip