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Abstract In recent years, tremendous advances have been made in the choice of materials
used in industry. With weight reduction as the goal, composite and polymer materials are
more and more popular but they are almost transparent to X-ray. Because of this, interest
has grown in other wavelengths like TeraHertz (THz). Due to a difference in how X-ray and
THz propagate, X-ray CT algorithms cannot be directly used. For example, THz induces
refraction making the reconstruction problem nonlinear. In this paper, we present a new
algorithm which complies with beam profile intensities, refraction, reflection. It is based on
linearizing the reconstruction process around a Computer Aided Design (CAD) model of
the object to be reconstructed. The method we propose computes the deviation between the
object and this model.

Keywords Terahertz computed tomography · Invers problem · Non destructive testing ·
Refraction · Non linear problem ·Modeling · Projection simulation ·Monte Carlo

1 Introduction

Today in an industrial context, many efforts have been made to improve the choice and
knowledge of manufacturing and control processes for materials and/or the assembly of
materials whilst reducing cost and time. As a consequence, study and development of non
invasive monitoring and performance solutions are required.
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Tomography is a method to retrieve internal 3D structures of an object based on 2D
external measurements. Its usage in Non Destructive Testing (NDT) has become popular
since it allows us to inspect three dimensional manufactured objects. Among the three
main modalities of tomography (magnetic resonance [16], transmission tomography [11]
and emission tomography [2]), only transmission Computed Tomography (CT) is currently
used in NDT [3].

Usual transmission CT measurements are obtained by directing X-rays at an object from
different orientations and measuring the decreasing intensity with detectors positioned on
the opposite side of the X-ray source. CT consists of reconstructing a sampled density map
(or more precisely an image of mean absorption coefficients) based on considering how each
ray has been attenuated by the object. Such a reconstruction involves solving an inverse
problem.

Over the last decade, interest in X-ray CT has grown significantly as a technique for
NDT as reviewed by Stock [20]. Although tomography is increasingly present in modern
industrial applications, its use is limited by the nature of the available radiation necessary
for characterization of the employed materials, since some materials used under industrial
context are nearly transparent to X-ray due to their low density. As a last drawback, X-ray
has security implications, limiting the size of inspected objects and this results in bulky
tomograph.

Tomography based on Terahertz (THz) waves, since they range 0.1 to 10 THz, could
be a possible solution to the previously mentioned limitations. It does not have security
implications as restrictive as X-rays and, due to their relatively long wave length, compared
to X-rays, they interact with materials that are transparent to X-rays. However, there is a
drawback: inspections made with THz radiations are of limited spatial resolution. Moreover,
THz waves are completely blocked by water and, as for X-rays, reflected by metals.

After the seminal work proposed in [12], THz CT has become popular due to the emer-
gence of new detectors and sources. However, reconstructing a density map based on a THz
measurements is not straightforward since phenomena like beam steering (i.e. refraction)
or reflection loss must be taken into account. The advent of these phenomena highly de-
pends on both the shape and materials of the acquired object. Moreover, THz beam diverges
faster than X-rays, which mostly propagate as straight ray. Therefore, the relation between
the beam attenuation and the densities to be reconstructed cannot be represented by a lin-
ear relation anymore. This should prohibits the direct use of conventional reconstruction
algorithms [13].

Even so, some attempts at reconstructing an attenuation map based on THz measure-
ments by using conventional methods have been proposed in literature, some by hypothesiz-
ing that both reflection and refraction are negligible, others by using some prior information
on the object under inspection.

In this paper we propose a new approach that is completely relevant to the context of
NDT. It consists in supposing that the object under inspection slightly deviates from a known
Computer Aided Design (CAD) model, and to reconstruct this deviation instead of directly
reconstructing the object. This method is based on linearizing the reconstruction problem
around its CAD model. We propose a new way of modeling the interaction between material
and THz waves that makes this reconstruction possible in reasonable computation time and
with an acceptable level of accuracy. The method we propose is dedicated to a focused
THz beam. We consider 2D tomography, i.e. reconstructing an object slice by slice. The 3D
extension of this process is rather straightforward, but very computationally expensive as it
would be for X-ray CT.
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2 Towards a THz tomography

2.1 Classical tomographic reconstruction

Several algorithms have been used in the long history of CT to deal with inverting the mea-
surement model and obtaining the inner structure of inspected objects [11]. All these algo-
rithms are based on a Radon-like linear modeling of the attenuation the wave undergoes by
passing through an object. Let J be the vector of density values of the slice to be recon-
structed and P the vector of the measurement values, this linear model can be expressed by
[21]:

P = RJ, (1)

where R, called the Radon matrix, models this linear dependence. Due to the nature of
the phenomenon involved in the CT process, J is in fact the absorption map and P the log-
arithm of the attenuation ratio between the intensity of the incident wave and the intensity
measured by the detector [9]. This is due to the fact that the wave decreases in intensity ex-
ponentially as it passes through the material of the object. The matrix R cannot be generally
inverted due to its large dimension and the fact that, because the problem is ill-posed, R is
ill-conditionned [14].

The Filtered Back Projection (FBP) algorithm [8], elegantly exploits the fact that J′ =
RT P = RT RJ, where .T is the transposition. J′ is a smoothed version of J whose smoothing
is known in the frequency domain. The method consists of high-pass filtering the measure-
ment vector P and reconstructing the absorption coefficient map by using the dual operator
RT called the back-projection operator. Despite its good formulation, this methods is barely
used due to the fact that the high-pass filter, that counteracts the blurring, has no expression
in the spatial domain. The need of interpolation in the frequency domain leads to reconstruc-
tion artifacts.

Another elegant mathematical solution, based on the Fourier slice theorem [11], consists
of using the relationship between the Fourier transform of both the image to be reconstructed
and the set of projection measurements. However, as with the FBP, this method needs inter-
polation in the frequency domain, which also leads to artifacted reconstructed images.

Today, the most used techniques are based on iterative estimation of a solution Ĵ of Eq.
(1) in an optimisation scheme. There are mainly two families of iterative techniques. The
first one aims to find the solution Ĵ that minimizes a square criterion ||P−RJ||2 i.e. the
L2 norm of the projected reconstruction error. We call it the ART family (ART, SIRT, . .
.) following the work of Kaczmarz [10]. These techniques are based on assuming that the
noise measurement is Gaussian [7], and their convergence is rather slow. The second family
is based on assuming that the noise measurement is Poisson distributed. We call it the EM
family (MLEM, OSEM, . . . ) [18]. They converge faster than those of the ART family, but
their values are constrained to be positive [23] [19].
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2.2 Review on THz tomography

Applying any of the previously described methods to perform a THz tomography is chal-
lenging since they all require a linear model of the measurement process. Such a linear
model is almost impossible since the interaction between the THz wave and the material to
be inspected usually involves refraction and reflection. However, current attempt to perform
THz tomography is mainly based on using conventional reconstruction methods.

To our knowledge, there are two main modalities to perform THz tomography in current
literature. The main difference between these two modalities is whether both refraction and
reflection losses are considered or not.

The first modality is suitable for reconstructing objects whose shape and material in-
duce little refraction and reflection. The more refraction and reflection loss, the more arti-
facted the reconstructed attenuation image is.

For example in [15] Recur et al. consider using FBP, SART – Simultaneous Algebraic
Reconstruction Technique – and OSEM – Ordered Subset Expectation Maximization – al-
gorithms to reconstruct the absorption coefficient map of the object under inspection. The
measurements have been obtained by using a continuous THz beam. The Radon matrix is
designed by considering a Gaussian intensity profile for the THz beam when propagating
through the air.

In the same way, Ferguson et al. [5] propose to directly reconstruct the complex refrac-
tive index of the object under inspection, without considering any prior information about
this object. To achieve such a reconstruction, they use a pulsed THz source. They propose
a new model of the interaction between this pulse mode wave and the object to interpolate
the spectral information in the Fourier domain in a slice Fourier like scheme. The inverse
Fourier transformation of the obtained spectral information allows the reconstruction of the
object.As a drawback, this method only works with low-refractive-index simple objects with
component parts that are large relative to the wavelength of the THz radiation.

The second modality has to be used when the shape or material of the object under
inspection induces refraction or reflection. However, contrarily to the previous modality,
since a conventional reconstruction method is used, prior information on the object will be
necessary to achieve reconstruction.

For example, Mukherjee et al. [13] consider reconstructing a homogeneous cylinder
with a known shape and material. They use this prior knowledge to compensate for the
reflection and refraction in the acquired projections. After compensation, the object can be
reconstructed by using an FBP algorithm. This method is very suitable for NDT, since it
allows the reconstruction of an object that deviates from a known model. However, this
method has a drawback [13], it can only be used to reconstruct a defect located in the central
part of the cylinder. Moreover, as stated by Tepe et al. [22], such a method is completely
dedicated to reconstructing a cylinder and cannot be applied to objects with other shapes.
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Fig. 1 Experimental THz setup to aquire projections of an object: a THz beam emitted from a THz source is
shaped through L1 and L2 lenses to be focused in the object and then is shaped through L3, L4 and L5 lenses
to be focused on a THz detector. All lenses are planoconvex. Translation and rotation stages are used to move
and rotate the object.

3 Modeling of THz radiation

A key feature in tomography is the ability to represent how the wave propagates and how it
interacts with the objects to be inspected. This model is usually referred to as the projection.

Projection operators have to be of low computational complexity, since they can be po-
tentially used many times when using an iterative reconstruction algorithm. This prohibits
projection methods based on finite elements. One of the main ways to simplify the computa-
tion of interaction between the beam and the object is to decompose the beam into a discrete
set of rays. However, this simplification can lead to a model that is far away from the way
the THz beam propagates and therefore could potentially bias the reconstruction.

In this section we propose to review how this problem has been addressed in the relevant
literature and to propose a new model that is likely to achieve a good compromise between
complexity and reliability. Firstly, we present our experimental setup. This setup has been
used to measure the THz beam intensities after propagating through an object under inspec-
tion. It has also been used to acquire the intensity of a THz beam propagating through the
air. Secondly, we propose to show how the model we present is able to simulate the intensity
of a 106 GHz THz beam propagating through the air. Thirdly, we propose to highlights its
ability to simulate the attenuation of the same THz beam propagating through a cylinder
with known optical parameters (index of refraction and absorption coefficient).

3.1 Experimental setup

The experimental setup we used is plot in Fig. 1. It aims to measure the attenuation the
THz beam undergoes when it propagates through an object placed at the focal point of the
setup. The Z axis corresponds to the optical axis while the XY plane is perpendicular to
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Fig. 2 Acquired intensity map of THz beam at 106 GHz in the XZ plane. Colorbars represent intensities of
the THz beam. Intensities are normalized with respect to the maximum intensity of the THz beam.

the optical axis. We consider a 100 mW compact THz source (AB millimetre company)
which emits at 106 GHz and corresponds to a 2.82 mm wavelength in the air. The source
frequency was generated through a commercial radio frequency synthesizer (AnaPico com-
pany) with a 100 MHz frequency excursion. All lenses are planoconvex. The beam was first
collimated through an L1 lens and then focused on the object through an L2 lens. L1 and L2
lenses, made of PolymethylPentene, have a diameter of 50 mm and focal lengths are 150
and 100 mm respectively. After propagating through the object, the beam was collected and
collimated through L3 and L4 lenses and finally focused on the detector through lens L5.
The L3, L4 and L5 lenses, made of polyethylene, have a diameter of 140 mm, 160 mm and
100 mm respectively. Their focal lengths are 185 mm, 240 mm and 100 mm respectively.
The T-Waves Technologies detector is based on a High Electron Mobility transistor whose
responsivity is about 40 kV/W at 0.3 THz, NEP (noise equivalent power) of 50 pW/Hz (as
formulated in [17]).

By moving and rotating the object, projections are acquired all around the object. The
vector of projections P is obtained by considering projections acquired at the same position
on the Y axis.

This experimental setup has also been used to acquire an intensity map of a THz beam
propagating through the air. Such acquisition is mandatory to validate the ability of a given
model to simulate the intensity distribution of a THz beam. This map has been obtained by
removing the L3, L4 and L5 lenses of the experimental setup, and then measuring the beam
intensity in different positions of the XZ plane by moving the detector. For this experiment,
we measured the THz beam by moving the detector with a displacement step of 0.5 mm in
both directions. Fig. 2 presents this map where the intensities have been normalized with
respect to the maximum intensity value of this THz beam.

3.2 Modeling the THz radiations

Depending on the refractive index, both reflection and refraction losses may not be the dom-
inant effects. We consider, like Recur et al. [15], that the intensity I(x,y,z) at a location
(x,y,z) of a THz beam, when propagated through the air, can be appropriately modeled by
a Gaussian equation as follows:

I(x,y,z) = I0

(
w0

w(z)

)2

exp
(
−2r2

w2(z)

)
, (2)
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Fig. 3 Intensity map of acquired a) and simulated using the Gaussian modeling (Eq. (2)) b) THz beam at
106 GHz in the XZ plane. Colorbars represent intensities of the THz beam. Intensities are normalized with
respect to the maximum intensity of the THz beam.

Source device

Detector device

Fig. 4 Snell-Descartes based optical path

where: r is the distance to the beam axis, w(z) = w0

√
1+( z

zr
)2 the radius of the beam,

w0, the waist, is the minimum value of the radius, zr =
πw2

0
λ

is the Rayleigh range, λ is the
wavelength and I0 is the highest intensity value.

Fig.3.b plots a simulation of the acquired intensity map of the THz beam (see Fig.3.a)
by using the Gaussian beam modeling (Eq.(2)). Simulated and acquired intensity maps are
similar. However this modeling cannot be used to make a projection operator since it does
not consider interaction between THz beam and an object to be inspected. We depict a
simulation of the measurement reported in Fig.2 based on Eq.(2). This shows that this model
is relevant for the kind of waves we consider.

A first idea would be to model the THz beam propagation using a standard Snell &
Descartes ray-tracing (as in X-ray CT). Since Tepe et al. [22] say they neglect the Gaussian
beam profile, we presume they used this approach. It has the advantage of easily modeling
refraction, reflection and absorption. The global procedure is illustrated in Fig.4: the beam
is refracted at each interface and attenuated as it propagates through an object whose ab-
sorption index is known. As aknowledged by Tepe et al. [22], this model cannot achieve a
reliable projection operation since the intensity profile of the THz beam is ignored.

Mukherjee et al. [13], propose to account for both reflection and refraction losses by
regularly discretizing the THz pulse in several rays. Each ray has an intensity proportional to
its angular distance to the optical axis, following a normal distribution. Each ray is processed
by applying the usual ray tracing method for estimating the intensity it carries to the detector,
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Fig. 5 FRT modeling: the THz beam is regularly discretized in several rays, all intersecting at the position
(0,0,0). In this illustration, the width of a ray is connected to its intensity. The wider a ray, the higher its
intensity is. The numerical aperture β corresponds to the orientation of rays with highest angular distance to
the optical axis.
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Fig. 6 Intensity map of THz beam at 106 GHz in the XZ plane: acquired a) simulated using the FRT modeling
b). Colorbars represent intensities of the THz beam. Intensities are normalized with respect to the maximum
intensity of the THz beam.

if the ray reaches the detector. We call this kind of procedure Fan Ray Tracing (FRT). It is
illustrated in Fig.5.

Fig.6.b plots a simulation of THz beam (plotted in Fig.6.a) by using an FRT approach
using 100,000 rays. We observe that FRT induces a point-like focalisation, which highly
differs from the measured beam shape. As the Rayleigh range contains most of the intensity,
such a focalisation results in different beam attenuation compared to a measured beam. Such
a deviation is likely to produce differences between acquired and simulated measurements.
Knowing this, Mukherjee et al. propose to simulate measurements at the edge of the object
by using a Gaussian equation. Although this solution improves simulated measurement at
the edge of the object, it does not counteract the point-like focalisation near the center of
the object. As a last potential drawback, the systematic sampling of the beam makes the
resulting approximation highly dependent on the sample step.

3.3 Monte Carlo slash ray tracing

We propose a projection operator that better mimics how the THz beam propagates through
the air. This operator is likely to perform better than FRT to simulate how the THz beam
interacts with an object. This projection operator, called Monte Carlo Slash Ray Tracing
(MCSRT), is based on a random selection of rays complying with the distribution modeled
by Eq.(2).

Let us consider the parameters of Eq.(2). Within our approach, each ray is defined by
two randomly selected parameters ϕ and ψ , as depicted in Fig.7. We represent in green the
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Fig. 7 MCSRT modeling: due to the random selection of parameters ϕ and ψ , the rays do not intersect at the
position (0,0,0). Each ray have the same intensity

edges of the THz beam with a numerical aperture β . The rays launched with the MCSRT
modeling are represented in blue and black. ϕ (respectively ψ) is randomly selected by

using a centered normal distribution with variance σ2
ϕ = β 2

(2
√

2)2 (respectively σ2
ψ =

w2
0

(2
√

(2))2 ).

Variance values are obtained by identifying Eq.(2) with the MC approach. The bigger σ2
ϕ

(respectively σ2
ψ ), the wider the numerical aperture (respectively the beam waist) of the

simulated beam is. As illustrated in Fig.7, all rays do not intersect at the center of the beam
as within the FRT modeling.

Fig.8.b plots a simulation of the intensity map of the THz beam plotted in Fig.8.a by
using the MCSRT model with 100,000 rays. It seems obvious that the proposed model
better simulates the energy distribution of a THz beam propagating through the air than the
FRT model, especially in the Rayleigh range.

To confirm this subjective result, we propose to use the 3 error criteria that are intensively
used in the signal processing domain: the mean square error, the mean absolute error and
the maximum absolute error. The smaller those criteria, the better the simulation is. These
criteria are computed as follow:

Mean square error =
1
n

n

∑
i=1

(Qi− Q̂i)
2, (3)

Mean absolute error =
1
n

n

∑
i=1
|Qi− Q̂i|, (4)

Max absolute error =
n

max
i=1

(|Qi− Q̂i|), (5)

where Qi (respectively Q̂i) is the ith pixel value in the intensity map of acquired (respec-
tively simulated) THz beam and n is the total number of pixel in the map. Table1 reports the
comparison between the acquired intensity map and its simulation by using the Gaussian
beam, FRT and MCSRT modeling (Eq. (3), (4) and (5)). MCSRT modeling clearly outper-
forms FRT modeling in every criteria. Its error values are comparable to those obtained by
using simulations based on the Gaussian beam model (Eq. (2)).

3.4 Simulated projections comparison

In the previous section, we compared the ability of both FRT and MCSRT models to sim-
ulate how the THz beam propagates through the air. In this section we propose to compare
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Fig. 8 Intensity map of THz beam at 106 GHz in the XZ plane: acquired a) and simulated using the MCSRT
modeling b). Colorbars represent intensities of the THz beam. Intensities are normalized with respect to the
maximum intensity of the THz beam.

Table 1 Comparison between acquired and simulated intensity map of THz beam propagating through the
air at 106 GHz using Gaussian beam (Eq. (2)), FRT and MCSRT modeling.

Mean square error (Eq. (3)) Mean absolute error (Eq. (4)) Max absolute error (Eq. (5))

Gaussian beam (Eq. (2)) 0.02 0.08 0.39
FRT 0.04 0.11 1.00
MCSRT 0.01 0.06 0.38
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Fig. 9 Acquired sinogram of the first object. Colorbar indicates acquired projections (mV) all around the first
object. The angular step sampling is about 10◦.

the ability of both methods to simulate a projection measurement. To achieve this com-
parison, we acquired projections of a 40 mm diameter Polyoxymethylene (POM) cylinder
at 106 GHz (see Fig. 9). Refractive index (respectively absorption coefficient) is about 1.7
(respectively 0.35 cm−1) at 106 GHz. Acquired and simulated projections, at a specific
θ , for both methods are depicted in Fig.10. Both acquired and simulated projections are
normalized with regard to its maximum projection value (i.e. when THz beam propagate
through the air). Simulated projections using FRT and MCSRT modeling are obtained by
using 100,000 rays. We can see that MCSRT projections values at the edge of the cylin-
der gradually increase. Using the FRT method, the transition between the cylinder and the
air is abrupt. This is likely to be caused by the fact that the FRT method does not suitably
model the beam in the focusing range. This is more obvious in Fig. 11 where absolute differ-
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Fig. 11 Normalized absolute error between acquired and simulated projections of a homogeneous cylinder
(n = 1.7, α = 0.35 cm−1 at 106 GHz) using FRT (green) and MCSRT (black) modeling

Table 2 Comparison between acquired and simulated projections with a THz beam propagating through a
cylinder at 106 GHz using FRT and MCSRT modeling.

Mean square error (Eq. (3)) Mean absolute error (Eq. (4)) Max absolute error (Eq. (5))

FRT 0.02 0.09 0.67
MCSRT 0.01 0.06 0.36

ences between acquired and simulated projections are depicted. MCSRT leads to simulated
projections that are closer to acquired projections than simulated projections given by FRT.

To confirm this subjective result, we used the same error criteria as in section 3.3, where
this time Qi (respectively Q̂i) correspond to the ith acquired (respectively simulated) projec-
tion and n is the total number of projections. Results reported in Table 2 show that every
criterion is smaller when considering the MCSRT model than when considering the FRT
model. Thus the MCSRT method outperforms the FRT method for simulating the projection
measurements.
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4 From object reconstruction to defect reconstruction

The method we propose is similar to [15] in that it uses a conventional reconstruction tech-
nique. But, where Recur et al. reconstruct an unknown object with low refraction and reflec-
tion, we propose to consider objects that have reflection and refraction, and to reconstruct
the deviation between the object to be inspected and its known CAD model. This technique
is completely relevant in a NDT context.

Let P be the measurement and J be the image of absorption coefficient to be recon-
structed. The non-linear projection model can be written as:

P = F (J). (6)

Let J0 be the CAD based absorption coefficient of the object to be reconstructed. Let us
denote ∆J the deviation between J and J0:

J = J0 +∆J. (7)

Based on (7), a first order series expansion of Eq.(6) gives:

P = F (J0)+
∂F

∂J
(J0)∆J+O2, (8)

where F (J0) is obtained by simulating the measurement using a CAD model of the
object, ∂F

∂J (J0) is the Jacobian matrix of F around J0 and O2 is a second order term. By
discarding second order terms, Eq. (8) can be rewritten as a linear equation:

∆P = R∆J, (9)

where ∆P = P−F (J0) is the deviation between the measurements and the simulated
measurements based on the CAD model, and R = ∂F

∂J (J0) is a Radon-like matrix whose
coefficients can be computed in the same way as [15] but taking into consideration the
model with reflection and refraction losses we proposed in section 3.

The reconstruction we propose is based on the SART algorithm [1]:

∆Jk+1 = ∆Jk +ρRT (∆P−R∆Jk), (10)

where R and RT are respectively the projection and back-projection matrices linking the
reconstructed pixel ∆Jk at iteration k to ∆P, ρ is a relaxation parameter that ensures the
convergence of the algorithm [4] and ∆J0 is an initial value that can be set to zero.

The choice of an ART-like algorithm is motivated by the fact that ∆J can have positive
and negative values. An algorithm of the EM family would only have reconstructed positive
values (see Section 2).

Now, noise in the projection can lead to a divergence of the iterative reconstruction algo-
rithm (overfitting). Since no prior information on the defect to be reconstructed is available,
adding a regularization term in the reconstruction process is rather risky. Therefore, we pro-
pose to regularize by stopping the iterative reconstruction process before convergence (early
stopping) [6].

Finally, the previously proposed method can be modified by considering replacing the
simulated projections F (J0) in Eq.(8) by acquired projections using an object know to have
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no defect. Such a modification could have relevant positive effects on the reconstruction
process since the measured projection could include optical effects that are not included in
the CAD-based projection model. With this modification, ∆P only accounts for deviations
induced by defects, but could potentially double the effect of measurement noise.

5 Experiments

In this section, we present a series of experiments that illustrates both performances and lim-
itations of our method. A preliminary remark is necessary to better understand the following
experiments. Due to the difference between the refractive index of air and the refractive
index of material composing the object under inspection, a blind zone appears where, de-
pending on the relative orientation of the beam and the object, the incoming energy may not
reach the detector. Therefore, if the defect is located in this blind zone, there can be some
incoherence between measured and expected projections, since some information is miss-
ing. Thus, the quality of the reconstructed defect may depend on the relative location of the
defect in the object [13].

The four experiments we propose consist of reconstructing four different cylindrical
shaped objects with different defect locations. Cylindrical shaped objects such as particle
filters are common in an NDT context. The acquisition has been performed by acquiring
projections of a 106GHz THz beam with an angular step of 10◦ and an x displacement step
of 0.5mm for each of the four objects.

As in [22] and in [13], we consider materials with a high refractive index. The recon-
struction algorithm is stopped after 50 iterations since, during all the experiments we carried
out, it seemed to be a good trade off between artefacts and convergence. All the plots are
presented in a [−0.50,0.50] cm−1 range to ease the comparison between experimental re-
sults. All defects are also cylindrical shaped. Their size after reconstruction is measured by
their full width at half maximum.

5.1 Cylinder with no defect

The first object is the POM cylinder presented in Section 3 with no known deviation from its
CAD model. The refractive index of POM at 106 GHz is 1.7, while its absorption coefficient
is 0.35 cm−1. Fig.12.a depicts a visible photography of this first object.

Fig.12.b depicts the reconstructed deviation obtained after 50 iterations of the recon-
struction algorithm. As expected, the reconstructed attenuation is only composed of dis-
tributed artifacts whose values range from [−0.01,0.01] cm−1 with a mean value close to
0.00 cm−1. Fig. 12.c depicts horizontal profile at the center of the first object: all values are
close to 0. This tends to validate our projection method.

5.2 Cylinder with a central defect

The second object is a 100.0 mm diameter PolyCarbonate (PC) cylinder with a 20.0 mm
diameter Acrylonitrile Butadiene Styrene (ABS) cylindrical central inclusion. Optical pa-
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Fig. 12 First object, cylinder with no defect: visible photography a), reconstructed deviation (cm−1) b) and
horizontal plot profile centered on the first object c).

rameters of both PC and ABS are known at 106 GHz: respectively the refractive indexes
are 1.6 and 1.5 while the absorption coefficients are respectively 0.25 cm−1 and 0.55 cm−1.
Fig.13.a depicts a visible photography of the second object. A red dashed circle surrounds
the defect.

Fig.13.b depicts the reconstructed deviation obtained after 50 iterations of the recon-
struction algorithm. The reconstructed defect is a cylinder located at the center whose diam-
eter is close to 20.5 mm. As expected, the reconstructed absorption deviation in the central
part of the image is close to 0.30 cm−1.

Obviously, the reconstructed image is more artifacted than in the previous experiment.
These artifacts are mainly induced by optical effects that are not taken into account since
the model is based on a PC cylinder without defects. Stopping the reconstruction algorithm
earlier could reduce these effects, as illustrated in Fig.14.a. However in this case the central
value does not reach the expected deviation value of 0.30 cm−1.

Fig.14.b depicts the horizontal central profile of Fig.13.b and Fig.14.a. We can observe
that, after only 10 iterations, the defect shape and location is already identifiable. Only the
values are wrong. Therefore, for NDT, considering earlier stopping can be envisaged to
prevent the upcoming of reconstruction artifacts. Moreover, we can decide whether or not an
object deviates from its CAD model by thresholding the reconstructed image. The threshold
could have been determined with a set of objects whose manufactured quality is known to
match the specifications.
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Fig. 13 Second object, cylinder with a central defect: visible photography a), reconstructed deviation (cm−1)
b).
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Fig. 14 Reconstructed deviation of the second object after 10 iterations (cm−1) a) and horizontal plot profile
of reconstructed deviation of the second object after 10 (blue) and 50 (black) iterations b).

5.3 Cylinder with a defect close to the center

The third object is a 40.0 mm POM cylinder with a 5.0 mm diameter cylindrical hole (filled
with air) located at 1.0 mm from the center. The optical parameters of this POM cylinder are
different from those of the first cylinder since the supplier is different. Its refractive index at
106 GHz is 1.7 and its absorption coefficient is 0.55 cm−1. We consider the refractive index
of the air to be 1.0 with no absorption (absorption coefficient is 0.00 cm−1). Since air and
POM have very different refractive indexes, the air cylinder will induce refraction. Fig.15.a
depicts a visible photography of the third object with a red dashed circle surrounding the
defect.

Fig.15.b depicts the reconstructed deviation obtained after 50 iterations of the recon-
struction algorithm. The diameter of the reconstructed defect is close to 7.8 mm and its
center is located at 3.1 mm from the center of the POM cylinder. The mean value of the re-
constructed absorption coefficient deviation in the air cylinder is close to−0.42 cm−1 which
differs from the expected value of −0.55 cm−1. This is also true for its diameter. This situa-
tion can easily be explained by the partial volume effect induced by the fact that the radius
of the air cylinder is smaller than the waist.
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Fig. 15 Third object, cylinder with a defect near the center: visible photography a), reconstructed deviation
(cm−1) b) with zoom on the defect c) and horizontal plot profile centered on the defect d).

One can observe that, in addition to not having the right dimension, the reconstructed
air cylinder also has the wrong shape (see Fig.15.c). This can be explained by the fact that
the model we use does not consider all optical effects (e.g. diffraction due to the air/POM
interfaces at the edges of the cylinder).

Fig.15.d depicts the horizontal plot profile centered on the defect. A dissymmetry in the
artifacts is clearly visible. This dissymmetry may be induced by the non central position of
the defect in the object. In fact, this dissymmetry is in the same direction as the deviation of
the defect from the center.

To account for additional optical effects induced by the POM cylinder, we propose to
replace F (J0) in Eq.(8) by acquired projections of the same object, but with no defect (as
mentioned in Section 4). The result of this modification is presented in Fig.16.a.

It can be seen that the shape, size and position of the reconstructed defect is closer
from its expected shape, size and position (see Fig.16.b): the location of the center is close
to 1.0 mm while its diameter is about 4.8 mm. Fig.16.c depicts the horizontal plot profile
centered on the defect. Replacing the simulation by a real measurement for computing ∆P
in Eq. (10) allows to consider optical phenomena induced by the POM cylinder which are
not considered by the MCSRT modeling. This experiment suggests that this replacement is
relevant in an NDT context.
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Fig. 16 Reconstructed deviation of the third object with the defect located at 1.0 mm from the center using
acquired measurement (cm−1) a) with zoom on the defect b) and horizontal plot profile centered on the defect
c).

5.4 Cylinder with defect near the periphery

The fourth object is also a 40.0 mm POM cylinder with a 5.0 mm diameter cylindrical hole.
But this time the hole is located at 10.0 mm from the center, i.e. in the blind zone. Fig.17.a
depicts a visible photography of this fourth object with a red dashed circle surrounding the
defect.

Fig.17.b depicts the reconstructed deviation obtained after 50 iterations of the recon-
struction algorithm. Now the cylindrical shape of the defect is not properly reconstructed.
At the location of the defect – which is indicated by a red dashed circle – a pie-shaped form
has been reconstructed. Fig17.c depicts the horizontal plot profile centered on the defect.
This seems to derive from the lack of information induced by refraction in the blind zone
[13]. To corroborate this interpretation, i.e. this does not result from any other phenomena
other than refraction, reflection and absorption losses, we have simulated this experiment.
The result of this simulation is depicted in Fig. 18.a. Fig18.b depicts the horizontal plot
profile centered on the defect. The reconstructed shape and location are identical.

This experiment suggests that reconstructing a defect in the blind zone can be problem-
atic. However, in an NDT context, this method is still relevant to decide whether or not the
object has a defect. Moreover, the reconstructed defect is a good marker of the real defect
since the real defect is located inside the reconstructed defect.

6 Discussion

The third experiment tends to show that using acquired projections instead of simulated
projections increases the quality of defect reconstruction. This highlights the fact that optical
effects other than those that our model accounts for should be considered. The replacement
we proposed is a good method to avoid this problem, but modeling these missing optical
effects should be a better solution.

We noted, in the fourth experiment, that the incoherence between projection measure-
ments and model induces imprecisions in the reconstruction. This is mainly due to the fact
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Fig. 17 Fourth object, cylinder with a defect near the periphery: visible photography a), reconstructed devi-
ation (cm−1) b) and horizontal plot profile centered on the defect c). A red dashed circle indicate the position
of the defect.
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Fig. 18 Reconstructed deviation of the fourth object with the defect located at 10 mm from the center using
synthetic measurement (cm−1) a) and horizontal plot profile centered on the defect b).

that, when a defect is placed in what Mukherjee et al. [13] call the blind zone, information
is missing since the beam does not reach the detector (partially or completely). Within our
model, this missing measurement is seen as a full absorption, when it is in fact refraction. A
way to circumvent this problem could be to retrieve lost information by moving the detector
in the plane perpendicular to the optical axis, or to use a detector strip (with 2D reconstruc-
tion) or a detector matrix (with 3D reconstruction).
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7 Conclusion

In this paper, we have presented a Terahertz (THz) based tomography dedicated to non
destructive inspection. The two key features of this contribution are:

– a new model for the interaction between radiation and objects to be inspected,
– a reconstruction algorithm based on linearization about known CAD models.

The interaction model we have proposed is based on a Monte Carlo extension of usual
ray tracing methods. It aims to account for the Gaussian intensity profile of THz beam and
considers refraction and reflection losses when propagating through an object. The experi-
ments we carried out show that this model performs better, with a reasonable computation
complexity, than other methods currently proposed in relevant literature.

The reconstruction algorithm we have proposed consists of modeling the propagation
of the wave through the known CAD model of the object to be inspected with a Radon-
like matrix accounting for both reflexion and refraction and to use this projection model to
reconstruct the deviation of the object to its known CAD model. If this CAD model does not
correspond to the object to be characterized, a difference between measured and simulated
projections will be visible. This difference between simulated and measured projections is
used to ensure the detection and localization of the defect.

Several directions can be envisaged for future work. First, it could be beneficial to up-
date the projection model during reconstruction. This modification is pivotal, since it would
allow reconstruction of major defects inducing high refraction loss. Achieving such a change
means being able to simulate the propagation of the THz beam in a discrete object. It also
means proving the convergence of such an iterative reconstruction method. Second, it would
be of prime importance to include diffraction to our model. Finally, we envisage modifying
the acquisition process by moving the detector device perpendicularly to the beam propaga-
tion axis, or by using detector strips or matrices. We expect this additional information will
help to overcome the problem of the blind zone. This will naturally induce a more complex
model and eventually a more complex reconstruction algorithm.
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