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ON FANO COMPLETE INTERSECTIONS IN RATIONAL

HOMOGENEOUS VARIETIES

CHENYU BAI, BAOHUA FU AND LAURENT MANIVEL

Abstract. Complete intersections inside rational homogeneous varieties provide
interesting examples of Fano manifolds. For example, if X = ∩r

i=1
Di ⊂ G/P is a

general complete intersection of r ample divisors such that K∗

G/P ⊗OG/P (−
∑

i Di)

is ample, then X is Fano. We first classify these Fano complete intersections which
are locally rigid. It turns out that most of them are hyperplane sections. We then
classify general hyperplane sections which are quasi-homogeneous.

1. Introduction

We work within the category of complex projective varieties, unless stated oth-
erwise. Rational homogeneous varieties are among the simplest algebraic varieties,
and a better understanding of them is always a motivation for the development of
algebraic geometry. For example, the solution by Mori of the Hartshorne conjecture
characterizes projective spaces by the ampleness of its tangent bundle, which is a
milestone of the minimal model program. A more recent conjecture of Campana-
Peternell claims that rational homogeneous varieties are the only smooth rational
varieties with nef tangent bundle, which is still far from resolved.
Complete intersections in rational homogeneous varieties provide many interesting

examples of Fano varieties. It is expected by Hartshorne that all smooth subvarieties
in Pn of small codimension are complete intersections, which is again far from resolved.
In this paper, we will study two geometrical properties of Fano complete intersections
in rational homogeneous varieties: local rigidity and quasi-homogeneity.
Recall that a smooth projective variety X is said locally rigid if for any smooth

deformation X → B with X0 ≃ X , we have Xt ≃ X for t in a small (analytic)
neighborhood of 0. By Kodaira-Spencer deformation theory, if H2(X, TX) = 0, then
X is locally rigid if and only if H1(X, TX) = 0. For rational homogeneous varieties
G/P , it is shown in [B] (Theorem VII) that H i(G/P, TG/P ) = 0 for all i ≥ 1, hence
they are locally rigid. In [BB], the local rigidity is proven for Fano regular G-varieties.
The case of two-orbits varieties of Picard number one is studied in [PP].
Let G/P be a rational homogeneous variety with G simple andX = ∩r

i=1Di ⊂ G/P
a smooth irreducible complete intersection of r ample divisors. We assume that
K∗

G/P ⊗ OG/P (−
∑

i Di) is ample, which implies that X is Fano. When G/P is of
Picard number one, the converse holds, but in general this condition is stronger
than the Fanoness of X (cf. Remark 2.6). The main purpose of this paper is to
classify such X which are locally rigid. By Kodaira-Nakano vanishing theorem, we
have Hq(X, TX) = 0 for all q ≥ 2. In particular, X is locally rigid if and only if
H1(X, TX) = 0. The main theorem of this paper is the following, which generalizes
Proposition 8.4 in [FH3], where a similar result is obtained in the case of hyperplane
sections of irreducible Hermitian symmetric spaces.
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Theorem 1.1. Let G/P be a rational homogeneous variety with G simple and X =
∩r
i=1Di ⊂ G/P a smooth complete intersection of ample divisors. Assume that K∗

G/P⊗
OG/P (−

∑
i Di) is ample. Then X is locally rigid if and only if X is isomorphic to

one of the following:

(i) Pn or Qn;
(ii) a general hyperplane section of the following:

Gr(2, n),Gr(3, 6),Gr(3, 7),Gr(3, 8),

S5, S6, S7,Grω(2, 6),Lag(3, 6), F4/P4, E6/P1, E7/P7;

(iii) a general hypersurface of bidegree (1, 1) of P(TP2);
(iv) a general codimension 2 linear section of Gr(2, 2k + 1), k ≥ 2;
(v) a general codimension 2 or 3 linear section of S5;
(vi) a general codimension 3 or 4 linear section of Gr(2, 5).

Here Qn denotes the n-dimensional hyperquadric. Gr(a, a+b) is the Grassmannian
of a-dimensional subspaces in an (a + b)-dimensional vector space. Sn is the spinor
variety, parameterizing n-dimensional isotropic linear subspaces in an orthogonal vec-
tor space of dimension 2n. Grω(2, 6) is the symplectic Grassmanian and Lag(3, 6) is
the Lagrangian Grassmannian, which parameterize, respectively, isotropic planes and
Lagrangian subspaces in a 6-dimensional symplectic vector space. For a simple Lie
group G, we denote by Pi the maximal parabolic subgroup of G corresponding to the
i-th root, where we use Bourbaki’s numeration of simple roots.
This apparently disparate list can be explained in terms of Vinberg’s theory of

parabolic prehomogeneous spaces [M]. Briefly, suppose that a node n is chosen on a
connected Dynkin diagram D, such that the complement of the node is the disjoint
union of a Dynkin diagram of type Ak−1 (including k = 1, A0 being by convention
the empty diagram) and a connected Dynkin diagram D0. The latter comes equipped
with a special node n0, the node which was connected to n in D. The pair (D0, n0)
encodes a simply connected simple Lie group G and a maximal parabolic subgroup
P , hence a homogeneous space G/P embedded in PV ∗

P , the projectivization of a
(dualized) fundamental representation. The fundamental fact then is that G×GLk

acts on VP ⊗Ck with finitely many orbits. In particular G acts on Gr(k, VP ) with only
finitely many orbits, and therefore there exists only a finite number of isomorphism
types of codimension k linear sections of G/P . In this situation, the local rigidity of
the general section can be expected, and this is exactly what happens.
We illustrate below the cases that originate from D = E8. To each admissible node

we attached the corresponding homogeneous space, with a superscript indicating the
number k, which is the codimension of the relevant linear sections.

• • • • • • •

•
S
(1)
7

Gr(2, 7)(2) Gr(2, 5)(4)

Gr(3, 8)(1)

S
(3)
5

(E6/P1)
(2)

E7/P
(1)
7

Taking all the connected diagrams we get exactly the list of Theorem 1.1, except
the codimension two linear sections of Gr(2, 2k+1) (which for k ≥ 4 would originate
from the non Dynkin diagrams E2k+2). The general hypersurface of bidegree (1, 1) of
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P(TP2) is a complete intersection of two divisors of bidegree (1, 1) in P2 × P2, which
can be regarded as the linear section associated to the triple node in E6.
Severi varieties are extremal projective varieties with remarkable projective ge-

ometrical properties, which are classified by Zak as follows: the Veronese surface,
minimal embeddings of P2×P2,Gr(2, 6) and E6/P1. It is interesting to notice that a
general hyperplane section of them is homogeneous, while their general codimension
2 linear sections are locally rigid.
One remarks that in order to prove Theorem 1.1, we may assume thatX is a general

complete intersection, since special ones have deformations to the general ones, hence
they are not locally rigid. On the other hand, special complete intersections may have
much richer geometry which remains to be explored systematically. One example is
the 10-dimensional spinor variety S5. Up to projective isomorphism there are only two
classes of smooth codimension 2 linear sections of S5. It is shown in [FH2] (Remark
2.13) that the special ones contain a P4 and are equivariant compactifications of C8,
which is not the case of the general ones. Of course the special codimension 2 section
of S5 is not locally rigid, while the general one is locally rigid. Surprisingly, we discover
that the general codimension 2 linear section of S5 is one of the two-orbits varieties
in [Pa], which is quasi-homogeneous (Proposition 4.9). In particular, we obtain two
non-isomorphic quasi-homogeneous varieties (special and general linear sections of
codimension 2 of S5) which have the same VMRT at general points. This makes even
more delicate the problem of recognition of Fano varieties of Picard number one from
its VMRT.

By [A], a general hyperplane section of G/P (with G simple) is homogeneous if
and only if G/P is isomorphic to Pn,Qn,Gr(2, 2k) or E6/P1. A natural question is:
when is a general hyperplane section X of G/P quasi-homogeneous, i.e. Aut(X) acts
on X with an open orbit? In this paper, we obtain the following classification.

Theorem 1.2. Let G/P be a rational homogeneous variety of Picard number one
and X ⊂ G/P a general hyperplane section. Then X is quasi-homogeneous if and
only if G/P is isomorphic to one of the following

Pn,Qn,Gr(2, n),Gr(3, 6),Gr(3, 7),

S5, S6, S7,Grω(2, 6),Lag(3, 6), F4/P4, E6/P1, E7/P7.

An observation is that a general hyperplane section of G/P is quasi-homogeneous
if and only if it is locally rigid but not a hyperplane section of Gr(3, 8). In general,
there is no direct relation between the two properties.
Once the local rigidity is settled, the next question is whether the varieties in

Theorem 1.1 are rigid? Namely if we have a smooth Kähler deformation X → B
such that Xt ≃ X for all t 6= 0, does this imply that X0 ≃ X? This problem is
already difficult for G/P and was solved by Hwang and Mok (cf. [HM]). It seems
very interesting to extend their results to the varieties in Theorem 1.1. Note that by
the previous discussions, a general codimension 2 linear section of S5 is locally rigid,
but not rigid, as it has deformations to the special section.

Remark 1.3. As is well-known, a smooth Fano complete intersection in Pn is lo-
cally rigid if and only if it is isomorphic to Pm or Qm (cf. Proposition 2.13). If a
homogeneous variety G/P is a complete intersection in G′/P ′, then we only need to
consider complete intersections in G′/P ′. This is the reason why we introduce the
following convention: we say that G/P satisfies ♣ if G/P is not isomorphic to one of
the following: Pn,Qn, Cℓ/P2(ℓ ≥ 3), F4/P4,P(TPm).
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2. Reduction to Picard number one case

Let G be a semi-simple Lie group of rank ℓ with Lie algebra g. We fix a Borel
subgroup and a maximal torus. Let {α1, · · · , αℓ} be the set of simple roots. The
fundamental weights are denoted by {λ1, · · · , λℓ}. Every standard parabolic subgroup
P in G is determined by a subset of indexes ∆ ⊂ {1, · · · , ℓ}, with the property that
αi /∈ Lie(P ) for all i ∈ ∆. We have a natural identification

Pic(G/P ) = {
∑

i∈∆

niλi|ni ∈ Z}.

For λ =
∑

i∈∆ niλi, we denote by Lλ the corresponding line bundle. It is well-
known that Lλ is ample if and only if ni > 0 for all i ∈ ∆ (and in this case, it is very
ample). In particular, there exists a minimal ample line bundle L0, which corresponds
to

∑
i∈∆ λi. As a consequence, we have a minimal G-equivariant embedding G/P ⊂

P(V ∗
P ), where VP = H0(G/P, L0).

By Kodaira vanishing theorem, we have

Lemma 2.1. Let G/P be a rational homogeneous variety and L ∈ Pic(G/P ) an
ample Line bundle. Assume that K∗

G/P ⊗ L∗ is ample. Then Hq(G/P, L∗ ⊗ A) = 0
for all q > 0 and nef line bundle A.

We recall the following theorem from [MS] (Theorem B), which plays a key role
in our computations. Note that claim (0) holds for any smooth projective variety by
the result of Wahl [W].

Theorem 2.2. Let G/P be a rational homogeneous variety and L ∈ Pic(G/P ) an
ample line bundle. Then

(0) H0(G/P, TG/P ⊗ L∗) = 0 except for (G/P, L) = (P1,O(2)) or (Pn,O(1)).
(1) H1(G/P, TG/P ⊗ L∗) = 0 except the following cases

(a) H1(P1, T (−k)) ≃ Symk−4C2, k ≥ 4;
(b) H1(P2, T (−3)) ≃ C;
(c) H1(Qn, T (−2)) ≃ C, n ≥ 3;
(d) H1(Cℓ/P2, TCℓ/P2

(−1)) ≃ C;
(e) H1(F4/P4, TF4/P4

(−1)) ≃ C;
(f) H1(P(TPm), T (−1,−1)) ≃ C;
(g) H1(P1 × P1, T (−k,−2)) ≃ Symk−2C2, k ≥ 2;
(h) H1(P1 × Pn, T (−k,−1)) ≃ Symk−2C2 ⊗ Cn+1, k ≥ 2.

For any smooth projective variety X , we have Hq(X, TX ⊗ L∗) = 0 for all q ≥
2 provided that K∗

X ⊗ L∗ is ample, by Akizuki-Nakano vanishing theorem. As a
consequence, we have

Corollary 2.3. Assume G/P satisfies ♣. Let L ∈ Pic(G/P ) be an ample line bundle
such that K∗

G/P ⊗ L∗ is ample. Then Hq(G/P, TG/P ⊗ L∗) = 0 for all q ≥ 0.
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Proof. The only case to be considered is G/P ≃ P1 × Pn, then K∗
G/P = O(2, n + 1).

By the assumption that K∗
G/P ⊗ L∗ is ample, we have L = O(1, a) with a ≤ n. This

implies that H1(G/P, TG/P ⊗ L∗) = 0 by Theorem 2.2. �

Let Di ⊂ G/P be r ample divisors and X = ∩r
i=1Di their complete intersection.

Assume that X is smooth of the expected dimension, and irreducible. Let D :=∑
i Di. Then we have the following Koszul exact sequence

(2.1)
0 → OG/P (−D) → ⊕iOG/P (−D +Di) → · · · → ⊕iOG/P (−Di) → OG/P → OX → 0.

The following fact is classical, see Lemma 5.7 in [FH3].

Lemma 2.4. Let 0 → F0 → F1 → · · · → Fm → 0 be an exact sequence of coherent
sheaves on a variety X. If Hq+j−1(X,Fm−j) = 0 for all j ∈ {1, 2, · · · , m}, then
Hq(X,Fm) = 0.

By [D], we may assume that H0(G/P, TG/P ) ≃ g up to representing G/P , if nec-
essary, as another quotient G′/P ′.

Proposition 2.5. Assume G/P satisfies ♣ and H0(G/P, TG/P ) = g. Consider a
smooth complete intersection X = ∩r

i=1Di ⊂ G/P such that K∗
G/P ⊗OG/P (−

∑
iDi)

is ample. Then

h0(TX)− h1(TX) = dim g−
r∑

i=1

h0(X,OG/P (Di)|X).

Proof. Taking the tensor product of the Koszul exact sequence (2.1) with TG/P , and
using Corollary 2.3 and Lemma 2.4, we get that

H0(X, TG/P |X) = g and Hq(X, TG/P |X) = 0 ∀q ≥ 1.

The exact sequence 0 → TX → TG/P |X → ⊕r
i=1OG/P (Di)|X → 0 implies that

0 → H0(TX) → H0(X, TG/P |X) → ⊕r
i=1H

0(OG/P (Di)|X) → H1(TX) → 0

is exact, from which the claim follows. �

Remark 2.6. By adjunction, we have K∗
X = (K∗

G/P ⊗OG/P (−D))|X , which is ample

by assumption, hence X is Fano. When G/P is of Picard number one (a main case in
our discussions), the converse also holds, namely ifX is Fano, then K∗

G/P⊗OG/P (−D)

is ample on G/P . But in general, our assumption is stronger than the Fanoness
of X . For example, take a general hypersurface X of bidegree (2, 1) in P1 × P2.
Then the map p : X → P2 is a finite morphism (of degree 2). By adjunction,
K∗

X = O(0, 2)|X = p∗OP2(2) which is ample. Hence X is Fano but O(0, 2) is not
ample on P1 × P2.

Lemma 2.7. Let X = ∩r
i=1Di ⊂ G/P be a smooth complete intersection such that

K∗
G/P ⊗ OG/P (−

∑
i Di) is ample. Let L0 ∈ Pic(G/P ) be the minimal ample line

bundle. Then h0(X,L0|X) = dim VP − s, where s = ♯{i|OG/P (Di) ≃ L0}.
Proof. Taking the tensor product of (2.1) with L0, we get

0 → OG/P (−D)⊗ L0 → · · · → ⊕iOG/P (−Di)⊗ L0 → L0 → L0|X → 0.

From Lemmas 2.4 and 2.1, we deduce an exact sequence

0 → ⊕iH
0(OG/P (−Di)⊗ L0) → H0(L0) → H0(L0|X) → 0,

which implies the claim since L0 is the minimal ample line bundle on G/P . �
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Note that h0(X,OG/P (Di)|X) ≥ h0(X,L0|X) = dimVP − s ≥ dimVP − r. Hence
we obtain

Corollary 2.8. Assume G/P satisfies ♣ andH0(G/P, TG/P ) = g. Let X = ∩r
i=1Di ⊂

G/P be a smooth complete intersection of codimension r such that K∗
G/P⊗OG/P (−

∑
iDi)

is ample. Then X is not locally rigid if dim g < r(dimVP − r).

From now on, we will assume further that G is simple.

Lemma 2.9. Let V be an irreducible representation of a simple Lie group G. Then
(1) dimV 6= dim g+ 1.
(2) dimV = dim g if and only if V is the adjoint representation.

Proof. Assume G is of type Aℓ. The irreducible representations of G of dimension
≤ (ℓ + 1)2 are classified in [SK] (Proposition 7 on p.45) and the claim follows. For
type Cℓ, we can apply [SK] (Lemma 13 and Proposition 14 on p.50). The case of
SO(m) follows from Proposition 20 in [SK] (p. 54). If G is of exceptional type, we
can apply Proposition 22 on p. 56 of [SK]. �

Remark 2.10. Note that if G is not simple, then there are exceptions. For example,
take G/P = Gr(2, 5)× P3, then dimG = 39 and dimVP = 40

Proposition 2.11. Let G/P be a rational homogeneous variety with G simple such
that H0(G/P, TG/P ) = g. Assume that dim g < dimVP . Consider a smooth complete
intersection X = ∩r

i=1Di in G/P such that K∗
G/P ⊗ OG/P (−

∑
i Di) is ample. Then

X is not locally rigid.

Proof. Note that the condition dim g < dimVP implies that G/P satisfies ♣, then by
Lemma 2.9, the assumption dim g < dimVP implies that dimVP ≥ dim g + 2. Now
the claim follows from Corollary 2.8, as r < dimG/P < 1

2
dim g. �

By Proposition 2.11, we are reduced to the case dim g ≥ dim VP . By Lemma 2.9,
the case of equality implies that VP is the adjoint representation and then G/P is the
adjoint variety. In this case, G/P has Picard number one except for type A, where
G/P = P(TPm).

Proposition 2.12. Let X = ∩r
i=1Di ⊂ Z := P(TPm) be a general complete intersec-

tion of r ample divisors. Assume that K∗
Z ⊗ OZ(−

∑r
i=1Di) is ample. Then X is

locally rigid if and only if X is a general hypersurface of bidegree (1, 1) of P(TP2). In
this case, X is isomorphic to the blowup of P2 at 3 general points.

Proof. Note that K∗
P(TPm ) = O(m,m), hence r < m by the ampleness of K∗

Z ⊗
OZ(−

∑r
i=1Di). By a similar argument as in the proof of Proposition 2.5, we have

h0(TX)− h1(TX) = dim g+ s−
r∑

i=1

h0(X,OZ(Di)|X),

where s is the number ♯{j|Dj is of bidegree (1, 1)}. By Lemma 2.7, we have

h0(X,OZ(1, 1)|X) = h0(Z,OZ(1, 1))− s = m2 + 2m− s.

This gives that h0(TX)− h1(TX) ≤ m2 + 2m+ s− r(m2 +2m− s), which is negative
if r ≥ 2.
Now assume X ⊂ Z is a hypersurface of bidegree (a, b). If (a, b) 6= (1, 1), we have

h0(TX)− h1(TX) = dim g− h0(X,OZ(a, b)|X). As

h0(X,OZ(a, b)|X) ≥ h0(X,OZ(2, 1)|X) ≥ h0(Z,OZ(2, 1))−1 =
(m+ 1)(m2 + 2m− 2)

2
−1,
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we obtain that h0(TX) − h1(TX) < 0, which implies that X is not locally rigid. If
X ⊂ Z is of bidegree (1, 1), then h0(TX)−h1(TX) = m2+2m+1−(m2+2m−1) = 2.
This implies that X is locally rigid if and only if h0(TX) = 2. On the other hand, for
the adjoint action of G = PGLm+1 on g = slm+1 , its stabilizer at a general point has
dimension m, hence h0(TX) ≥ m, which gives m ≤ 2.
Let X ⊂ P(TP2) be a general hypersurface of bidegree (1, 1). The projection X →

P2 is birational, with three fibers isomorphic to P1, hence it is the blowup of P2 along
3 points, which are in general position as X is Fano. �

The following is probably well-known, but we do not find an explicit reference.

Proposition 2.13. Let X ⊂ PN be a smooth Fano complete intersection. Then X
is locally rigid if and only if X is isomorphic to a projective space or a hyperquadric.

Proof. Let (d1, · · · , dr) be the multi-degree of X such that 2 ≤ d1 ≤ · · · ≤ dr. We
may assume dimX ≥ 2 as the only Fano curve is P1. If X is not a hyperquadric,
then h0(X, TX) = 0 (see for example Lemma 7.3 [FH3]). By a similar argument as
that in Proposition 2.5, we have

h1(X, TX) =

r∑

i=1

h0(X,OX(di))− (N2 + 2N) ≥ rh0(X,OX(2))− (N2 + 2N),

while h0(X,OX(2)) =
(
N+2
2

)
−s with s = ♯{j|dj = 2}. This implies that h1(X, TX) >

0 if r ≥ 2. Now if X ⊂ PN is a hypersurface of degree d ≥ 3, then h1(X, TX) =(
N+d
d

)
− (N2 + 2N) ≥

(
N+3
3

)
− (N2 + 2N) > 0, which concludes the proof. �

In [E], irreducible representations V of G with dimG > dimV are classified. It
turns out that they are all fundamental representations (see Table 1 in the following
section) except for G/P = Pn. By Proposition 2.12 and Proposition 2.13, we may
assume from now on that G is simple and G/P is of Picard number one satisfying ♣.

Remark 2.14. When G is semi-simple but not simple, a classification of the irre-
ducible representations V of G such that dimG + 1 ≥ dimV is given in Section 3
of [SK](Note that in the notation therein, G has 1 dimensional center, hence their
classification gives all V with dimG + 1 ≥ dimV .) With this, a similar result as
Theorem 1.1 can be obtained for any G semi-simple. We leave this to the reader.

3. Rigidity of hypersurfaces in G/P

In this section, G/P is a rational homogeneous variety of Picard number one.
Recall that for an irreducible representation V of G, there exists an open subset U
such that the stationary subalgebras gv of all the points v ∈ U are conjugate to a
single subalgebra h ⊂ g by [Ri] (Theorem A).
The next table is taken from [E] (table 1) and it gives all the fundamental rep-

resentations VP with dimVP < dim g. In the column headed h is given the generic
stationary subalgebra. In those cases when h is the direct sum of ideals h1, . . . , hk,
we write h = h1 ⊕ . . .⊕ hk. If h decomposes into the semidirect sum of a subalgebra
P and an ideal U , we write h = P +U and in parentheses we specify the action of P
on U . Furthermore, Uk is a k-dimensional commutative Lie algebra.
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type k dimV λk h dim h

Aℓ 1 ℓ+ 1 Aℓ−1 + Uℓ(R(λ1)) ℓ2 + ℓ− 1
A2j−1 2 j(2j − 1) Cj 2j2 + j
A2j 2 j(2j + 1) Cj + U2j(R(λ1)) 2j2 + 3j
A5 3 20 A2 ⊕A2 16
A6 3 35 G2 14
A7 3 56 A2 8
Bℓ 1 2ℓ+ 1 Dℓ 2ℓ2 − ℓ
B3 3 8 G2 14
B4 4 16 B3 21
B5 5 32 A4 24
B6 6 64 A2 ⊕A2 16
Cℓ 1 2ℓ Cℓ−1 + U2ℓ−1(R(λ1) + 1) 2ℓ2 − ℓ
Cℓ 2 2ℓ2 − ℓ− 1 A1 ⊕ . . .⊕A1︸ ︷︷ ︸

ℓ

3ℓ

C3 3 14 A2 8
Dℓ 1 2ℓ Bℓ−1 2ℓ2 − 3ℓ+ 1
D5 4 16 B3 + U8(R(λ3)) 29
D6 5 32 A5 35
D7 6 64 G2 ⊕G2 28
G2 1 7 A2 8
F4 4 26 D4 28
E6 1 27 F4 52
E7 7 56 E6 78

Table 1: Èlašvili’s list

Lemma 3.1. Assume G/P satisfies ♣ and H0(G/P, TG/P ) = g. Let X ⊂ G/P be a
smooth Fano hypersurface of degree d ≥ 2. Then X is not locally rigid.

Proof. We may assume dim g ≥ dim VP by Proposition 2.11. By Proposition 2.5,
we have h0(X, TX) − h1(X, TX) = dim g − h0(X,OX(d)) while h0(X,OX(d)) =
h0(G/P,OG/P (d))− 1. Thus if h0(G/P,OG/P (d)) > dim g + 1, then H1(X, TX) 6= 0,
which implies that X is not locally rigid.
By Lemma 2.9, if dim g = dimVP , then VP is the adjoint representation and G/P

is the adjoint variety. Then h0(G/P,OG/P (d)) > dim g+ 1 if d ≥ 2.
Finally, in [E], all irreducible representations V of G with dim g > dimV are

listed, from which we deduce that dim g > dimh0(G/P,OG/P (d)) is only possible for
G/P ≃ Pn and d = 2, which is excluded by our assumption ♣. �

Proposition 3.2. Assume G/P ⊂ P(V ∗
P ) satisfies ♣ and H0(G/P, TG/P ) = g. Let

L ⊂ P(V ∗
P ) be a linear subspace of codimension r such that X = G/P ∩ L is smooth

Fano. We denote by aut(G/P, L) the Lie algebra of automorphisms of G/P preserving
the linear space L. Then

(i) H0(X, TX) ≃ aut(G/P, L).
(ii) X is locally rigid if and only if the G-orbit of [L⊥] ∈ Gr(r, VP ) is open.

Proof. (i) By Lemma 2.7, we have H0(X,OX(1)) = L, hence L is the linear span of
X . By the proof of Proposition 2.5, we have H0(X, TG/P |X) ≃ H0(G/P, TG/P ) = g.
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By the normal bundle exact sequence 0 → TX → TG/P |X → NX|G/P → 0, we get that

H0(X, TX) = Ker(H0(X, TG/P |X) ≃ H0(G/P, TG/P ) → H0(X,NX|G/P )),

namely H0(X, TX) identifies with the set of vector fields on G/P which preserves X
(hence its linear span L).
(ii) By Proposition 2.5, we have

h1(X, TX) = r(dimVP −r)−(dim g−dim aut(G/P, L)) = dimGr(r, VP )−dimG·[L⊥],

which vanishes if and only if the G-orbit of [L⊥] ∈ Gr(r, VP ) is open. �

In the rest of this section, we will only consider hyperplane sections of G/P . Let

L ⊂ PV ∗
P be a general hyperplane, projectivization of the affine hyperplane L̂ ⊂ V ∗

P .
Let X = G/P ∩ L be the corresponding hyperplane section of G/P . We will denote

by l ⊂ VP the line orthogonal to the hyperplane L̂ ⊂ V ∗
P . Recall that V ∗

P is an
irreducible representation of G and so is VP . We denote by Gl the subgroup of G
preserving l and gl its Lie algebra. For v ∈ l a non-zero element, the stabilizer Gv is
a subgroup of Gl. The quotient Q := Gl/Gv acts on l by a subgroup of C∗.

Lemma 3.3. If Gv is reductive, then Q is a finite group, hence gl = gv.

Proof. As L is a general hyperplane, the point v ∈ l is a general point of VP . If Gv

is reductive, then by [P], the orbit G · v is closed in VP . If Q ≃ C∗, then Q acts on l

by scalars, hence G · v ⊃ Q · v = l \ {0}. By the closedness of the orbit, we get that
0 ∈ G · v, which is absurd. �

Proposition 3.4. Assume G/P satisfies ♣ and H0(G/P, TG/P ) = g. Let v ∈ l be a
non-zero point and gv the Lie algebra of the stabilizer Gv. Then

aut(X) =

{
gv ⊕ C if G/P = Gr(2, 2k + 1) or S5,

gv otherwise.

Proof. First note that aut(G/P, L) is exactly gl. If dimVP > dimG, then by [AVE]
(Corollary on p.260), the stabilizer Gv is discrete, hence by Lemma 3.3, we have
gv = gl = 0. If dimVP = dimG, then VP is the adjoint representation (cf. Lemma
2.9) and in this case gv is a Cartan subalgebra, hence by Lemma 3.3, we have gv = gl.
Now assume dim VP < dimG, then the stabilizer gv is computed in [E] (table 1).

One checks that gv is not reductive only for G/P = Gr(2, 2k + 1) or S5.
When G/P = Gr(2, 2k + 1), then X is the so-called odd symplectic Grassmanian.

Its automorphism group is computed in [PV], from which one checks that aut(X) ≃
gv ⊕ C. When G/P = S5, its Lie algebra of automorphism group is well-known (see
for example Proposition 3.9 [FH1]) and one checks directly the claim. �

By Propositions 2.5 and 3.4, we obtain the following

Corollary 3.5. Assume G/P satisfies ♣ and H0(G/P, TG/P ) = g. Let X = G/P ∩L
be a general hyperplane section and v ∈ l a nonzero point. Then

h1(X, TX) =

{
dim gv + dimVP − dim g if G/P = Gr(2, 2k + 1) or S5,

dim gv + dimVP − dim g− 1 otherwise.

Lemma 3.6. Let X ⊂ Gr(2, n+1)(n ≥ 4) be a general codimension 2 linear section,
then X is locally rigid if and only if either n is even or n = 5.
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Proof. By Proposition 2.5, we have h0(TX)−h1(TX) = (n2+2n)−2(n(n+1)/2−2) =
n+ 4. By [PV], we have

dimAut(X) =

{
n+ 4 n even

3(n+ 1)/2 n odd.

The claim follows immediately. �

Remark 3.7. By [PV], the general codimension 2 linear section X ⊂ Gr(2, 2k + 1)
is quasi-homogeneous if and only if k ≤ 3. In even dimension, a codimension 2 linear
section X ⊂ Gr(2, 2k) is defined by a pencil of skew-symmetric forms, and those that
are not of maximal rank define in general a k-tuple of points on P1, well-defined up
to PGL2. This k-tuple of points has the same number of moduli as X . Moreover
it is easy to see that X is quasi-homogeneous only when k ≤ 3. For k = 3 it is a
compactification of SL2 × SL2 × SL2/diag(SL2).

Remark 3.8. Linear sections of Gr(2, 5) have been studied classically and appear
in the classification of del Pezzo manifolds. It is well-known that there is a unique
isomorphism class of del Pezzo manifolds of degree five in each dimension between 2
and 6, hence they are all locally rigid.

Theorem 3.9. Let G/P be a rational homogeneous variety of Picard number one.
Let X ⊂ G/P be a general hyperplane. Then X is locally rigid if and only if G/P is
isomorphic to one of the following

Pn,Qn,Gr(2, n),Gr(3, 6),Gr(3, 7),Gr(3, 8),

S5, S6, S7,Grω(2, 6),Lag(3, 6), F4/P4, E6/P1, E7/P7.

Proof. If G/P does not satisfy ♣, we need to consider two cases: Cℓ/P2 and F4/P4.
A general hyperplane section of Cℓ/P2 is a codimension 2 linear sections of A2ℓ−1/P2,
which is locally rigid if and only if ℓ = 3 by Lemma 3.6. For F4/P4, its general
hyperplane section X is a codimension 2 linear section of E6/P1. By Proposition
2.5, we have h0(TX)− h1(TX) = 28. By Proposition 48 ([SK], p. 139), the stabilizer
aut(E6/P1, L) is so(8), which implies h0(X, TX) = 28 by Proposition 3.2, hence X is
locally rigid.
Now we assume G/P satisfies ♣. By Proposition 2.11, we may assume dimVP ≤

dim g. If dimVP = dimG, then VP is the adjoint representation by Lemma 2.9. As a
consequence, dim gv = rk(g). By Corollary 3.5, dimH1(X, TX) = rk(g)− 1, which is
non-zero except for type A1.
Now assume dimVP < dimG, then the stabilizer gv is computed in Table 1. Then

a case-by-case check using Corollary 3.5 concludes the proof. �

As an application, we recover the following well-known fact from [A].

Corollary 3.10. A general hyperplane section of G/P of Picard number one is ho-
mogeneous if and only if G/P is isomorphic to one of the following

Pn,Qn,Gr(2, 2k), E6/P1.

4. Rigidity of complete intersections in G/P

4.1. End of the classification.

Let G/P be a rational homogeneous variety of Picard number one. Let X ⊂ G/P
be a smooth complete intersection of codimension r ≥ 2. We may assume dimX ≥ 2.
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By Corollary 2.8, if X is locally rigid, then dim g ≥ r(dimVP − r). The following
lists all such possibilities (by using Table 1).

Lemma 4.1. Assume G/P satisfies ♣ and H0(G/P, TG/P ) = g. Then dim g ≥
r(dimVP − r) for some r ≥ 2 holds only for the following cases:

(1) G/P = Aℓ/P2 and r = 2, or ℓ = 4 and r = 3, 4;
(2) G/P = S5 and r = 2, 3;
(3) G/P = S6 and r = 2;
(4) G/P = E6/P1 and r = 2, 3;
(5) G/P = E7/P7 and r = 2.

By a similar argument as in Lemma 3.1, the only possible complete intersections
which are locally rigid in these cases are linear sections. Case (1) is done by Lemma
3.6 and Remark 3.8. We will consider case (2) in the following subsection. Concerning
case (4), the codimension 2 linear section of E6/P1 is a hyperplane section of F4/P4

and has been studied in the previous section. The remaining three cases are treated
by the following result. Alltogether, this will complete the proof of Theorem 1.1.

Proposition 4.2. A general codimension 2 (resp. 3) linear section of S6 or E7/P7

(resp. E6/P1) is not locally rigid.

Proof. For X a smooth codimension 2 (resp. 3) linear section of S6 or E7/P7 (resp.
E6/P1), we have h0(TX) − h1(TX) = 6, 25 (resp. 6) by Proposition 2.5. On the
other hand, for X general, the stabilizer of its linear span in PV ∗

P is of type 3A1, D4

(resp. A2) by [V] (table on p. 491-492), so H0(TX) has dimension 9, 28 (resp. 8) by
Proposition 3.2. This gives that h1(TX) = 3, 3 (resp. 2), concluding the proof. �

4.2. Sections of the 10-dimensional spinor variety.

Let S = S5 ⊂ P15. For k ≥ 1, we denote by Sk ⊂ P15−k a smooth linear section
of S of codimension k. The hyperplane section S1 is a horospherical variety with
Picard number one and non reductive automorphism group, it appears as case 2 of
[Pa], Theorem 0.1. It is uniquely defined up to isomorphism, but this is no longer
the case of Sk for k = 2, 3.

Lemma 4.3. (1) We have h0(TS2
)− h1(TS2

) = 17 and h0(TS3
)− h1(TS3

) = 6.
(2) The general S2 and S3 are locally rigid.

Proof. Claim (1) is immediate from Proposition 2.5. Let k = 2, 3. The action of
GLk × Spin10 on Ck ⊗ V16 (where V16 is a spin representation) is known to be quasi-
homogeneous by [SK] (Propositions 32 and 33, p. 124-126), and therefore the action
of Spin10 on the Grassmannian Gr(k, V16) is also quasi-homogeneous. By Proposition
3.2, the general S2 and S3 are locally rigid. �

In the following, we will study the quasi-homogeneity of the sections Sk(k = 2, 3),
and show that it does not always imply their local rigidity. To that purpose, we first
introduce some results which allow us to determine aut(Sk).
For a smooth projective subvariety Z ⊂ PN covered by lines, the variety of lines

on Z through a point z ∈ Z is called the VMRT of Z at z. For equivariant compact-
ifications of affine spaces, we can describe the infinitesimal automorphisms in terms
of prolongations of the VMRT. For that purpose, we recall the following

Definition 4.4. Let V be a complex vector space and g ⊂ End(V ) a Lie subalgebra.
The k-th prolongation (denoted by g(k)) of g is the space of symmetric multi-linear
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homomorphisms A : Symk+1 V → V such that for any fixed v1, · · · , vk ∈ V , the
endomorphism Av1,...,vk : V → V defined by

v ∈ V 7→ Av1,...,vk,v := A(v, v1, · · · , vk) ∈ V

is in g. In other words, g(k) = Hom(Symk+1 V, V ) ∩Hom(Symk V, g).

It is shown in [HM] that for a smooth non-degenerate C ( Pn−1, the second prolon-

gation satisfies aut(Ĉ)(2) = 0, where aut(Ĉ) ⊂ gl(n) is the Lie algebra of infinitesimal

automorphisms of Ĉ. The following result is a combination of Propositions 5.10, 5.14
and 6.13 in [FH1].

Proposition 4.5. Let X be an n-dimensional smooth uniruled projective variety of
Picard number one. Assume that the VMRT at a general point is isomorphic to a
smooth irreducible non-degenerate projective subvariety C ( Pn−1. Then

dim aut(X) ≤ n+ dim aut(Ĉ) + dim aut(Ĉ)(1),

with equality if and only if X is an equivariant compactification of Cn. In case of
equality, we have aut(X) ≃ Cn>⊳ aut(Ĉ)⊕ aut(Ĉ)(1).

Lemma 4.6. Let C ⊂ Gr(2, 5) be a general codimension 2 linear section. Then

aut(Ĉ)(1) ≃ C.

Proof. First notice that C ⊂ P7 is quadratically symmetric by Proposition 7.6 [FH2],

hence aut(Ĉ)(1) 6= 0 by Proposition 7.11 [FH2]. By the proof of Theorem 6.15 [FH2]
(whose conclusion is not correct, since there is an error in the proof of Proposition

2.9 loc. cit.), we get that aut(Ĉ)(1) ≃ C as the VMRT of C (namely a twisted cubic
in P3) has no prolongations. �

By Corollary 6.17 [K], there are exactly two isomorphic classes of smooth codi-
mension 2 linear sections of S5. By Remark 2.13 [FH2], the special section is an
equivariant compactification of C8 while the general one is not.

Proposition 4.7. If S2 is special, then h0(TS2
) = 18 and h1(TS2

) = 1.

Proof. The VMRT C of S2 is a codimension 2 linear section of Gr(2, 5), so aut(C)
has dimension 8 by [PV]. If S2 is special, then it is an equivariant compactification

of C8, hence by Proposition 4.5, we have aut(S2) ≃ C8>⊳ aut(Ĉ) ⊕ aut(Ĉ)(1). Since

aut(Ĉ1)
(1) is one-dimensional by Lemma 4.6, we obtain that dim aut(S2) = 18. As

H0(OS2
(1)) has dimension 14, this gives that H1(TS2

) = C, proving (1).
�

The general section S2 has a very different automorphism group from that of the
special one. By [SK] (Propositions 32, p. 124), the former is of type G2 × SL2. This
can be understood from the following construction: recall that if n = p + q, a half-
spin representation of spin2n, when restricted to the subalgebra spin2p+1×spin2q−1, is
isomorphic to the tensor product of the spin representations of spin2p+1 and spin2q−1.
In particular, for n = 5, p = 1, q = 4, the half-spin representation ∆10 of spin10
restricts to ∆3 ⊗ ∆7. Of course spin3 ≃ sl2 and its spin representation ∆3 is just
the natural representation V2 of sl2. Now take another copy of sl2 with its natural
representation U2, and consider the representation U2 ⊗ ∆10 of sl2 × spin10. When
restricted to sl2 × spin3 × spin7 ≃ sl2 × sl2 × spin7, and then to the subalgebra
δ(sl2)× g2, where δ(sl2) ⊂ sl2 × sl2 denotes the diagonal subalgebra, one gets

U2 ⊗∆10 ≃ U2 ⊗ U2 ⊗ (C⊕ V7),
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where V7 is the natural representation of g2 ⊂ spin7. In particular the line L =
∧2U2 ⊂ U2 ⊗∆10 is fixed by δ(sl2)× g2.

Lemma 4.8. The stabilizer of L in sl2 × spin10 is exactly δ(sl2)× g2.

Proof. Let (u1, u2) and (v1, v2) be basis of U2 and V2, respectively. Since g2 ⊂ spin7 is
the stabilizer of a generic point p in the spin representation ∆7, we may suppose that
the line L is generated by q = (u1 ⊗ v2 − u2 ⊗ v1)⊗ p. Let us compute the stabilizer
of q in sl2 × spin10. We can decompose

spin10 = sl2 × spin7 ⊕ End0(V2)⊗ V7.

Consider in End0(V2) the standard basis (θ1, θ2, θ3) = (v∗1⊗v1−v∗2⊗v2, v
∗
2⊗v1, v

∗
1⊗v2).

We write an element of sl2⊗spin10 as M = X+Y +Z+θ1⊗w1+θ2⊗w2+θ3⊗w3 for
X, Y ∈ sl2, Z ∈ spin7 and w1, w2, w3 ∈ V7. The condition that Mq = 0 is equivalent
to the equations Zp = 0 and

w1 ∗ p = (X11 + Y22)p, w2 ∗ p = (X21 − Y21)p, w3 ∗ p = (X12 − Y12)p,

where we denote by ∗ the Clifford multiplication map from V7 ⊗∆7 to ∆7. In terms
of the Cayley algebra O, we can identify ∆7 with O, p with the unit octonion and
V7 with Im(O), and ∗ is then just the octonionic multiplication. In particular, w ∗ p
identifies with w, and can never a be a non zero multiple of p. The previous equations
therefore reduce to w1 = w2 = w3 = 0, X = Y , and Zp = 0, that is, Z must belong
to g2. �

As a consequence, the SL2×Spin10-orbit of L in P(U2⊗∆10) is open, and so must
be the orbit of the corresponding plane of ∆10. With the notations we have just used,
this plane is nothing else than V2 ⊗ p ⊂ V2 ⊗ ∆7 = ∆10. We identify this subspace
with its orthogonal (V2 and ∆7 are naturally self-dual), and we aim at describing the
corresponding linear section S2 of the spinor variety. For this we use the fact that
the spinor variety is defined by its quadratic equations, which are parametrized by
V10 = Sym2V2 ⊕ V7. These equations can be understood as follows: we have

Sym2(V2 ⊗∆7) = Sym2V2 ⊗ Sym2∆7 ⊕ ∧2V2 ⊗ ∧2∆7.

Note that Sym2∆7 has a unique invariant (up to scalar), with an irreducible comple-
ment, while ∧2∆7 = spin7 ⊕ V7. This means that an element v1 ⊗ p1 + v2 ⊗ p2 of ∆10

belongs to (the cone over) the spinor variety if and only if

Q(p1) = Q(p2) = Q(p1, p2) = 0 and Ω(p1, p2) = 0,

where Q is the unique invariant quandratic form on ∆7, and Ω : ∧2∆7 −→ V7 the
unique invariant map (up to scalar). Now we restrict to the codimension two linear
section S2 orthogonal to V2⊗p, which just means that p1, p2 must be orthogonal to p.
Recall that as g2-modules, ∆7 ≃ Cp⊕ V7. Moreover, if we identify V7 with the space
of imaginary octonions, the restriction of Q must be (a multiple of) the standard
quadratic form, and the unique g2-invariant map from ∧2V7 to V7 is given by the
imaginary part of the octonionic multiplication. We conclude that v1 ⊗ p1 + v2 ⊗ p2
belongs to (the cone over) S2 if and only if, either p1 and p2 are colinear and of norm
zero, or they generate what is called a null plane in [LM], that is, a plane of imaginary
octonions in restriction to which the octonionic product vanishes identically. Since
G2 acts transitively on the space of null-planes, we can finally conclude that S2 is
quasi-homogeneous under the action of G2×SL2. Note moreover that it follows from
this explicit description that S2 is isomorphic with the two-orbits variety denoted X2
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in [Pa] (Definition 2.12). Taking into account Theorem 0.2 of [Pa], we summarize our
discussion as follows:

Proposition 4.9. The general codimension two linear section S2 of the spinor variety
S = S5 ⊂ P15 is a two-orbits variety, which is quasi-homogeneous under its connected
automorphism group G2 × PSL2.

Remark 4.10. Here is another way to prove that X2 ≃ S2: by [Pa] (Section 2.2.1),
the connected automorphism group Aut0(X2) is isomorphic to G2×PSL2, which acts
on X2 with two orbits. The closed orbit Y is isomorphic to Q5 × P1 and the normal
bundle NY |X2

is isomorphic to the vector bundle of rank 2 on Y associated to the
irreducible representation with weights λ2 − λ1 + 2λ0 and −λ2 + 2λ1 + 2λ0 (where
λ1, λ2 are fundamental weights of G2 and λ0 is that of PSL2.) Note that in [Pa],
he used the convention ωi in stead of λi, which leads to a sign change. This gives
that the first Chern class c1(NY |X2

) = Lλ1+4λ0 = OY (1, 4). By adjunction formula,
we have K∗

X2
|Y = K∗

Y ⊗ c1(NY |X2
) = OY (6, 6), which implies that K∗

X2
= O(6). This

shows that X2 is a Mukai variety, hence it must be a codimension 2 linear section of
S5. As its automorphism group has dimension 17, it must be the general codimension
2 linear section S2.

Now we consider S3. From the classification results in [KW] (page 40), one can
easily check that there exists exactly four isomorphism classes. By Remark 2.13
[FH2], although this is not the case of the general one, it can happen that S3 is an
equivariant compactification of C7; in this case we will say it is very special.

Proposition 4.11. If S3 is very special, then h0(TS3
) = 11 and h1(TS3

) = 5.

Proof. If S3 is an equivariant compactification of C7, its VMRT is a codimension 3
linear section of Gr(2, 5), whose automorphism group is PGL2. Hence h0(TS3

) = 11
by Proposition 4.5, and the claim follows from Lemma 4.3. �

In particular its automorphism group acts on the very special S3 quasi-homogeneous-
ly, while the automorphism group of the general S3, which is of type SL2×SL2 ([SK],
Proposition 33 p. 126), is too small for that.

5. Quasi-homogeneous hyperplane sections

Let G/P be a rational homogeneous variety of Picard number one and X ⊂ G/P
a general hyperplane section. We consider the following question: when is X quasi-
homogeneous, in the sense that Aut(X) acts on X with an open orbit?
If dimVP ≥ dim g, then X cannot be quasi-homogeneous, because dim aut(X) is

smaller than dimX . When dimVP < dim g, we are in the list of Table 1 and we do
a case-by-case check.
(i) If G/P = Gr(2, n), then X is either homogeneous (for n even) or it is an odd

symplectic Grassmanian, which is quasi-homogeneous.
(ii) If G/P = Gr(3, 6) (resp. Lag(3, 6), S6, E7/P7), then by [Ru] (Theorem 3), the

connected automorphism group Aut0(X) is isomorphic to SL3×SL3 (resp. SL3, SL6,
E6), which acts on X with an open orbit isomorphic to SL3 × SL3/diag(SL3) (resp.
SL3/SO3, SL6/Sp6, E6/F4), hence it is quasi-homogeneous.
(iii) For G/P = S5 = D5/P5, X is well-known to be quasi-homogeneous. In fact,

it is one of the two-orbits varieties studied in [PP].
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(iv) If G/P = Cℓ/P2, then G/P is a general hyperplane section of Gr(2, 2ℓ),
hence X is a general codimension 2 linear section of Gr(2, 2ℓ). By [PV], X is quasi-
homogeneous if and only if ℓ ≤ 3.
(v) For G/P = G2/P1, E6/P1, the general hyperplane sections are homogeneous.
(vi) For G/P = Gr(3, 8), then aut(X) = sl3 has too small dimension for X to be

quasi-homogeneous.
The remaining cases are Gr(3, 7), S7 and F4/P4. In the following subsections, we

will prove that their general hyperplane sections are quasi-homogeneous. This will
conclude the proof of Theorem 1.2.

5.1. Gr(3, 7).

Let V7 be a seven-dimensional vector space. The stabilizer in SL(V7) of a generic
three-form ω ∈ ∧3V ∗

7 is a subgroup isomorphic to G2 [SK] (Proposition 8, p. 86).
This can be understood by letting V7 = ImO, the space of imaginary octonions.
There is a natural three-form on this space, defined by

ω(x, y, z) = Re((xy)z), ∀x, y, z ∈ ImO.

This three-form ω is invariant under G2 = Aut(O), and it is known to be generic in
the sense that its GL(V7)-orbit is open in ∧3V ∗

7 .

Proposition 5.1. The hyperplane section Xω of Gr(3, V7) defined by the generic
three-form ω ∈ ∧3V ∗

7 is a compactification of G2/O3.

Proof. We denote by e0 = 1, e1, . . . , e7 the standard basis of O, whose multiplication
table is given by an oriented Fano plane, as in [M] (p. 105). A point of Xω is the
three-plane L = 〈e1, e2, e4〉, and we claim that the stabilizer of L in G2 is isomorphic
to O3. Indeed let g1, g2, g4 be any orthonormal basis of L. Define g0 = 1, g3 = g1g2,
g6 = g2g4, g7 = g4g1, and g5 = (g1g2)g4.

Lemma 5.2. The endomorphism of O sending ei to gi for 0 ≤ i ≤ 7, belongs to G2.

This proves that an element of G2 that stabilizes L is uniquely defined by its
restriction to L, which can be any element in the orthogonal group O(L) ≃ O3. �

5.2. S7.

Let V14 be a fourteen-dimensional vector space, endowed with a nondegenerate
quadratic form. We split V14 = E ⊕ F into two maximal isotropic spaces. These two
spaces are in duality with respect to the quadratic form. We choose a basis e1, . . . , e7
of E and denote by f1, . . . , f7 the dual basis of F .
Recall that the two half-spin representations of Spin(V14) ≃ Spin14 can be defined

as S+ = ∧+E and S− = ∧−E, the even and odd parts of the exterior algebra of E.
The action of the spin group is induced by the action of the Clifford algebra of V14

on ∧E, where E acts by exterior product and F by contraction. Here S+ and S− are
dual one to the other; alternatively, one can therefore define S− as ∧+F .
The spinor variety S7 is the closed orbit of the spin group inside PS+. It parametrizes

the set of maximal isotropic subspaces of V14 that meet E in even dimension. This
is done by associating to any such isotropic subspace W a pure spinor sW , uniquely
defined (up to scalar) by the fact that its annihilator (for the Clifford multiplication)
is precisely W . For example sF = 1.
The action of the spin group on PS+ and its dual PS− is known to be quasihomo-

geneous. An explicit element in the open orbit of PS− is given [SK](pp. 131-132) by
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the class of the spinor

s∗ = 1 + f1f2f3f7 + f4f5f6f7 + f1f2f3f4f5f6.

The stabilizer H of s∗ in Spin(V14) is locally isomorphic to G2×G2. In fact, according
to [SK], there are two distinguished seven dimensional subspaces of V14 that are
preserved by H , namely

I1 = 〈e7 − f7, e1, e2, e3, f1, f2, f3〉, I2 = 〈e7 + f7, e4, e5, e6, f4, f5, f6〉.
Note that the restriction of the quadratic form to either I1 and I2 is nondegenerate,
so that each of these spaces can be interpreted as a copy of the imaginary octonions.
Moreover the infinitesimal action of g2 on I1 is explicitely given by the matrices of
the form

M =




0 2u 2v 2w 2a 2b 2c
a 0 w −v
b A −w 0 u
c v −u 0
u 0 −c b
v c 0 −a −tA
w −b a 0




,

where A belongs to sl3. Indeed, g2 contains sl3 as a subalgebra (generated by the
long root vectors), and decomposes as an sl3 module as g2 = sl3⊕V3⊕V ∗

3 . Moreover
the natural action of g2 on V7 = C⊕ V3 ⊕ V ∗

3 is given by the previous matrices.
Similarly, the infinitesimal action of g2 on I2 is given by the matrices

N =




0 2λ 2µ 2ν 2d 2e 2f
d 0 ν −µ
e B −ν 0 λ
f µ −λ 0
λ 0 −f e
µ f 0 −d −tB
ν −e d 0




where B belongs to sl3.
Now consider the space W = 〈e1 − e4, f1 + f4, e2 − e5, f2 + f5, e3 − e6, f3 + f6, e7〉.

This is a maximal isotropic subspace of V14, that intersects E in four dimensions.
The associated pure spinor is

sW = (e1 − e4)(e2 − e5)(e3 − e6)e7 = e1e2e3e7 − e4e5e6e7 + . . . .

One has 〈sW , s∗〉 = 0: so sW is a pure spinor in the hyperplane section of S7 defined
by s∗. Moreover, a straightforward computation shows that the endomorphism of
V14 defined by a pair (M,N) as above, preserves W if and only if A = B and all the
other coefficients vanish. In other words, the infinitesimal stabilizer of sW in g2 × g2
is isomorphic to sl3.
This implies that the G2×G2-orbit of sW has dimension 20, hence it must be open

in the hyperplane section of the spinor variety. We have proved:

Proposition 5.3. The general hyperplane section of S7 is a compactification of G2×
G2/K, where K is locally isomorphic to the diagonal SL3.

Remark 5.4. Along the same line, we can get yet another proof of Proposition 4.9:
by [SK] (p. 122), the general codimension 2 linear section S2 of S5 is defined by
s∗1 = 1+ f1f2f3f4 and s∗2 = f1f5+ f2f3f4f5. Consider the space W = 〈f1, e2− e4, f2+
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f4, e3− e5, f3+ f5〉 with associated pure spinor sW = (e2− e4)(e3− e5) which satisfies
〈sW , s∗i 〉 = 0, i = 1, 2, hence sW is on S2. By Proposition 3.2, aut(S2) = g2 × sl2,
which can be represented by the matrices in (5.40) [SK] (p.122). It is now straight-
forward to compute that the stabilizer of sW is defined by 8 linear equations, hence
the orbit Aut0(S2) · sW is of dimension 8 and hence open in S2, which proves that
S2 is quasi-homogeneous. Now if we take U = 〈e1 − e3, f1 + f3, e2 − e4, f2 + f4, f5〉,
then in the same way, we can show that sU ∈ S2 and Aut0(S2) · sU is of dimension 6,
which is the closed orbit in S2.

5.3. F4/P4.

As was already noticed, F4/P4 is a generic hyperplane section of the Cayley plane
E6/P1, embedded in the projectivization of the minimal representation V27 of E6. So
we will consider a generic codimension two linear section of the Cayley plane.
Recall that V27 can be identified with the exceptional Jordan algebra H3(O) of

3× 3 Hermitian matrices with octonionic coefficients:

M =



r1 x3 x2

x3 r2 x1

x2 x1 r3


 , x1, x2, x3 ∈ O, r1, r2, r3 ∈ C.

Moreover, one can understand the Cayley plane E6/P1 ⊂ PH3(O) as the Zariski
closure of the set of matrices of the form


1 x y
x xx xy
y yx yy


 , x, y ∈ O.

The full action of E6 on the Cayley plane would be complicated to describe in full.
Let us just mention that the part of it that acts trivially on diagonal matrices respects
the nondiagonal blocks: it is made of transformations of type



r1 x3 x2

x3 r2 x1

x2 x1 r3


 7→




r1 g3(x3) g2(x2)

g3(x3) r2 g1(x1)

g2(x2) g1(x1) r3


 ,

where g1, g2, g3 belong to GL(O). For such a transformation to preserve the Cayley
plane, one needs the condition that

g1(xy) = g3(x)g2(y) ∀x, y ∈ O.

By the celebrated triality principle, the set of such triples (g1, g2, g3) form a group
isomorphic to Spin8.
By [SK](p. 138), the action of E6 on the Grassmannian of codimension two sub-

spaces of V27 is quasihomogeneous. Moreover, one defines a point in the open orbit
by the linear equations

r1 + r2 + r3 = r1 − r3 = 0,

and the stabilizer of this point in E6 is precisely the copy of Spin8 that we have just
described (up to a finite group). This Spin8 acts on the linear section X0 of the
Cayley plane defined by our two linear equations. Consider the point p of X0 defined
by the matrix 


1 i

√
2e0 e0

i
√
2e0 −2 i

√
2e0

i
√
2e0 i

√
2e0 1


 .
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The stabilizer of p in Spin8 is the set of triples (g1, g2, g3) in GL(O) such that gi(e0) =

e0, i = 1, 2, 3, and g1(xy) = g3(x)g2(y). Letting x = e0 we get g1(y) = g2(y), while

letting y = e0 we get g1(x) = g3(x). This means that the triple (g1, g2, g3) is uniquely
determined by g1, which is submitted to the condition that g1(xy) = g1(x)g1(y). In
other words, g1 must belong to Aut(O) = G2, and the stabilizer of p in Spin8 is
isomorphic to G2.
Since Spin8/G2 has the same dimension 14 as the codimension two section X0 of

the Cayley plane, we conclude that:

Proposition 5.5. The generic hyperplane section of F4/P4, which is also a generic
codimension two linear section of the Cayley plane E6/P1, is a compactification of
Spin8/G2.
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[AVE] Andreev, E. M.; Vinberg, E. B.; Èlašvili, A. G., Orbits of highest dimension of semisimple
linear Lie groups. Funkcional. Anal. i Priloen. 1 1967 no. 4, 3–7

[BB] Bien, Frédéric; Brion, Michel: Automorphisms and local rigidity of regular varieties. Com-
positio Math. 104 (1996), no. 1, 1-26

[B] Bott, Raoul: Homogeneous vector bundles. Ann. of Math. (2) 66 (1957), 203-248
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[E] Èlašvili, A. G.: Canonical form and stationary subalgebras of points in general position
for simple linear Lie groups. Funkcional. Anal. i Priložen. 6 (1972), no. 1, 51–62
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Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS,
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