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Balancing California’s Grid Without Batteries

Neil Cammardella1, Joel Mathias1, Matthew Kiener2, Ana Bušić3, and Sean Meyn1

Abstract— Demand dispatch refers to a collection of dis-
tributed control techniques to obtain grid services from flexible
loads. A carefully designed control architecture can enable a
collection of loads to behave in aggregate as a large virtual
storage device. Grid-level ancillary services can be provided
with minimal communication, while guaranteeing quality of
service to the consumer.

This work expands on prior work in several directions:
• A natural notion of energy capacity is proposed for the

special case of thermostatically controlled loads (TCLs). It is
shown that this quantity is closely approximated by thermal
energy capacity, which is a component of the “leaky battery
model” introduced in prior work.
• Simulation experiments in a distributed control setting

show that these energy limits, and accompanying power
capacity limits, are reliable indicators of online capacity, even
for a heterogeneous population of loads.
• A feedforward/feedback control scheme is proposed for

a large collection of heterogeneous loads. At the local level,
control loops are used to create cooperative responses from
each load in a given class of homogeneous loads. This
simplifies control of the aggregate based on two pieces of
information: aggregate power consumption from each class
of loads and the state of charge surrogate that is a part of
the leaky battery model. This information is required at a
slow time-scale (say, 5 minute sampling).
• The paper concludes with economic implications. In

particular, given that dispatchable loads are a form of virtual
storage and not virtual generation, it is not surprising that the
use of real time or time-of-use pricing has been problematic.

I. INTRODUCTION

California witnessed several records in March of 2018.
The California Independent System Operator (CAISO) saw
an all-time peak percentage of demand served by solar,
hitting a record of nearly 50% at 1pm. The next day, CAISO
set another solar record, this time hitting a new peak for
solar production of over 10 GW in the morning. Prices are
negative during these events, and the system suffers from
physical shocks in terms of massive ramping in supply, as
well as a large peak in energy consumption in the afternoon.
The magnitude of these shocks is evident in Fig. 1, which
shows the large penetration of renewables, especially solar,
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Fig. 1. Record solar in California — March 4, 2018.

in the CAISO region. The afternoon ramp in demand from
thermal generation is about 5 GW per hour; for reference, a
large nuclear power plant is about 1.5 GW.

Government policy has been enacted in various regions of
the globe to encourage the installation of resources to smooth
energy from renewables. In California there are incentives /
mandates for installation of massive battery systems. The
largest lithium-ion battery system in the world was installed
there in 2017, only to be out-done by a slightly larger
installation in Australia a few months later [1]. Among the
challenges with batteries:

(i) Energy loss of about 10% per charge/discharge cycle.
(ii) Air-conditioning may be required to cool the fleet.
(iii) It is estimated that the battery cells must be replaced

every 3-5 years, depending on usage.
(iv) Large amount of real-estate is required for current

systems (see images in [1]).
(v) The installation cost is enormous [2].

In parallel with these policy decisions is a rapidly evolving
science for demand dispatch: utilization of the inherent flex-
ibility of many electric loads to create the same services that
can be offered by batteries. This virtual energy storage (VES)
is not intended to “store energy for a rainy day”. Rather,
just like the battery systems that are installed today, flexible
loads will virtually “charge and discharge” in response to a
command signal from a grid operator or balancing authority
(BA). The goals of the BA will be met: ramps from solar
generation will be tempered, and afternoon peak demand will
be leveled. In our design, the quality of service (QoS) offered
to the consumer is kept within strict bounds.

Not all battery systems are alike. For example, lithium-
ion batteries are slow to charge, but can discharge quickly.
Nickel metal-hydride technology has a more symmetric
charge/discharge rate. The same is true of virtual energy
storage: the characteristics of VES from a collection of
residential water heaters is different from a collection of
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Fig. 2. The control architecture: feedforward commands are computed from forecasts and feedback commands are computed from real-time error.

commercial units. Consequently, the integration of heteroge-
neous resources is an important component in the dispatch
of storage – either real or virtual.

The solution to this problem is naturally addressed through
a feedforward/feedback architecture. The feedforward part
is essential to take advantage of forecasts of grid events,
such as ramps in solar or wind energy production, and
the approximately periodic demand cycle. In particular, in
anticipation of a peak in baseline net-load, the population
of water heaters should heat to near the endpoint of the
deadband interval determined by the thermostat. This is
analogous to charging a battery.

Feedback is required because forecasts are not perfect, es-
pecially for high frequency volatility induced by renewables
or traditional generation outages.

The implementation of feedforward control is based on
Model Predictive Control (MPC), which requires a dynam-
ical model as well as constraints. The dynamics of virtual
energy storage through the distributed control architecture of
[3], [4] gives rise to an input-output model that is typically
passive, but complex. This complexity has been addressed
in later work: in [5], [6] it is argued that an additional local
control loop can be introduced at each load to make the ag-
gregate input-output dynamics approximately linear, and also
flat within a specified bandwidth. By adopting this distributed
control strategy, the only model required is a surrogate “state
of charge” (SoC) for each class of loads. A useful model
of the SoC for VES from thermostatically controlled loads
(TCLs) was proposed in [7], [8] (a component of the “leaky
battery model”), and for residential pools in [3], [4].

A block diagram of the proposed control strategy is
shown in Fig. 2, whose components are described broadly
as follows:

(i) The block Gp (GRID) captures dynamics such as the
grid inertia and frequency-dependent loads in the network
controlled by the BA. Linear models can be found in
standard references [9].
(ii) The “actuators” represent the collection of bundled

loads; each class providing VES with certain characteris-
tics.
(iii) The feedforward block determines optimal trajec-

tories for each of the resources — VES as well as
batteries and traditional generation. This optimization step
is repeated periodically (every 30 minutes in the numerical

examples considered). This computation requires estimates
of the state of charge at the start of the optimization com-
putation, and forecasts of load and renewable generation.
(iv) The feedback block serves two roles:
• Slow time scale. Based on the desired signals obtained

from the feedforward block, and measurements of ag-
gregate power, a scalar command signal is synthesized
and broadcast to each load class to ensure that the
signals are tracked.

• Fast time scale. This is similar to automatic generation
control (AGC). Regulation of the grid frequency ωt is
obtained using a feedback architecture that is typical
in practice today. A PI control architecture is suitable,
given the simple grid dynamics, and the flat dynamics
of the batteries or VES resources. The scalar command
signals may be decomposed by frequency, as described
in [10], [6].

In this paper it is assumed that the BA has access to two
types of information from each class of loads: aggregate SoC
and aggregate power consumption. It is argued in [5], [6] that
control on the fast time scale can be achieved using only
grid-level frequency measurements.

The present paper is most closely related to [11], which
considers the feedforward control problem under the assump-
tion that the histograms of loads is available at the BA.

The SoC constraints of [7], [8] are essentially constraints
on thermal energy storage, which is not of direct interest to
the grid operator. In Prop. 2.1 it is shown that the thermal
energy bound obtained in this prior work is closely approx-
imated by electrical energy capacity. See [12] for discussion
on the multi-dimensional aspects of energy capacity for VES.

Net-present-value comparisons of real and virtual energy
storage can be found in [13], [14].

The remainder of this paper is organized as follows.
Section II estimates the power and energy capacities of
TCLs and validates those estimates. Section III describes the
distributed control architecture. Simulations of flexible loads
providing grid services are performed in IV. Conclusions and
directions for future research are discussed in V.

II. VIRTUAL STORAGE: POWER AND ENERGY CAPACITY

In this section, we describe how virtual energy storage can
be provided by thermostatically controlled loads (TCLs). We
restrict our attention to water heaters, though the models



are developed similarly for other thermal loads such as
refrigerators and air conditioners1.

Consider a collection of N water heaters indexed by k =
{1, 2, ..., N}. The state process for the k-th load at time t is
defined as the pair

Xk(t) = (Mk(t),Θk(t)) , (1)

in which Mk(t) ∈ {0, 1} denotes the power mode (the
value “1” indicating the unit is on), and Θk(t) the inside
temperature of the tank; all temperatures are in units of
degree Fahrenheit.

A. Individual water heater model

Focusing on an individual load, we drop the superscript
in (1). The basic function of the water heater is to keep the
internal water temperature Θ(t) at time t within the (time-
invariant) lower and upper bounds as Θ− ≤ Θ(t) ≤ Θ+. The
standard model relating these state variables and disturbances
is a first order ODE:

d
dtΘ(t) = −λ(Θ(t)−Θa) + γM(t)Pm

− (Θ(t)−Θin(t))νf(t)
(2)

where Θa is the (time-invariant) ambient air temperature,
Θin(t) is temperature of the cold water entering the tank,
f(t) is flow rate of hot water from the unit (gallons/sec),
M(t) ∈ {0, 1} is the power mode (M(t) = 1 indicates that
the power is on), Pm is the on-power, and λ, γ, ν > 0 are
scalar parameters governing heat transfer of the system.

Simple formulae for power and energy capacity are ob-
tained in an idealized setting, as in [7], [8], in which there
is no water is moving in and out of the tank:

d
dtΘ(t) = −λ(Θ(t)−Θa) + γM(t)Pm. (3)

It is assumed that the parameters are such that the water will
cool down ( ddtΘ(t) < 0) when the power is off (M(t) = 0),
and heat up ( ddtΘ(t) > 0) when the power is on (M(t) = 1).
Sufficient conditions for these are Θ− > Θa and γPm >
λ(Θ+ −Θa), respectively.

The dynamics of a basic hysteresis controller are shown
in Fig. 3. When the water temperature reaches the upper
limit, the heater turns off. The water then becomes cooler
until it reaches the lower limit, at which point the heater
turns on. The heater off-duration Toff and on-duration Ton

are computed from equation (3) as

λToff = ln
(

1 +
Θ+ −Θ−
Θ− −Θa

)
, (4a)

λTon = ln

(
1 +

Θ+ −Θ−
γPm/λ− (Θ+ −Θa)

)
. (4b)

The average power over time is given by as P0 =
Pm Ton

Ton+Toff
.

1For cooling devices, the sign conventions will be different in the models.

Fig. 3. Dynamics of water temperature and power under a water tank
hysteresis controller.

B. Power capacity

The notion of capacity in terms of power for a collection
of homogeneous loads is defined in [8]. the upper and lower
power limits are denoted η+ and η−. In a stationary setting
in which the average power of the collection is meaningful,
it follows that η+ = NP0 and η− = N(Pm − P0).

The quantity NP0 is regarded as the baseline power
consumption. If we turn off all the loads, then this is
analogous to a battery discharging at level η+. Turning on
all loads is similar to a battery charging at rate η−.

This definition of power capacity can be easily extended
to the case with hot water usage by replacing the average
power consumption by a baseline power consumption for
the aggregate.

C. Thermal energy capacity

The energy bound obtained in [8] is based on their
formulation of state of charge (SoC) of a homogeneous
collection of TCLs. This is the aggregate temperature of a
collection of loads, normalized so that it is expressed in units
of energy, with a constant subtracted so the nominal value
is zero. Consequently, the SoC evolves as a first order linear
system similar to (3):

d
dtx(t) = −λx(t)− u(t) , (5)

in which u(t) is the aggregate power deviation (relative to a
baseline) supplied to the grid by the collection of loads. It
is interpreted as the power drawn from the VES composed
by the collection of loads. The SoC is subject to the bound
|x(t)| ≤ E0/2 for all t, where E0 is the thermal energy limit.
It follows from Corollary 7 of [8] that the thermal energy
limit for a homogeneous collection of N WHs is

E0 = N(Θ+ −Θ−)/γ (6)

D. Energy capacity

The energy capacity of a homogeneous collection of loads
is defined in terms analogous to that of an energy storage
system such as a battery; i.e., the energy capacity is the
amount of energy that can be delivered by the storage system
during a discharge period.

For a homogeneous collection of N loads, the discharge
period is equal to the discharge period of an individual load.



A “fully charged” collection of N water heaters corresponds
to each individual temperature at the maximal value Θ+. The
maximal “discharge period” of the population coincides with
Toff of an individual (see Fig. 3).

Virtual energy storage capacity for the collection of N
homogeneous loads is average power times a discharge
period: E = NP0 × Toff.

It is demonstrated next that this capacity limit is approxi-
mately consistent with the energy capacity bound (6).

The error term (2.1) appearing in Prop. 7 is typically very
small, since in practice Θ−−Θa � Θ+−Θ−. For example,
in the case of water heaters, Θ− −Θa is typically between
40–60 ◦F , whereas the the temperature deadband Θ+−Θ−
varies from 3–7 ◦F .

Proposition 2.1: The following approximation holds for a
homogeneous collection of N water heaters without usage:

E = E0 +O(Nµ2) , µ =
Θ+ −Θ−
Θ− −Θa

(7)

Proof: Denote the average temperature by

Θ0 := lim
T→∞

1

T

∫ T

0

Θ(t)dt .

The average power consumption for one load can be ex-
pressed in the two equivalent forms:

P0 = Pm
Ton

Toff + Ton
=
λ

γ
(Θ0 −Θa).

where the second equation follows from (3). The expression
E = NP0 × Toff then yields

E = N
λ

γ
(Θ0 −Θa)× Toff (8)

A Taylor series approximation gives

Toff =
1

λ

Θ+ −Θ−
Θ− −Θa

+O(µ2)

=
1

λ

Θ+ −Θ−
Θ0 −Θa

+O(µ2)

Substituting this bound into (8) gives (7).
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E. Realizing capacity

A homogeneous collection of 120,000 water heaters was
simulated under the myopic design of [6]. This distributed
control architecture is based on local randomized control at
each load. A common discrete-time command signal is sent
to all water heaters, then each water heater considers both
the command signal and its own temperature to compute the
probability of changing the power mode.

Simulations were performed with a variety of reference
signals. Figs. 4 and 5 show aggregate power deviation from
nominal for 120,000 water heaters. Note that the power
signals shown in Figs. 4–7 are the power consumed by the
collection of loads relative to a baseline (i.e., −u(t) in (5)).
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Fig. 4 shows excellent tracking of a 30 MW, 120 MWh
signal. However, when the discharge power exceeds 30 MW,
poor tracking occurs. In general, tracking is excellent when
the reference signal respects the power and energy constraints
of the loads.

Fig. 5 demonstrates poor tracking when the reference
signal exceeds the energy limit of the collection of water
heaters. Observe that instability occurs when the SoC is
within about 90% of the energy limit. Maintaining such high
ranges of the SoC require a very high rate of cycling from the
individual loads; cycling limits enforced by the distributed
control algorithm result in the oscillations observed in the
figure.

The energy capacity limits were tested in more realistic
settings that included non-stationary usage (details of the
simulation model can be found in [6]). The three rows in
Fig. 6 correspond to three scalings of a grid reference signal.
In the first subplot, the reference signal is zero (the plot in
the upper left hand corner shows nominal aggregate power
consumption in this case). In the final row, the reference sig-
nal violates power limits, resulting in poor tracking between
hours 12–17.

Also shown in the figure is the behavior of one typical
water heater among the fleet in each of the three cases.
The qualitative behavior of power consumption is virtually
unchanged, even when the reference signal exceeds power
limits.



80

100

120

140

0 5 10 15 200 5 10 15 20

80

100

120

140

80

100

120

140

0

50

100

-50

0

50

M
W

M
W

M
W

-10

0

10

Nominal power consumption 

Tracking

Tracking

Typical Load Response

te
m

p 
(F

)

r t
≡

0
N

o 
re

g:
|r t

|≤
40

 M
W

|r t
|≤

10
 M

W

Lo
ad

 O
n

(hrs)t (hrs)t

BPA Reference:
Power Deviation

rt

Fig. 6. Power capacity experiments with heterogeneous water heaters with
usage. The morning peak in nominal power consumption is consistent with
typical water usage.

A second set of experiments were performed to investigate
the impact of energy limits. Results are shown in Fig. 7. An
unstable response is observed when the SoC approaches the
energy capacity E0/2. The tracking is excellent when energy
limits are not violated.
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III. CONTROL ARCHITECTURE

Experience indicates that it is often advantageous to
combine feedback and feedforward, and the correct balance
requires insight and understanding of their respective prop-
erties [15]. In our own prior work we have ignored the
feedforward component, although we have pointed out the
obvious drawbacks [5]. In particular, reliance on pure real-
time control excludes the possibility of “pre-charging” virtual
energy storage resources in anticipation of peaks in net load.
The focus of this work is on the feedforward architecture,
which operates on a slow time-scale (e.g., updates every
30 minutes). The feedback component has been covered
extensively in previous work [5], [6], [16].

The control models are described here in continuous time.

A. TCL model

The generalized battery model (5) is used for each class
of loads. The SoC x and power deviation u are subject to
the following dynamic constraints, for each t ≥ 0:

d
dtx(t) = −αx(t)− u(t) (9)
−η− ≤ u(t) ≤ η+ (10)
|x(t)| ≤ C , (11)

in which C = NE0/2, and η± are defined in Section II-D.

B. Residential swimming pools

Similar abstract notions of SoC were introduced in [3], [4]
for a collection of residential pool pumps. For an individual
load with state process X evolving in discrete time, it is
assumed that there is a “snapshot” QoS function `(X(k)),
and that total QoS at time τ is the discounted sum:

L(τ) =

τ∑
k=0

βk`(X(τ − k)) , (12)

with β ∈ (0, 1). The QoS evolves as a linear system,

L(τ) = βL(τ − 1) + `(X(τ)) , (13)

and through local control is subject to constraints to ensure
L(τ) ∼ 0 for each τ .

Here we focus on power deviation: `(X(k)) =
[P (X(k)) − P0]T , where P (X(k)) is power consumption
at state X(k), P0 is the desired long-term average, and T
is the sampling interval. Cycling is also considered in prior
work.

We require a model for a collection of N loads, rather
than an individual, and a model in continuous time. Letting
u denote the power deviation from the baseline, and abusing
notation slightly to denote L(τ) as the sum of QoS over all
loads, we approximate to obtain a continuous time model
similar to (5):

d
dtL(t) = −αL(t)− u(t) , |L(t)| ≤ C
−η− ≤ u(t) ≤ η+

The following conventions are adopted for the charge power
limit η−, discharge power limit η+, capacity C, and dissipa-
tion rate α:

η− = N(Pm − P0), η+ = NP0,

C = εN
P0T

1− β , α =
1

T
ln(1/β),

where ε ∈ (0, 1) is given. The limits η± are defined in
Section II-D, while α is a result of the continuous-time
approximation of (13).

C. Feedforward command signal

The feedforward command signal is obtained from the so-
lution to a quadratic program whose objective is to minimize
the cost of supplying forecast net load l with a combination
of traditional generation g, and power deviation from flexible
loads u. Flexible loads consist of Mt classes of TCLs and
Mp classes of non-TCLs.



Quadratic program over time-period [t, T ]:

minimize
g, x,Li(t)

∫ T
t

{
c0(g(t)− l̄) + %0( ddtg(t))

+

Mt∑
i=1

(
ci(xi(t)) + %i(

d
dtxi(t))

)
+

Mt+Mp∑
i=Mt+1

(
ci(Li(t)) + %i(

d
dtLi(t))

)}
dt

subject to l(t) = g(t) +
∑
i

ui(t),

d
dtxi(t) = −αixi(t)− ui(t)

(14)
where l̄ is the average net load, and the individual cost
functions are quadratic:

ci(x) = Qix
2, %i(x) = Rix

2 , i ∈ {0, 1, ...,Mt+Mp} .
Costs associated with generation are assumed to dominate
those corresponding to VES resources: Q0 � Qi, R0 � Ri.
Additional constraints are imposed to ensure that total energy
deviation from VES resources is zero:

0 =

∫ T
t

ui(τ) dτ (15)

The various constraints involving SoC explained in sec-
tions III-A and III-B are regarded as necessary conditions
for feasibility, since they only impose a constraint on the ag-
gregate. The results in Section II and prior research indicate
that these necessary conditions are very nearly sufficient; to
ensure sufficiency, it may be necessary to reduce the SoC
limit C by a small amount.

Each load class can be assumed homogeneous by design.
Even though residential water heaters vary in capacity and
time constants, local control loops can be designed so that
the aggregate appears as a homogeneous resource [5], [6],
[16]. For loads of significantly different behavior, it is
necessary to bin into different load classes. For example,
in the experiments described in the next section, water
heaters were binned into two different classes (residential
and commercial).

IV. NUMERICAL EXPERIMENTS

Five classes of electric loads were simulated using the
feedforward architecture described in Section III: residential
air conditioners (ACs), residential water heaters with faster
cycle times (fWHs), commercial water heaters with slower
cycle times (sWHs), refrigerators (RFGs), and pool pumps
(PPs).

The net load used in our experiments resembles the
problematic ‘duck curve’ seen in areas with high solar
penetration, as illustrated in Fig. 1. Following these ramps
with traditional generation is costly.

The quadratic program (14) was implemented in discrete
time with a sampling interval of ten minutes, a time hori-
zon of 24 hours, and solved using MATLAB’s ‘quadprog’
function.

TABLE I
LOAD PARAMETERS - CURRENT SATURATION

Par. Unit ACs fWHs sWHs RFGs PPs
N million 7 0.7 0.7 17 1.2
η− GW 22.23 3.31 3.35 1.96 0.60
η+ GW 16.98 0.19 0.15 1.45 0.06
α hours-1 0.25 0.04 0.01 0.10 0.004
C GWh 5.6 0.26 0.70 0.43 14.55

A. Balancing California Today

For the results surveyed here, the number of loads per class
was chosen based on a residential energy consumption survey
of California [17]. Physical parameters from [18] were used
for the TCL models. This information is summarized in
Table I.
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Fig. 8 shows optimal power trajectories over a 24-hour
time horizon. Traditional generation and VES combine to
optimally match the net load over this time period. The power
trajectories represent power supplied to the grid, e.g., when
demand dispatch is positive, loads are consuming less than
nominal power.

It is evident that load classes cooperate in order to
match the net load. Throughout the late morning and early
afternoon, the VES systems charge up. In practice, this
means houses become slightly cooler than average, and water
heaters become slightly hotter than average. Then, during
the evening ramp, the VES systems discharge. In practice,
this means houses become slightly warmer than average and
water heaters become slightly cooler than average. In any
case, the use of local control can ensure that temperatures
always remain within predefined limits [5], [6], [16]. The
value to the grid comes from the combined responses of
millions of loads.

As a result of this coordinated effort by VES resources,
traditional generation follows a much flatter trajectory.

B. A power hungry future

Currently, about 90% of residential water heaters in
California are powered by natural gas [19], but plans are
underway in California to transition to electric loads because
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Fig. 9. Optimal power trajectories for California 2020.

TABLE II
LOAD PARAMETERS - OPTIMISTIC SATURATION

Par. Unit ACs fWHs sWHs RFGs PPs
N million 7 10 10 17 1.2
η− GW 22.23 47.25 47.88 1.96 0.60
η+ GW 16.98 2.75 2.13 1.45 0.06
α hours-1 0.25 0.04 0.01 0.10 0.004
C GWh 5.6 3.75 10.0 0.43 14.55

of abundant electricity, and the evident flexibility of electric
water heaters. The results in this section simulate that opti-
mistic future. Parameters are summarized in Table II.

Results from this experiment are shown in Fig. 9. Similar
to the previous experiment, VES resources are coordinating
in order to match the net load curve. As a result, very little
ramping is required from traditional generation. From these
results, it is easy to visualize a future where the base net
load is nearly constant, and any deviations to the base load
can be satisfied by flexible loads.

C. The problem with price signals

The use of price signals is commonly advocated for
incentivizing load shifting. This is in fact the definition of
“demand response”, according to the FERC website.

In the context of this paper, it is obvious that real-time
prices (not posted in advance) are not the right signal. The
challenges considered in this paper are largely predictable
– large ramps in the morning and afternoon, accompanied
by a large peak in power production. There is no economic
rationale for withholding information about the load forecast
and the concomitant forecast of electricity prices from the
consumers.

A popular alternative to real-time prices is the utilization
of time-of-use (TOU) rates; in this scheme, the prices are
published well in advance.

Consider an aggregator that has contracts with a large
number of customers. Subject to bounds on QoS for each
customer, the aggregator will minimize the overall energy bill
for the consumers. This optimization problem is formulated
as a quadratic program similar to (14).

Fig. 10 shows the optimal solution obtained in one exper-
iment in which the price is constant, except for a 90 minute
period during which it increases by 10% (period marked in
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Fig. 10. Optimal response to a price increase over a 90 minute period.

band of yellow). The total power consumption is shown in
the upper figure. The well-known “re-bound effect” is clearly
seen after the price surge. More pronounced is a “pre-bound”:
a large spike in demand just before the event. The BA will
not be happy with this outcome.

The nature of the optimal solution is nearly independent of
price. An increase of price by 200% will result in a similar
set of power trajectories.

The fundamental problem with price signals is that con-
sumers are not interested in power as a commodity. A
realistic economic analysis would recognize that consumers
are interested in quality of service as defined in this paper,
and do not care about how that service is obtained.

Consider Fig. 6, showing the power trajectory for a typical
hot water heater. Nobody taking a shower is concerned with
the details of this “power spike train”. This is a blessing
from the point of view of control since it means consumers
are oblivious to substantial changes in power consumption
patterns. It is a barrier to those who wish to apply competitive
equilibrium theory and auction theory to control the grid
through dynamic prices.

V. CONCLUSIONS

The results of this paper provide further evidence that
flexible loads can provide reliable grid services that are
likely far cheaper than current battery systems. The focus
on feedforward control based on load and weather forecasts
is motivated by the fact that the loads of interest here are
much like batteries, and may need to be “pre-charged” (or
discharged) in advance.

The relatively slow time-scale MPC control architecture
requires information at the BA from each class of loads in
terms of aggregate power consumption and aggregate SoC.
It is likely that the ideas of [5] can be extended to eliminate
the need for aggregate power consumption measurements –
this is a topic of current research.

A question remains regarding how much capacity from the
VES resources should be utilized for the feedforward control
architecture, so that sufficient capacity is available for real-
time feedback control. This and large scale simulations of the
entire control architecture are the focus of future research.
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