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Abstract This volume focuses on various questions concerning the interpretation

of probability and probabilistic reasoning in biology and physics. It is inspired by

the idea that philosophers of biology and philosophers of physics who work on the

foundations of their disciplines encounter similar questions and problems con-

cerning the role and application of probability, and that interaction between the two

communities will be both interesting and fruitful. In this introduction we present the

background to the main questions that the volume focuses on and summarize the

highlights of the individual contributions.

1 The Background and Motivation

Probability is ubiquitous in modern science. While there is a broad consensus about

the axiomatic theory of probability, there is an ongoing discussion and controversy

over the interpretations of probability in scientific theories and models. Yet, the

interpretation of probability and probabilistic reasoning are central to the

understanding of scientific theories, models and practices. This volume focuses

on various questions concerning the interpretation of probability and probabilistic

reasoning in biology and physics. It is the outcome of a 3-day workshop on

Probability in Biology and Physics at the IHPST, Paris, which took place on

February 12–14, 2009. The idea of the workshop was that philosophers of biology

and philosophers of physics who work on the foundations of their disciplines
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encounter similar questions and problems concerning the role and application of

probability, and that interaction between the two communities will be both

interesting and conducive. The discussions were lively and fruitful and a joint effort

has led to the birth of this volume. Since the Paris workshop, there were two other

successful meetings that brought together philosophers of biology and philosophers

of physics to discuss questions concerning causality, explanation and time in biology

and physics: a 3-day conference on Causality and Explanation in Physics, Biology

and Economics in Barcelona on February 18–20, 2010,1 and a 3-day workshop, The

Time of Nature, The Nature of Time in Bordeaux on September 26–28, 2012.2 It is

our hope that this volume will continue this trend and communicate to a larger

audience of philosophers some of the outcomes of these interactions.

Many philosophers of science are familiar with the philosophical foundations of

probability. Yet, in the interest of appealing to a broader audience, we start with a

brief, uncritical and non-exhaustive introduction to the various interpretations of

probability that play a role in science (Sect. 2).3 We then give some examples of

questions concerning the interpretation of probability and its application in biology

and physics (Sect. 3). Some of these examples draw attention to similar questions

and problems that arise in the application of probability in both fields. We conclude

with a background and overview of the papers in this volume (Sect. 4).

2 A Brief Sketch of Interpretations of Probability

Interpretations of probability are commonly divided into two main groups: objective

and subjective. Subjective probabilities are supposed to reflect rational degrees of

belief about things one is uncertain about. De Finetti held that for degrees of belief

to be rational they have to be coherent, and for degrees of belief to be coherent they

have to be probabilities, i.e. they have to satisfy the probability calculus (de Finetti

1972, 1974a, b). Ramsey held a similar view, namely that for degrees of belief to be

rational they have to be consistent, and that for degrees of belief to be consistent

they have to be probabilities (Ramsey 1926/1990).4 Subjective probability

interpretations vary according to the extent to which probability is subjective.

The most radical subjective interpretation, de Finetti’s (1972, 1974a, b) influential

theory of probability, denies the existence of objective probability. It is common to

portray probability in de Finetti’s subjective theory of probability as unconstrained,

too permissive and possibly whimsical (see, for example, Hájek 2012, Sect. 3.5.4).

But such a portrayal fails to distinguish between the ontological status of probability

and the way it should be evaluated (Berkovitz 2012, Sect. 16.3.4, 2014). De Finetti

was an instrumentalist about probability. He held that ontologically probabilities are

1 http://conectahistoria.blogspot.ca/2010/02/barcelona-conference-on-causality-and.html.
2 http://www.msha.fr/msha/actu/colloque/pages/presentation_time_of_nature.pdf.
3 For more detailed reviews of interpretations of probability, see Gillies (2000a), Galavotti (2005) and

Hájek (2012).
4 In the literature, it is often assumed that by coherence de Finetti means consistency (Howson 2008;

Dickey et al. 2009; Vineberg 2011), but Berkovitz (2014) argues that this assumption is unjustified.
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subjective, reflecting one’s ignorance, but that their assignment should not be

arbitrary. Indeed, de Finetti held that assigning and evaluating probabilities is a

form of inductive reasoning, and as such should not be the result of a capricious

psychological reaction, ‘‘but as a mental process susceptible of an analysis,

interpretation and justification’’ (de Finetti 1972, p. 147).5

Other subjective theories of probability acknowledge the existence of objective

probabilities and require that subjective probabilities of events be constrained by the

relevant objective probabilities, whenever such objective probabilities are available

and provide the only information about the prospects of these events. For example,

it is common to assume the following principle: the subjective probability of an

event E given that the objective probability of E is p, and there is no other

information about the prospects of E, should be p. Hacking’s (1965, chap. 9)

frequency principle, Lewis’ (1986, chap. 19) principal principle and Mellor’s (1995,

chap. 4) evidence condition are variations of such a principle. For a discussion of the

principal principle, see Frigg and Hoefer (2013).

Some subjective interpretations of probability also require that the assignments of

probabilities should be subjected to other principles. Notable examples are

principles of indifference: ‘‘if no known reason for predicating of … one rather

than another of several alternatives, then relatively to such knowledge the assertions

of each of these alternatives have an equal probability’’ (Keynes 1921/1963, p. 42).

The principle of maximum entropy, introduced by Jaynes (1957), is a generalization

of Keynes’ indifference principle to non-uniform probability distributions. Inter-

pretations of probability that impose the principle of maximum entropy and similar

principles to determine prior probabilities are sometimes called ‘objective

Bayesian’. The objective nature of probabilities in these interpretations is

questionable, however, as the motivation for principles of indifference is

characteristically based on ignorance rather than objective facts.

Objective probabilities are supposed to reflect objective facts about the world.

Among the popular contemporary objective interpretations of probability are

frequency theories, propensity theories, theories of Humean objective chance

(THOC) and the so-called ‘range conception’ theories.

Frequency theories explicate probabilities of events in terms of their actual or

hypothetical, finite or infinite relative frequencies in given reference classes.6 For

example, the probability of a certain coin landing on heads in the reference class of

5 The conflation of the ontological status of theoretical terms with the way they are to be evaluated and

their values as instruments is not particular to the interpretation of de Finetti’s theory (Berkovitz 2014). In

discussions of instrumentalism it is common to associate the instrumental value of theoretical postulates

with their ontological status. Thus, for example, it is argued that under instrumentalism, theories are capable

(at best) of accommodating known observable phenomena, and incapable of making novel predictions.

Psillos (1999, p. 29) interprets Duhem as arguing along these lines. ‘‘Duhem’s point is that the fact that

some theories generate novel predictions cannot be accounted for on a purely instrumentalist understanding

of scientific theories. For how can one expect that an arbitrary (artificial) classification of a set of known

experimental laws—i.e. a classification based only on considerations of convenience—will possibly be able

to reveal unforeseen phenomena in the world?’’ The presupposition is that the ontological status of

theoretical terms determines their capacity to generate novel predictions. But this presupposition begs the

question against instrumentalism in general and de Finetti’s instrumentalism in particular (Berkovitz 2014).
6 For the sake of brevity, in what follows by ‘frequency’ we will mean relative frequency.

On Probabilities in Biology and Physics 435

123

Author's personal copy



a given sequence of tosses of this coin is the relative frequency of heads in that

reference class. Intuitively, not any frequency will be considered worthy of the title

probability. If the pattern of heads in the reference class is predictable, e.g. if the

coin lands on heads every other toss, the frequency of heads will be 0.5. But such a

sequence would not be suitable for characterizing probability, as probability is

associated with randomness. Indeed, it is a fundamental tenet of objective

probability that the products of probabilistic processes are random.7 Thus, frequency

theorists explicate probability in terms of frequencies in random sequences. The

scope of frequency theories is quite broad: they are applicable to the interpretations

of probabilities in both deterministic and indeterministic scientific theories.

Notable frequency theorists are Ellis (1849), Venn (1866), von Mises (1928/

1962) and Reichenbach (1949), though von Mises’ theory is the best known and

most developed.

In propensity theories, probabilities are explicated in terms of dispositions or

tendencies that are properties of, or are related to, objects, experimental arrangements

or physical set-ups. Propensity theories may be divided into two main groups: long-run

and single-case. In long-run propensity theories, propensities are explicated in terms of

long-run frequencies (Peirce 1910/2011; Popper 1957, 1959; Hacking 1965; Gillies

2000a, b). The characterization of long-run propensity varies from one theory to

another. Peirce, the anticipator of the propensity interpretation, characterized

probability as a ‘‘would be’’ of an object to yield a certain frequency of events in an

infinite series of independent trials of the same kind. For example, certain coins have a

‘‘would be’’, or in current terminology a propensity to yield a long-run frequency 0.5 to

land on heads. Popper (1957, 1959), who proposed the propensity interpretation,

presented it in an ambiguous way. On the one hand, propensity is characterized in

terms of long-run frequency: it is a propensity of an experimental arrangement (rather

than just an object in it) to yield a frequency of results when the experiment is often

repeated, though it is not clear whether the long-run is finite or infinite. But, on the

other hand, propensity is characterized in terms of the single-case: it is a propensity of

an experimental arrangement to realize a singular result. Hacking (1965) takes

propensity to be a disposition of a kind of trial on a chance set-up to yield a long-run

frequency, where ‘long-run frequency’, ‘chance set-up’ and ‘trial’ are primitive terms

that are characterized by various postulates. Gillies (2000a) regards repeatable con-

ditions as having a propensity to produce frequencies which are approximately equal to

the long-run propensity, where the approximation is characterized by a falsifying rule

for statements about long-run propensities. Both Hacking’s and Gillies’ theories are

finite long-run propensity theories: the frequencies that explicate propensity are finite.

Single-case propensity theories may be divided into two kinds: tendency theories

in which propensities are probabilities (Popper 1957, 1959, 1990; Giere 1973a, b,

1975, 1979; Fetzer 1974, 1981, 1982; Miller 1991, 1994), and dispositional theories

in which propensities are not probabilities but rather dispositions to display

probability distributions (Mellor 1969, 1971, 2005; Suarez 2013). In tendency

theories of single-case propensity, the propensity of an event is thought of as a

7 For a discussion of this tenet in the context of long-run propensity theories, see Berkovitz (2015,

Sect. 3.5).
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single-case tendency or ‘indeterministic disposition’ of properties of, or trials on the

relevant physical set-up to yield the event; where the tendency and disposition

involved embody causal efficacy. The various tendency theories vary in their

characterization of the relevant set-up. Giere (1973a) characterizes propensities as

tendencies of ‘whole set-ups’ to produce various outcomes on particular trials. Popper

(1990) takes propensity to be a tendency of the ‘whole physical situation’ to realize a

particular event. Similarly, Miller (1994) suggests that, strictly, any propensity must

be referred to the ‘complete situation of the universe at the time’. For Fetzer (1982), a

single-case propensity of an event is a tendency of a complete set of nomically and/or

causally relevant conditions to yield the event.8 In dispositional theories of single-case

propensity, a propensity is a ‘sure-fire’ disposition that is attributed to a part of the

relevant physical set-up and its displays is a single-case objective probability

distribution, the ‘chance distribution’, of the possible outcomes of trials on the entire

set-up (Mellor 1969, 1971; Suarez 2013). Mellor’s theory is based on epistemic

foundations. Mellor (1971) holds that to ascribe a chance to an outcome of a trial is no

more than to restate that there is an objective constraint on the partial belief reasonably

held on the trial’s occurrence, and the constraint is a propensity that is attributed to part

of the entire relevant physical set-up. Suarez’s theory is inspired by Peirce’s

pragmatist philosophy and it is not based on epistemic foundations.9

Like frequency theories, long-run propensity theories apply to both indetermin-

istic and deterministic theories. By contrast, single-case propensity theories apply

only to indeterministic theories.

In THOC, probabilities are objective. But, Lewis, the founding father of THOC,

held that subjective probability is the best guide for Humean objective chances

(HOC). He introduced HOC by the principal principle (PP),10 and he argued that PP

captures all that we know about HOC (Lewis 1986, chap. 19). Like single-case

propensities, Lewis conceived HOC as objective single-case probabilities that apply

only to the interpretation of probabilities in indeterministic theories. But, unlike

single-case propensities, HOC supervene upon the mosaic of matters of particular

facts about objects and spacetime regions of the universe. The main idea is that laws

of HOC and rules for their assignments are part of a ‘best system’ of rules and laws

that strikes the best combination of, or balance between, simplicity, strength and fit

with actual matters of fact; and given such a balance, laws and rules concerning

HOC supervene upon matters of particular fact.

Some versions of THOC differ from Lewis’ in important respects. In particular,

Frigg and Hoefer (2013) propose a version of THOC that can be utilized in both

8 However, his theory cannot be considered as an interpretation of the probability calculus since it

violates it.
9 For a detailed discussion of propensity theories, see Berkovitz (2015).
10 Lewis (1986, p. 87) formulates the principal principle as follows: ‘‘Let C be any reasonable initial

credence function. Let t be any time. Let x be any real number in the unit interval. Let X be the

proposition that the chance, at time t, of A’s holding equals x. Let E be any proposition compatible with X

that is admissible at time t. Then CðA=XEÞ ¼ x.’’ C is a non-negative, normalized, finitely additive

measure defined on all propositions (sets of worlds), and E is admissible at time t if it contains only

information whose impact on the credence of A comes entirely by way of credence about the chance of A.
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indeterministic and deterministic theories and then apply it to the interpretation of

the probabilities in Boltzmannian statistical mechanics.

Another kind of objective interpretation of probability is situated in the tradition

of von Kries’ (1886) ‘‘Spielraumtheorie’’ and Poincaré’s (1912) method of arbitrary

functions. Rosenthal (2012) calls this interpretation the ‘range conception’ of

probability, echoing von Kries’ terminology. Versions of the range conception

interpretation have been proposed by Strevens (2003, 2011), Rosenthal (2010, 2012)

and Abrams (2012). The interpretation is mainly intended to apply to deterministic

macroscopic processes.11 It explicates the probability of an event—an ‘outcome’—

in terms of the ratio of the input states that lead to it. Following Strevens’ (2011)

terminology, the basic idea is the following. Imagine a space of initial states of a

given deterministic process. Each point in this space represents a maximally specific

state the process could start out, and accordingly it leads to a certain outcome.

Suppose that the dynamics of the process is such that in each ‘small’ but ‘not too

small region’ of this input space, the ratio of states that leads to a given outcome

(henceforth, the strike ratio with respect to that outcome) is the same (henceforth,

microconstant dynamics). Suppose further that the input distribution possesses a

certain smoothness property (henceforth, macroperiodicity), so that it is roughly flat

over any small interval. In a microconstant dynamics with an input distribution that

is macroperiodic, the probability of an outcome is equal to its strike ratio.

The nature of range-conception probabilities depends on the interpretation of the

input probability distributions. Strevens (2011) suggests that the input probability

distribution is the one that summarizes best the actual frequencies of initial states. If

there are no such actual frequencies, the input probability distribution is the one that

summarizes best the frequencies of the initial states in almost all the possible worlds

in which the relevant actual set-up occurs. Strevens (2011, Sect. 4) maintains that

the input distributions do not need a probability interpretation, and he rejects the

idea that they should be interpreted along the frequency interpretation because they

are not probability distributions but rather non-probabilistic facts about actual or

hypothetical frequencies, which depend on the relevant actual set-up. Similarly,

Abrams (2012) thinks of the input distribution as a probability measure that reflects

facts about actual frequencies of initial states which depend on the relevant actual

set-up. Rosenthal takes range-conception probabilities to be non-single-case

objective probabilities that are features of experimental set-ups which explain the

characteristic frequencies of the various outcomes. Rosenthal (2012, Sect. 4) does

not interpret the input probabilities. He argues that we need not assume that there is

a probability distribution over the space of input states according to which nature

selects initial states because under certain conditions (which correspond to the ones

described above) the outcome probabilities do not depend on the probability

distribution over the input-state space. It is the structure of the input space that

determines the outcome probabilities.

In the literature, there are also epistemic and logical theories of probabilities.

Arguably, epistemic theories of probabilities may be included within the range of

11 Unlike Strevens and Rosenthal, Abrams intends his interpretation to apply to both deterministic and

indeterministic processes.
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subjective theories of probabilities, though supporters of epistemic probabilities

tend to emphasize their non-subjective characteristics, e.g. principles and consid-

erations that relate them to objective facts and empirical data. Logical probabilities

are not supposed to be subjective. Logical theorists of probability maintain that

probability can be regarded as a generalization of the notion of logical implication

or validity. Thus, for example, the probability of A given B is explicated as the

degree to which A is valid relative to B (Bolzano 1973), the degree to which

B implies A (Keynes 1921/1963) or the degree to which B confirms A (Carnap

1950). Supporters of the logical theory of probability argue that it could be the

foundation for confirmation theory and more generally ‘inductive logic’. Carnap

(1950) presents the most systematic development of this view.

Finally, an important interpretative question concerning probability, which

pertains to all interpretations, is whether the fundamental object of probability

theory is unconditional or conditional probability. Following Kolmogorov (1933/

1950), it is common in the literature to take unconditional probability as the

fundamental object of probability theory, and to define conditional probability in

terms of a ratio of unconditional probabilities. But various notable theorists, like

Peirce (1910/2011), Johnson (1932), Keynes (1921), de Finetti (1974a, b), Carnap

(1952), Popper (1959) and Jeffreys (1961), held that the fundamental concept of

probability is conditional probability. Hájek (2003) and Berkovitz (2015,

Sect. 5.2) argue that in all the major theories of probability, conditional

probability should be the fundamental object and unconditional probabilities do

not make sense. For example, it is common to characterize subjective probability

as dependent on one’s background knowledge. Yet, if subjective probabilities are

represented by standard conditional probabilities, as it is common in the literature,

we have an infinite regress. The probability of an event A in the background

knowledge B is represented by the standard conditional probability of A given

B.12 And for this probability to be definite, the background knowledge B has to be

defined relative to another background knowledge B*, i.e. it has to be represented

by the standard conditional probability of B given B*, and so forth. For another

example, propensities are defined relative to conditions that determine them. In

the literature it is common to represent the propensity of an event E as the

standard conditional probability of that event given the conditions C that

determine this propensity. This representation presupposes that C has a definite

propensity. But C has definite propensity only relative to some other conditions

C*, and so we encounter a similar regress. Various authors argue that the question

of the nature of the conditional probability that represents propensity is central to

the resolution of Humphreys’ (1985, 2004) paradox, one of the main challenges

for propensity theories of probability.13

12 The standard conditional probability of A given B is defined as the ratio of the unconditional

probability of A&B to the unconditional probability of B: PðA&BÞ=PðBÞ.
13 For a discussion of these arguments, see Berkovitz 2015, Sects. 5.2–5.3 and references therein.
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3 On the Interpretation of Probability and Probabilistic Reasoning
in Biology and Physics

The interpretation of probability plays an important role in our understanding of

biology and physics. Here are some examples.

One of the main foundational questions in quantum mechanics (QM) is the

interpretation of probabilities. This question is intimately related to the interpretation

of the representational content of QMwavefunctions. For example, if we interpret QM

wavefunctions as reflecting the properties of physical systems, it is natural to interpret

QM probabilities along objective theories of probability. It is noteworthy that Popper

proposed the propensity interpretation in order to ‘‘eliminate from quantum theory

certain disturbing elements of an irrational and subjectivist character’’ (Popper 1959,

p. 31), which he attributed to theBohr-Heisenberg interpretation ofQM, and to resolve

some of the theory’s foundational problems (Popper 1967).14 By contrast, if we

interpret QMwavefunctions as reflecting knowledge or ignorance about the properties

of physical systems, it is natural to interpret QMprobabilities along subjective theories

of probabilities, as it is common in the increasingly influential quantum information

and quantum computing literature.15

Questions concerning the interpretation of probabilities are also central to

foundational problems in classical statistical mechanics (CSM), a theory that relates

Thermodynamics (TD) to classical mechanics (CM). The behavior of macroscopic

systems, like a gas in a box, is to a large degree of approximation described

correctly by TD. TD introduces macrostates that pertain to a physical system as a

whole without any regard to the microscopic makeup of the system. The most

important law of TD is the so-called Second Law, stating that the thermodynamic

entropy of an isolated system cannot decrease. But there is an entirely different way

of looking at the gas in a box, i.e. as a collection of molecules. In this way of

looking at the gas the focus is on the microstates of the gas, which are constituted by

the molecules’ positions and momenta and are governed by the laws of CM. CSM is

supposed to establish a connection between the way TD and the way CM describe

macroscopic systems and to account for the thermodynamic behaviour of

macroscopic systems in terms of both the dynamical laws governing the

microscopic constituents of these systems and some probabilistic assumptions.

Now, in CM isolated physical systems could evolve into states with lower entropy,

and one of the most puzzling questions in the foundations of CSM is why

macroscopic systems never seem to evolve into lower-entropy states. Another way

to express this puzzle is the question: how could expressly time-asymmetric

behaviour of irreversible thermodynamic processes be reconciled with the

underlying time-reversible dynamics of CM? The standard answer in CSM is given

in terms of probability, namely that thermodynamic behaviour is highly likely, and

the question arises as to the meaning of this probabilistic statement. Since CSM is a

deterministic theory, it is natural to think of this likelihood as reflecting ignorance

14 For a critical discussion of this resolution, see Bub (1975) and Bub and Pitowsky (1985).
15 For examples of subjective interpretations of QM probabilities, see Caves et al. (2002a, b, 2007),

Pitowsky (2003) and Berkovitz (2012).

440 J. Berkovitz, P. Huneman

123

Author's personal copy



about the initial states of the microsystems. But, this response is controversial and it

raises an immediate question: how can our ignorance explain the objective

thermodynamic behaviour of systems? Further, in CSM macrostates are sets of

microstates and accordingly the probabilities of macrostates are determined by the

probability measure over microstates and there is the challenge of justifying this

measure, which according to the orthodox wisdom is the Lebesgue measure. As we

shall see below, three of the papers in this volume address the question of the

explanation of the irreversible behaviour of macroscopic systems and the related

question of the interpretation of the probabilities involved.

Questions concerning the interpretation of probability are also prevalent in the

biological sciences, and especially in evolutionary biology. Classical evolutionary

theory has been developed in the framework of the ‘‘Modern Synthesis’’, i.e. the

synthesis of Darwin’s theory of natural selection and Mendel’s theory of

inheritance. It is framed in probabilistic terms. Its core, population genetics, studies

the process of evolution focusing on changes in frequencies of alleles in a population.

The development of population genetics in the 1920s–1930s was led by Fisher,

Haldane and Wright through the use of statistical methods, including methods that

were invented by Wright and Fisher. From the onset, an affinity with CSM was

recognized (Morrison 2002): CSM studies ‘populations’ of particles moving in space

and population genetics studies populations of entities (alleles) changing their

frequency according to some replication rules (i.e. ensembles of individuals moving

in a genotype space). Indeed, in his groundbreaking book The genetical theory of

natural selection, Fisher acknowledged this proximity. He thought that, in the same

way as CSM accounts for the second law of thermodynamics, population genetics

could ground a universal law, the ‘‘Fundamental Theorem of Natural selection’’

(FTNS) (1930, p. 36), which is supposed to have a fundamental status corresponding

to the status that the Second Law has in TD (though, unlike the Second Law, it has

always been controversial16). Thus, it may not be surprising that philosophers of

biology have referred to CSM and TD in controversies about the probabilistic nature

of fitness and selection (see, for example, Matthen and Ariew 2002; Bouchard and

Rosenberg 2004) and that recently some biologists appealed to these theories in their

attempts to reformulate population genetics and quantitative genetics (Ao 2005; Sella

and Hirsh 2005; Barton and Coe 2009).

The idea of natural selection in evolutionary biology is that heritable traits that

make their carriers more likely to have more offspring in the next generation will

very probably increase in frequency,17 and a change in the frequency of the traits

might also lead to a change in the nature of the traits themselves. Indeed, the main

terms of this theory, such as ‘fitness’ (a measure of the evolutionary success of

different individuals, traits or alleles), ‘heritability’ (which is defined in terms of

variances) and ‘random genetic drift’ (variations in frequency of alleles or traits that

16 FTNS states that ‘‘the rate of increase in fitness of any organism at any time is equal to its genetic

variance in fitness at that time’’ (Fisher 1930, p. 35). That is, a population’s rate of change in mean fitness

due to natural selection is equal to the additive genetic variance. It is important to emphasize here the fact

that the variation rate of mean fitness necessarily increases, so the principle singles out a trend in nature,

like the Second Law in TD.
17 In the classical view, this process happens primarily at the level of alleles.
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are not related to their adaptedness18), are probabilistic. Thus, the interpretation of

the various probabilities that figure in evolutionary biology has important

implications for the representational content of this theory. For example, if random

genetic drift is measured in terms of subjective probabilities, then it represents a

degree of ignorance about what is actually adaptive. Thus, if we had a better

knowledge of the actual interactions between organisms up to their molecular

details, there would be less drift: what we deemed random drift would be ascribed to

selective pressures that were previously unknown. Similarly, the nature of selection

itself may depend upon the interpretation of the probabilistic terms involved in

fitness. If the probability distribution of same-type offspring in the next generation

for a given type of trait or allele were subjective, it would entail that fitness, and

accordingly natural selection, depend on our ignorance, which would be reduced if

we knew all about the physical and chemical processes involved (Rosenberg 1994).

On the other hand, if we interpret this probability as objective, fitness and selection

would represent objective properties of the processes involved.

Probability also plays an important role in causal reasoning in modern science. The

question of the relationships between probability and causality is present explicitly or

implicitly in almost all the papers in this volume. Four papers concentrate on the

foundations of evolutionary biology and debate whether it is appropriate to understand

fitness and selection in causal terms and accordingly interpret the probabilities

involved along propensity theories of probability. One paper discusses the question

whether records of CSM systems could be considered veridical, and the discussion

involves presuppositions about the relationships between causation and probability.

Another paper analyzes the circumstances under which it is reasonable to suppose that

causally related events are probabilistically independent, with a focus on physical

probability distributions that are presumably grounded in, among other things, facts

about causal relations. Finally, there is a paper that studies the philosophical

foundations of propensity theories of probability, and one of the main foundational

questions is whether propensity is to be explicated in causal terms.

4 The Papers

4.1 Fitness, Selection and Probability in Evolutionary Biology

A quick overview of the debates that have occupied philosophers of biology since

the academic emergence of the discipline in the 1970s may be divided into three

main related topics of controversy concerning probabilities.

4.1.1 On the Nature of Fitness

First, there is the controversy over the nature of fitness, as a probabilistic magnitude.

Biologists appeal to the notion of fitness in order to explain evolutionary changes:

18 A concept that is explicitly analogous, ‘ecological drift’, has been forged in community ecology by

Hubbell (2001).
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differences in fitness between types (alleles or traits) in a given population are

invoked to explain differences in the average offspring contribution of these types

and accordingly changes in the proportions of these types in the population over

time. Traditionally, the most common definition of fitness in biology is in terms of

actual reproduction: fitness corresponds to the actual number of offspring left by an

individual or type. There are a few problems with this actualist conception of fitness.

First, it makes explanations invoking fitness differences circular. Under this

definition, type A being fitter than type B means that type A actually leaves a higher

number of offspring than type B. Thus, the difference in fitness between type A and

type B, i.e. the difference between their actual frequencies, cannot explain the

difference between the actual offspring contribution of type A and of type

B. Accounting for differences in frequency by differences in fitness provides a

description rather than explanation of the observed changes in the population over

time. The problem of circularity is an aspect of the famous ‘tautology problem’

raised by Darwin’s critics: if evolution by natural selection is the ‘survival of the

fittest’, and there is no independent way of assessing who are the fittest, and

accordingly the fittest is defined in terms of actual survival and reproduction, then

evolution by natural selection is a tautology. Second, the actualist conception of

fitness implies that genetically and phenotypically identical twins may have

different fitness just because of different circumstances that are irrelevant from the

perspective of evolutionary biology, like accidental fire. Accordingly, it is

impossible to make a distinction between selection and drift (intuitively, drift

accounts for changes in trait frequency—and accordingly in reproduction and death

of individuals—due to factors that are not related to fitness).

The so called ‘propensity interpretation of fitness’ (PIF), proposed by Mills and

Beatty (1979), is supposed to overcome the above difficulties. According to PIF, an

individual’s fitness is defined as the propensity (or the disposition, the ability, the

tendency or the capability) of an individual organism to survive and reproduce in a

particular environment and a particular population (Mills and Beatty 1979). PIF

suggests that an individual’s fitness can be explicated in probabilistic terms along a

single-case propensity theory of probability. Accordingly, the actual number of

offspring (which is sometimes called the ‘actual’ or ‘realized’ fitness) need not be

equal to the expected number of offspring (its fitness). The actual number of

offspring of an individual might depend on chance events, such as accidental fires.

Yet, such events do not play a role in the predictions of evolutionary biology, which

is focused on the expected number of offspring.

There are dozens of theories about fitness and a variety of notions of fitness, e.g.

‘engineering fitness’ (Burian 1983), ‘Fisherian fitness’ (Michod 2000), ‘inclusive

fitness’ (Hamilton 1964) and ‘invasion fitness’ (used in the approach called

‘adaptive dynamics’, Metz et al. 1992). Interestingly, until recently PIF had

achieved near-consensus status among philosophers (Brandon 1990; Burian 1983;

Sober 1984), plausibly because it seemed to offer a promising solution to the above

difficulties. But in the last decade there have been several critiques of PIF (see, for

examples, Ariew and Lewontin 2004; Sober 2001; Beatty and Finsen 1989), and

there is a flourishing industry of notions of fitness.
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One question about PIF concerns the exact nature of the probabilities that

explicate it. In their contribution, Isabelle Drouet and Francesca Merlin analyze the

notion of probability that underlines PIF, focusing on Mills and Beatty’s (1979)

original version. Mills and Beatty define individual fitness (‘fitness1’) as the single-

case propensity of an individual organism to survive and reproduce in a particular

environment and a particular population. Drouet and Merlin first argue that Mills

and Beatty’s explication of fitness1 is marred with ambiguities and that it is not

entirely clear how PIF relates to the propensity interpretation of probability in

general, and single-case propensity in particular. Further, Drouet and Merlin argue

that fitness1 understood along the lines of PIF does not really explain actual

differences in reproductive success: even if we assume that a disposition explains its

manifestations and we consider fitness as a dispositional property of individual

organisms, as Mills and Beatty do, it will not follow that fitness1 differences explain

differences in actual reproductive success between individual organisms. Mills and

Beatty (1979) and Beatty and Finsen (1989) define fitness of a type (fitness2) as the

average fitness1 of the members of this type, where being a member of a type means

having a certain allele or trait. That is, fitness2 is an average over the single-case

propensities of individual organisms of that type to survive and reproduce. Drouet

and Merlin point out that this definition also suffers from ambiguities and

difficulties and they argue that fitness2 explanations do not depend on how we

interpret the probability in fitness1. In particular, Drouet and Merlin argue that

fitness2 explanations do not require that fitness1 be defined in terms of single-case

propensity. And while it may be suggested that fitness2 could be defined in terms of

long-run propensities, Drouet and Merlin argue that such propensities would fail to

serve the explanatory role they were designed to carry.

4.1.2 Natural Selection and Chance

A second main controversy concerning probabilities in biology concerns the nature

of the chance that is involved in natural selection. Classically, natural selection is

the main agent of evolution, and it acts on a Mendelian population that displays

heritable variations due to mutations and recombinations (as Huxley summarized it

in 1951 in a letter to Mayr19). Intuitively, such mutations are random. But here the

notion of randomness is vague. It may mean unpredictability in relation to

environmental parameters, which is the common understanding of the term among

evolutionary biologists. But it may also mean unpredictability simpliciter, and then

the question is whether the mutations that are responsible for heritable variations are

the result of indeterministic processes. Obviously, this question is central to the

question whether evolutionary biology is a deterministic or indeterministic theory.

Some authors hold that such mutations are indeterministic. Accordingly, they relate

the nature of these mutations to QM and they strive to derive from the supposed

indeterminism at the quantum level the random character of mutations (Brandon and

19 ‘‘[N]atural selection, acting on the heritable variation provided by the mutations and recombination of

a Mendelian genetic constitution, is the main agency of biological evolution.’’ The letter from Huxley to

Mayr was intended to explain the general orientation of the book Evolution as a process, to which Mayr

contributed (see Huxley et al. 1954).
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Carson 1996; Glymour 2001). Other authors object to this reasoning (Graves et al.

1999; Horan 1994; Rosenberg 2001). In any case, the interpretation of probabilities,

especially probability distributions of mutations, plays a major role in this debate,

which is naturally related to questions concerning the interpretation of probabilities

in QM.

4.1.3 Is Natural Selection a Cause?

More recently, a third controversy concerning probability has divided philosophers

of biology. Matthen and Ariew (2002) and Walsh et al. (2002) challenge the idea

that selection and drift are ‘forces’ acting on population of alleles or traits—an idea

that has floated around since the emergence of the field, and was theorized by Sober

(1984). They argue that natural selection is not a cause but rather a statistical

aggregate of the influences of ecological causes at the level of individual organisms.

Thus, while natural selection could be used to predict evolution, it is not its cause.

The upshot is that the causes of adaptation of organisms should be sought elsewhere

at the individual level, e.g. in the individual developmental processes, and natural

selection only describes or explains in some non-causal fashion the spread of

adaptations. This so-called ‘statisticalist’ interpretation of selection has been

developed and defended by Ariew, Matthen and Walsh (e.g. Walsh 2007, 2010;

Matthen and Ariew 2009; Matthen 2009) and criticized by various authors (e.g.

Millstein 2003; Brandon and Ramsey 2007; Bouchard and Rosenberg 2004; Abrams

2007; Huneman 2012). Here too, the debate is not wholly separated from physics.

The statisticalists often advocate a ‘thermodynamic’ paradigm, where, in analogy to

thermodynamic entropy, natural selection is a macroscopic, causally inert property.

In the current issue, Denis Walsh provides a new clarification and defense of the

statisticalist interpretation, whereas Marshall Abrams and Philippe Huneman

analyze and criticize it.

An early line of critique of statisticalism is that it seems to deprive selection of

any explanatory force (e.g. Bouchard and Rosenberg 2004). This critique is based

on a causal account of explanation, which in turns is based on a firmly entrenched

intuition that to explain a change one must cite its causes. Yet, Walsh argues that

certain sciences are replete with non-causal, statistical explanations and that salient

examples are found in theoretical population biology. Walsh aspires to explicate the

nature of such explanations. In his contribution, he proposes the groundwork for a

new account of statistical explanation and then applies it to theoretical population

biology. Walsh suggests that an explanation serves two functions: metaphysical and

cognitive. ‘‘The metaphysical function (roughly) is to identify a set of conditions in

the world—the explanans—such that when they hold the explanandum does too.

The cognitive function is that of enhancing our understanding of the occurrence of

the explanandum’’. Inspired by recent accounts of mechanistic explanations, notably

Woodward’s (2003), Walsh proposes that the metaphysical function is satisfied by a

change-relating invariance relation between the explanans and the explanandum. A

relation between X and Y is change-relating just if a difference in the value of X is

associated with a difference in the value of Y, and the change-relating relation is

invariant if it would continue to hold under changes in the values of X.
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Walsh proposes that the cognitive function of explanation—i.e. the enhancement

of our understanding of the occurrence of the explanandum—is fulfilled by

providing an elucidative description of the relation between the explanans and the

explanandum. Since the explanation is supposed to be statistical and non-causal,

Walsh requires that the elucidative description be one that cites only the statistical

properties of the explanans (and ‘‘no activities or ‘thick’ causal concepts’’) and that

the explanans do not cause the explanandum.

Like Fisher many decades ago, Walsh draws a parallel between finance and

evolutionary biology. That is, Walsh draws a parallel between an example from

investment portfolio theory and an effect in evolutionary biology which he calls the

‘Gillespie effect’: In small sub-populations a trait with a lower mean and lower

variance will contribute on average a higher proportion of offspring to the next

generation than a trait with a higher mean and higher variance, but in the population

as a whole the fitness relations between the traits is reversed. Walsh argues that

causalists fail to account for the Gillespie effect, and he proposes a statistical

explanation of this effect. Walsh’s statistical explanation proceeds in both the

Gillepsie effect and the investment portfolio example in three steps, demonstrating

that: (1) There is a change-relating invariance relation between the statistical

properties—mean, variance and sample size—of explanans X (e.g. a trait type) and

an explanandum Y (e.g. a relative frequency of offspring in the population). (2)

There is an elucidating description that renders comprehensible the relation between

the statistical properties of X and Y. This elucidating description is strictly statistical:

no causal concepts are employed. (3) X do not cause Y.

In his contribution, Marshall Abrams argues that selection and drift should be

characterized by causal probabilities. Causal probabilities do not constitute a

specific interpretation of probability but rather classify a category of interpretations

of probabilities. A causal probability distribution is an objective probability

distribution that is realized by properties of a chance set-up. Alterations of such

properties that change the probability distribution also change probabilistic patterns,

i.e. what usually happens to frequencies, etc., in accordance with the change in the

probability: those outcomes that are more probable occur more often, most of the

time. For example, the causal probabilities of heads and tails are realized by the

properties of a coin and a tossing device, and a change in the densities of the coin

changes these probabilities and the corresponding probabilistic patterns. Based on

this characterization, Abrams argues that the view that causal probabilities govern

various systematic patterns in biological populations is the only one that fits

common practices of simulating evolution in population genetics.

Recall that statisticalists argue that natural selection is an aggregate effect of

individual interactions between organisms rather than an independent cause acting

on populations. One of the consequences of this position is that it is difficult to make

a distinction between selection and drift. Consider, for example, two traits, A and

B. Suppose that the fitness values of A and B are such that the expected frequency of

each of these traits is 0.5, but that actually the frequencies of A and of B turned out

to be 0.6 and 0.4, respectively. Assuming that selection accounts for the expected

frequency and drift accounts for deviations from it, it seems meaningless to ask

whether a particular realization of the trait A is the result of selection or drift. Thus,

446 J. Berkovitz, P. Huneman

123

Author's personal copy



the challenge is to establish a conceptual distinction between selection and drift

(Matthen and Ariew 2002). This inscrutability of selection and drift appears to be

ontological (rather than merely epistemic), as there seems to exist no information

that could identify outcomes as pertaining to selection rather than drift. In his

contribution, Philippe Huneman addresses this challenge. Based on a counterfactual

account of causality, he argues that a conceptual difference between selection and

drift could be established. The idea is basically the following. When there is

selection, variations in the frequencies of traits are counterfactually dependent on

the nature of the traits. When there is a drift, the increase in the frequency of traits is

not counterfactually dependent on the nature of the traits. This idea could be

formulated in terms of counterfactuals with a probabilistic consequent. For example,

if the trait value ‘blue eyes’ had been different, the probability of the reproductive

success of its carriers would have been different; where here the probability is to be

interpreted as long-run propensity. This counterfactual entails that a change in the

trait value ‘blue eyes’ would yield a change in the probabilities of the actual

frequencies of the carriers and accordingly a change in the expected frequency of

the class type ‘blue-eyed individuals’. Thus, we have a conceptual distinction

between selection and drift, which is based on an ontological difference between

two kinds of processes.

Huneman makes a distinction between ontological inscrutability of selection and

drift and epistemic opacity of selection and drift. The the epistemic opacity of

selection and drift is related to our incomplete knowledge of selective pressures and

is common in various cases, especially in small populations. When considering

actual or hypothetical sets of replicates of various sizes of populations, drift and

selection yield distinct statistical signatures, described in the paper. Huneman thus

argues that research programs that seek to distinguish between the processes and

effects of selection and the processes and effects of drift face only epistemic

obstacles.

4.2 On Probabilities and Probabilistic Reasoning in Classical Mechanics
and Bohmian Mechanics

Questions concerning the interpretation of probability have been a major focus in

the philosophy of physics. This is particularly true of QM and CSM. Three of the

contributions to this volume focus on foundational questions concerning probabil-

ities in these theories. In what follows in this section, we briefly review the

background for these questions and the main highlights of the contributions.

4.2.1 On the Interpretation of Probabilities in Quantum Mechanics

There are various questions that are relevant for the interpretation of probability in

QM. One question is concerned with what QM wavefunctions represent. Do they

represent the states of physical systems or rather knowledge or ignorance about

these states? The interpretation of QM wavefunctions as states of systems is

traditionally associated with objective probability, though there is a controversy

concerning whether QM probabilities should be interpreted along frequency
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theories,20 propensity theories (Popper 1957; Redhead 1987; Krips 1989) or THOC

(Frigg and Hoefer 2007). Different interpretations of probability may be suitable for

different interpretations of QM.

The interpretation of QM wavefunctions as states of knowledge or ignorance has

been recently aligned with subjective\theories of probability (see Sect. 3). Another

way to interpret QM wavefunctions as reflecting ignorance is to take them to

represent ensembles of systems with different states. It is noteworthy, however, that

due to quantum entanglement the interpretation of QM wavefunctions along these

lines is a rather delicate matter, as not all QM wavefunctions can be considered as

proper mixtures of ensemble of systems with different states (d’Espagnat 1976).

Another question that plays an important role in the interpretation of probabilities

in QM is whether the quantum realm is indeterministic or deterministic. For

example, single-case propensity is a natural candidate for the interpretation of

probabilities in indeterministic interpretations of QM, but not in deterministic

interpretations, such as Bohmian mechanics. In their contribution, Meir Hemmo and

Orly Shenker discuss the interpretation of probability in Bohmian mechanics (BM).

In BM, the QM wavefunction of a system and its position configuration jointly

determine its future trajectory and the outcome of any measurement on it (as long as

the outcome is recorded in the position of some physical system, as in any practical

measurement). BM reproduces the statistical predictions of standard QM (the Born

rule) by postulating that the probability distribution over all possible position

configurations of a system at a given time is given by the absolute square of its QM

wavefunction at that time. The natural interpretation of this distribution is along

subjective theories of probability, understanding this postulate as providing a

measure of ignorance over all the possible position configurations. But, Dürr et al.

(1992), notable supporters of BM, have opted to avoid such interpretation and

explained the empirical adequacy of BM by an appeal to the notion of a typical

initial position configuration. Durr, Goldstein and Zanghi (DGZ) argue that for

every initial universal wavefunction and for any typical initial global configuration,

the probability distribution over the position of subsystems of the universe is given

by the absolute square of the effective wavefunctions of these systems (when the

effective wavefunctions exist).21 Here typicality is defined relative to the initial

universal wavefunction—typical initial global configurations constitute the over-

whelming majority of initial configurations relative to the measure induced by the

absolute square of the initial universal wavefunction—and the probability distri-

butions prescribed by effective wavefunctions in typical initial global configurations

may be interpreted along long-run frequency or long-run propensity theories of

probability.

In their contribution, Hemmo and Shenker argue that since the notion of

typicality is supposed to be non-probabilistic, it is unclear why a condition that

obtains for most initial conditions (relative to the absolute square of the universal

20 As Landsman (2009, p. 60) notes, the pragmatic attitude taken by most physicists is that the

probabilities in Born’s rule are to be interpreted as long-run frequencies.
21 Roughly, an effective wavefunction of a system exists when ‘enough’ decoherence has occurred

between the system and its environment (see Dürr et al. 1992; Callender 2007).
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wavefunction) should be taken to obtain for a given system. That is, the problem is

to justify this measure of typicality in a non-circular way, and Hemmo and Shenker

argue that DGZ fail to provide such a justification. In his contribution, Berkovitz

(2015, Sect. 3.2.4) argues that this critique also reflects on the credentials of finite

long-run propensity interpretations of the distributions prescribed by effective

wavefunctions.

4.2.2 On the Interpretation of Probabilities and Probabilistic Reasoning

in Classical Statistical Mechanics

Hemmo and Shenker also criticize the application of the typicality approach in CSM.

Recall (Sect. 3) that a major problem in the foundations of CSM is to explain why

isolated macroscopic physical systems never seem to evolve to states of lower

entropy and that the standard reply—that thermodynamic behavior is highly

probable—raises questions concerning the interpretation of probability and the

justification of the Lebesgue measure as the choice of the measure for calculating

probabilities of macrostates. Rather than appealing to probabilistic considerations,

the typicality approach has opted to justify the Lebesgue measure by arguing that it is

natural. The term ‘natural’ is rather vague and Hemmo and Shenker consider various

specifications of it and argue that they either fail to justify the Lebesgue measure or

implicitly rely on some probabilistic assumptions that need to be justified. Thus, they

conclude that typicality considerations are not justified as grounding probability

statements in CSM. Hemmo and Shenker propose that the choice of the probability

measure in CSM should be made on the basis of the dynamics of microstates and

empirical considerations in the form of relative frequencies of the macrostates found

in experience. In this alternative approach, the probability distribution over the initial

conditions is derivable from the transition probabilities of macrostates, which are

based on observed frequencies of macrostates. These transition probabilities are

supposed to reflect ‘objective ignorance’, namely ignorance that is based on

objective facts: the dynamics that govern the trajectories in the phase space and the

partition of the phase space into macrostates. Hemmo and Shenker argue that the

resulting measure need not be the Lebesgue measure, though this measure may be the

most convenient among the measures that are compatible with the relative

frequencies of macrostates. The upshot is that the probability measure in CSM is

justified on empirical grounds and convenience.

Recall (Sect. 3) that since CSM is a deterministic theory it is natural to interpret

probabilities of microstates and macrostates of systems as reflecting our ignorance

about them but that this interpretation raises the question of how our ignorance

could explain the objective thermodynamic behavior of systems. This question

motivates the search for an objective interpretation of the probabilities in CSM. In

some theories of objective probability, non-trivial probabilities exist only in

indeterministic worlds, and accordingly they cannot serve as an interpretation of the

probabilities in CSM. Single-case propensity theories and Lewis’ (1986, chap. 19)

THOC are notable examples. In their contribution, Roman Frigg and Carl Hoefer

propose a new version of THOC and argue that it is suitable for the interpretation of

the probabilities in CSM. Like in Lewis’ theory (see Sect. 2), in this new theory:
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chances constrain subjective probabilities according to the principal principle (PP);

chances have the values that are assigned by rules which are part of a best system

(BS) of laws and rules, striking as good a balance as the actual events will allow of

simplicity, strength and fit; and (given the criteria of simplicity, strength and fit)

chances supervene on everything that actually happens, the so-called ‘Humean

mosaic’. But unlike in Lewis’ theory, in Frigg and Hoefer’s theory non-trivial

chances may exist in deterministic universes. Following Hoefer (2007, 558–559),

Frigg and Hoefer argue that Lewis’ commitment to the existence of non-trivial

chances only in indeterministic universes results from his view that all chances

follow from the laws of fundamental physics. (This is reflected in Lewis’ reading of

PP, where fundamental laws are always admissible information and accordingly

chances in deterministic universes are trivial.) Frigg and Hoefer reject this view.

They maintain that rules for assigning chances can be formulated in terms pertaining

to different levels of discourse, such as microphysics, macrophysics, chemistry,

genetics, mechanical engineering and meteorology, and that rules from all these

disciplines have equal right to be considered for inclusion in a BS package. They then

apply this revised version of THOC to CSM. There are two major traditions in CSM,

sometimes seen as two different theories: one originates in the work of Gibbs and the

other in the work of Boltzmann (Frigg 2008). Frigg and Hoefer argue that the

probabilities in Boltzmannian CSM can be interpreted along their version of THOC.

The problem of reconciling the expressly time-asymmetric behavior of

irreversible thermodynamic processes with the underlying time-symmetric dynam-

ics of CM systems can be related to the question of whether we can take our

memory and records to be reliable. Suppose, for example, a glass of water with a

half-melted ice cube in it, suitably isolated from its environment. Given this present

macrostate, we can follow the system’s underlying CM dynamics to predict and

retrodict its future and past macrostate, respectively. Based on the uniform

probability distribution over the system’s present macrostate and the CM dynamics

that purportedly underlie thermodynamic systems, it would appear that (contrary to

our best recollections) such a non-equilibrium state popped into existence as an

enormously improbable fluctuation from a past equilibrium macrostate. If we take

our memories and records of past events to be describable in CSM terms, the above

concerns seem to apply equally well to them. Just as we can retrodict that the ice

cube arose as a spontaneous fluctuation from an equilibrium state, so can we

retrodict that our present memories of the ice cube most likely arose out of a

spontaneous fluctuation. More generally, taking records as CSM systems, it would

appear that all our records arose spontaneously from equilibrium states and should

not be taken as veridical (Albert 2000, p. 115).

Albert suggests that the past hypothesis—the claim that the universe found itself

in a low entropy state early in its history—could meet the above reversibility

objection, and that this hypothesis can be supported on inductive grounds (ibid.,

p. 94). But, as Daniel Parker points out in his contribution, this justification of the

past hypothesis presupposes that we can trust our memories, which is precisely what

is at issue. Rather than attempting to justify the past hypothesis or some other close

cousins of it, Parker challenges an implicit presupposition of the reversibility

objection concerning records: namely, that records (and memories) of events,
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insofar as they are recognized as such, are records solely in virtue of their CSM

properties. He argues that the representational content of a record is conceptually

independent of its thermodynamic state. The content of a record does not evolve

according to any natural dynamics, and is not susceptible to the reversibility

objection. A correlation between a record and the recorded system is not described

by a physical correlation between the two systems, but rather by a correlation

between the recorded system and the representational content of the record. Based

on this conception of records, Parker argues that in many cases, our retrodictions—

based solely on the present macrostate of the universe (including the representa-

tional content of our records), the standard probability distribution over the

microstates that are compatible with that macrostate and the laws of motion—speak

to the veracity of our records and the common causal structure of record generating

processes.

4.3 On Probabilistic Independence in Models of ‘Reducible’ Probabilities

Probability also plays a central role in causal inference in biology and physics. For

example, Bell’s (1987) celebrated no-go theorem for local hidden-variables quantum

theories is based on the assumption that in such theories, probabilistic dependence

between measurement outcomes which are causally independent of each other is due

to a common cause, and that the common cause (the ‘hidden variable’) renders the

outcomes probabilistically independent. More generally, it is common to assume that

a probabilistic dependence between events must have a causal explanation.

Accordingly, inferences, hypotheses and suppositions about probabilistic indepen-

dence between events are often based on the assumption that the events are causally

unrelated to each other, in the sense of having neither a direct causal connection nor a

common cause. In his contribution, Michael Strevens discusses circumstances under

which events are probabilistically independent even though they are causally related.

Strevens points out that while the existence of a common cause frequently establishes

a probabilistic dependence between events, events with a common cause are often

treated as probabilistically independent. For example, in CSM the position and

velocity of a gas molecule are treated as probabilistically independent of the

positions and velocities of the other molecules, even though they are determined

entirely by the past interactions with those other molecules. Similarly, in population

genetics an instance of gene replication is treated as probabilistically independent of

the other instances, even though replication is determined in all cases by events in a

single, densely causally connected ecosystem.

Strevens thinks that when probabilities are fundamental and accordingly

‘irreducible’, as QM probabilities are often conceived, the question whether

probabilistic independence could be justified in spite of causal dependencies and

causal commonalities may be settled by an appeal to fundamental laws of nature.

However, in the great majority of scientific and everyday cases—such as gambling

setups, actuarial models, CSM and evolutionary biology—probabilities are not

irreducible. An interesting philosophical project is to state the conditions under

which causally related events may be assumed to be probabilistically independent

relative to the reducible physical probability distributions attributed to them by
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scientific models and theories. The extent of this project is vast, and in his

contribution Strevens addresses a small piece of it. He derives the conditions for

independence among the outcomes of coin tosses that are causally connected in two

ways: (1) two consecutive coin tosses made by a single croupier and (2) two tossed

coins with a midair collision.

4.4 On the Conceptual Foundations of Propensity Theories of Probability

Propensity theories of probability are among the main objective interpretations of

probability, and they have been applied in both biology and physics. Yet, the

conceptual foundations of these theories are far from clear or unproblematic, and

clarifying them is an important aspect of the interpretation and application of

probability in science. Further, propensity theories have been subjected to various

objections. For example, it has been argued that it is difficult to explain why

propensities should satisfy the probability calculus (Eagle 2004; Hájek 2012) and

even worse that propensities are at odd with this calculus (Humphreys 1985, 2004),

that various explications of propensities are circular and accordingly not informative

(Mellor 1971; Rosenthal 2006) and that single-case propensities are non-scientific

(Gillies 2000b).

The tendency in the literature is to overlook the variety of propensity theories and

the substantial differences between them. In the first part of his contribution, Joseph

Berkovitz provides a detailed, critical review of the main propensity theories, and in

the second part he addresses the objections above. Berkovitz argues that the claim

that propensity theories are at odds with the probability calculus—the so-called

‘Humphreys’ paradox’—is based on the inadequate representation of propensities as

standard conditional probabilities. He proposes that the fundamental object of

propensity theories is a non-standard conditional probability, which may be thought

of as a conditional with a probabilistic consequent (albeit not any of the standard

ones), and on the basis of this proposal he shows that propensities do satisfy the

probability calculus. Berkovitz also suggests two ways to motivate the probability

calculus in the context of propensity theories: the first appeals to the idea that there

is a mathematical constitution of physical facts and that the axioms of probability

are part of the ontological nature of propensities, and the second appeals to the

relations between propensities and subjective probabilities. Next, Berkovitz

analyzes the relations between propensities and frequencies and propensities and

subjective probabilities and demonstrates how these relations could shed light on the

nature of propensities and their time-evolution. Finally, he argues that the claim that

single-case propensities are non-scientific is based on misconceptions about the way

in which hypotheses about propensities are formed and evaluated.

Berkovitz’s conclusion is that while propensity theories face various challenges,

none of these challenges undermines their viability as prospective interpretations of

probability in science in general, and in biology and physics in particular.
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