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We give a blow-up behavior for solutions to a variational problem with continuous regular weight (not Lipschitz and not Hölderian in one point) and Dirichlet condition. An application, we have a compactness of the solutions to this Problem, with regular weight and Lipschitz condition.

Introduction and Main Results

We set ∆ = ∂ 11 + ∂ 22 on an analytic domain Ω ⊂ R 2 .

We consider the following equation:

(P )        -∆u = 1 -log |x| 2d V e u in Ω ⊂ R 2 , u = 0 in ∂Ω.
Here:

d = diam(Ω), 0 ∈ ∂Ω,
and,

0 ≤ V ≤ b < +∞, 1 -log |x| 2d e u ∈ L 1 (Ω), u ∈ W 1,1 0 (Ω).
The previous equation was studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for Liouville-type equations with singular potentials[END_REF][START_REF] Bartolucci | A 'sup+Cinf' inequality for the equation -∆u = V e u /|x| 2α[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Nonlinear elliptic equations with measures revisited[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], we can find some existence and compactness results.

Among other results, we can see in [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] the following important Theorem, Theorem.(Brezis-Merle [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the problem (P ) with, 0 < a ≤ V i ≤ b < +∞, then, for all compact set K of Ω, sup K u i ≤ c = c(a, b, K, Ω).

If we assume V with more regularity, we can have another type of estimates, a sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
Now, if we suppose (V i ) i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF].

Here we give the behavior of the blow-up points on the boundary and a proof of a Problem with Lipschitz condition.

Here, we write an extension of Brezis-Merle Problem (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) is:

Problem. Suppose that V i → V in C 0 ( Ω), with, 0 ≤ V i . Also, we consider a sequence of solutions (u i ) of (P ) relatively to (V i ) such that, Ω 1 -log |x| 2d e ui dx ≤ C,
is it possible to have:

||u i || L ∞ ≤ C?
Here, we give a caracterization of the behavior of the blow-up points on the boundary and also a proof of the compactness theorem when the prescribed curvature are uniformly Lipschitzian. For the behavior of the blow-up points on the boundary, the following condition is enough,

0 ≤ V i ≤ b, The condition V i → V in C 0 ( Ω) is not necessary.
But for the proof for the Brezis-Merle type problem we assume that:

||∇V i || L ∞ ≤ A.
We have the following caracterization of the behavior of the blow-up points on the boundary. Theorem 1.1 Assume that max Ω u i → +∞, Where (u i ) are solutions of the probleme (P ) with:

0 ≤ V i ≤ b, and Ω 1 -log |x| 2d
e ui dx ≤ C, ∀ i, then; after passing to a subsequence, there is a finction u, there is a number N ∈ N and there are N points x 1 , x 2 , . . . , x N ∈ ∂Ω, such that,

∂ ν u i → ∂ ν u + N j=1
α j δ xj , α j ≥ 4π, weakly in the sense of measures and,

u i → u in C 1 loc ( Ω -{x 1 , . . . , x N }).
In the following theorem, we have a compactness result which concern the problem (P ).

Theorem 1.2 Assume that (u i ) are solutions of (P ) relatively to (V i ) with the following conditions:

d = diam(Ω), 0 ∈ ∂Ω, 0 ≤ V i ≤ b, ||∇V i || L ∞ ≤ A, and Ω 1 -log |x| 2d e ui ≤ C,
We have,

||u i || L ∞ ≤ c(b, A, C, Ω),

Proof of the theorems

Proof of theorem 1.1:

We have,

u i ∈ W 1,1 0 (Ω)
, By [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], e ui ∈ L k , ∀k ≥ 1. By the elliptic estimates:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω), ǫ > 0.
We denote ∂ ν u i the inner derivative of u i . By the maximum principle ∂ ν u i ≥ 0. By the Stokes formula:

∂Ω ∂ ν u i dσ ≤ C,
Thus, (using the weak convergence in the space of Radon measures), we have the existence of a non-negative Radon measure µ such that,

∂Ω ∂ ν u i φdσ → µ(φ), ∀ φ ∈ C 0 (∂Ω).
We take an x 0 ∈ ∂Ω such that, µ(x 0 ) < 4π. Without loss of generality, we can assume that the following curve, B(x 0 , ǫ) ∩ ∂Ω := I ǫ is an interval.(In this case, it is more simple to construct the following test function η ǫ ). We choose a function η ǫ such that,

           η ǫ ≡ 1, on I ǫ , 0 < ǫ < δ/2, η ǫ ≡ 0, outside I 2ǫ , 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I2ǫ) ≤ C 0 (Ω, x 0 ) ǫ .
We take a ηǫ such that,

-∆η ǫ = 0 in Ω ηǫ = η ǫ on ∂Ω.
We take a cutoff function η 0 in B(0, 2) or B(x 0 , 2):

We set η ǫ (x) = η 0 (|x -x 0 |/ǫ) in the case of the unit disk it is sufficient. We use a chart [f, B 1 (0)] with f (0) = x 0 .
We can take: µ ǫ (x) = η 0 (x/ǫ) and η ǫ (y) = µ ǫ (f -1 (y)), we extend it by

0 outside f (B 1 (0)). We have f (B 1 (0)) = D 1 (x 0 ), f (B ǫ (0)) = D ǫ (x 0 ) and f (B + ǫ ) = D + ǫ (x 0 ) with f and f -1 smooth diffeomorphism.            η ǫ ≡ 1, on a the connected set J ǫ = f (I ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside J ′ ǫ = f (I 2ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (J ′ ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
And,

H 1 (J ′ ǫ ) ≤ C 1 H 1 (I 2ǫ ) = C 1 4ǫ, since f is Lipschitz.
Here H 1 is the Hausdorff measure.

We solve the Dirichlet Problem:

∆η ǫ = ∆η ǫ in Ω ⊂ R 2 , ηǫ = 0 in ∂Ω.
and finaly we set ηǫ = -η ǫ + η ǫ . Also, by the maximum principle and the elliptic estimates we have :

||∇η ǫ || L ∞ ≤ C(||η ǫ || L ∞ + ||∇η ǫ || L ∞ + ||∆η ǫ || L ∞ ) ≤ C 1 ǫ 2 , with C 1 depends on Ω.
We use the following estimate, see [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF],

||∇u i || L q ≤ C q , ∀ i and 1 < q < 2.
We deduce from the last estimate that, (u i ) converge weakly in W 1,q 0 (Ω), almost everywhere to a function u ≥ 0 and Ω 1

-log |x| 2d

e u < +∞ (by Fatou lemma). Also, V i weakly converge to a nonnegative function V in L ∞ . The function u is in W 1,q 0 (Ω) solution of :

       -∆u = 1 -log |x| 2d V e u ∈ L 1 (Ω) in Ω u = 0 on ∂Ω,
As in the corollary 1 of Brezis-Merle result, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], we have e ku ∈ L 1 (Ω), k > 1. By the elliptic estimates, we have u ∈ C 1 ( Ω).

We can write,

-∆((u i -u)η ǫ ) = 1 -log |x| 2d (V i e ui -V e u )η ǫ + 2 < ∇(u i -u)|∇η ǫ > . (1) 
We use the interior esimate of Brezis-Merle, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between ηǫ and u, we obtain,

Ω 1 -log |x| 2d V e u ηǫ dx = ∂Ω ∂ ν uη ǫ ≤ C 1 4ǫ||∂ ν u|| L ∞ = Cǫ (2) 
We have,

       -∆u i = 1 -log |x| 2d
V i e ui in Ω

u i = 0 on ∂Ω,
We use the Green formula between u i and ηǫ to have:

Ω 1 -log |x| 2d V i e ui ηǫ dx = ∂Ω ∂ ν u i η ǫ dσ → µ(η ǫ ) ≤ µ(J ′ ǫ ) ≤ 4π -ǫ 0 , ǫ 0 > 0 (3)
From (2) and (3) we have for all ǫ > 0 there is

i 0 = i 0 (ǫ) such that, for i ≥ i 0 , Ω 1 -log |x| 2d |(V i e ui -V e u )η ǫ |dx ≤ 4π -ǫ 0 + Cǫ (4) 
Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σ ǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ 3 } and Ω ǫ 3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ 3 }, ǫ > 0. Then, for ǫ small enough, Σ ǫ is hypersurface. The measure of Ω -Ω ǫ 3 is k 2 ǫ 3 ≤ µ L (Ω -Ω ǫ 3 ) ≤ k 1 ǫ 3 .
Remark: for the unit ball B(0, 1), our new manifold is B(0, 1 -ǫ 3 ).

(Proof; let's consider d(x, ∂Ω) = d(x, z 0 ), z 0 ∈ ∂Ω, this imply that (d(x, z 0 )) 2 ≤ (d(x, z)) 2 for all z ∈ ∂Ω which it is equivalent to (z -z 0 ) • (2x -z -z 0 ) ≤ 0 for all z ∈ ∂Ω, let's consider a chart around z 0 and γ(t) a curve in ∂Ω, we have;

(γ(t) -γ(t 0 ) • (2x -γ(t) -γ(t 0 )) ≤ 0 if we divide by (t -t 0 ) (with the sign and tend t to t 0 ), we have γ ′ (t 0 ) • (x -γ(t 0 )) = 0, this imply that x = z 0 -sν 0 where ν 0 is the outward normal of ∂Ω at z 0 ))

With this fact, we can say that S = {x, d(x, ∂Ω)

≤ ǫ} = {x = z 0 -sν z0 , z 0 ∈ ∂Ω, -ǫ ≤ s ≤ ǫ}. It is sufficient to work on ∂Ω. Let's consider a charts (z, D = B(z, 4ǫ z ), γ z ) with z ∈ ∂Ω such that ∪ z B(z, ǫ z ) is cover of ∂Ω . One can extract a finite cover (B(z k , ǫ k )), k = 1, .
.., m, by the area formula the measure of S ∩ B(z k , ǫ k ) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one chart around one point of the boundary).

We write,

Ω | < ∇(u i -u)|∇η ǫ > |dx = Ω ǫ 3 | < ∇(u i -u)|∇η ǫ > |dx+ + Ω-Ω ǫ 3 < ∇(u i -u)|∇η ǫ > |dx.
(5)

Step 2.1:

Estimate of Ω-Ω ǫ 3 | < ∇(u i -u)|∇η ǫ > |dx.
First, we know from the elliptic estimates that ||∇η ǫ || L ∞ ≤ C 1 /ǫ 2 , C 1 depends on Ω We know that (|∇u i |) i is bounded in L q , 1 < q < 2, we can extract from this sequence a subsequence which converge weakly to h ∈ L q . But, we know that we have locally the uniform convergence to |∇u| (by Brezis-Merle theorem), then, h = |∇u| a.e. Let q ′ be the conjugate of q.

We have, ∀f ∈ L q ′ (Ω)

Ω |∇u i |f dx → Ω |∇u|f dx
If we take f = 1 Ω-Ω ǫ 3 , we have:

for ǫ > 0 ∃ i 1 = i 1 (ǫ) ∈ N, i ≥ i 1 , Ω-Ω ǫ 3 |∇u i | ≤ Ω-Ω ǫ 3 |∇u| + ǫ 3 . Then, for i ≥ i 1 (ǫ), Ω-Ω ǫ 3 |∇u i | ≤ meas(Ω -Ω ǫ 3 )||∇u|| L ∞ + ǫ 3 = Cǫ 3 .
Thus, we obtain,

Ω-Ω ǫ 3 | < ∇(u i -u)|∇η ǫ > |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 1) (6) 
The constant C 1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of

Ω ǫ 3 | < ∇(u i -u)|∇η ǫ > |dx.
We know that, Ω ǫ ⊂⊂ Ω, and ( because of Brezis-Merle's interior estimates)

u i → u in C 1 (Ω ǫ 3 ). We have, ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ≤ ǫ 3 , for i ≥ i 3 = i 3 (ǫ).
We write,

Ωǫ 3 | < ∇(u i -u)|∇η ǫ > |dx ≤ ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ||∇η ǫ || L ∞ ≤ C 1 ǫ for i ≥ i 3 , For ǫ > 0, we have for i ∈ N, i ≥ max{i 1 , i 2 , i 3 }, Ω | < ∇(u i -u)|∇η ǫ > |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 2) (7) 
From ( 4) and (7), we have, for ǫ > 0, there is i

3 = i 3 (ǫ) ∈ N, i 3 = max{i 0 , i 1 , i 2 } such that, Ω |∆[(u i -u)η ǫ ]|dx ≤ 4π -ǫ 0 + ǫ2C 1 (2k 1 ||∇u|| L ∞ + 2 + C) (8) 
We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

-∆[(u i -u)η ǫ ] = g i,ǫ in Ω, (u i -u)η ǫ = 0 on ∂Ω. with ||g i,ǫ || L 1 (Ω) ≤ 4π -ǫ 0 .
We can use Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] to conclude that there is q ≥ q > 1 such that:

Vǫ(x0) e q|ui-u| dx ≤ Ω e q|ui-u|ηǫ dx ≤ C(ǫ, Ω).
where, V ǫ (x 0 ) is a neighberhood of x 0 in Ω.

Thus, for each x 0 ∈ ∂Ω -{x 1 , . . . , xm } there is ǫ x0 > 0, q x0 > 1 such that:

B(x0,ǫx 0 )
e qx 0 ui dx ≤ C, ∀ i. Now, we consider a cutoff function η ∈ C ∞ (R 2 ) such that:

η ≡ 1 on B(x 0 , ǫ x0 /2) and η ≡ 0 on R 2 -B(x 0 , 2ǫ x0 /3).

We write,

-∆(u i η) = 1 -log |x| 2d
V i e ui η -2 < ∇u i |∇η > -u i ∆η.

By the elliptic estimates, (u i η) i is uniformly bounded in W 2,q1 (Ω) and also, in C 1 ( Ω).

Finaly, we have, for some ǫ > 0 small enough,

||u i || C 1,θ [B(x0,ǫ)] ≤ c 3 ∀ i. (9) 
We have proved that, there is a finite number of points x1 , . . . , xm such that the squence (u i ) i is locally uniformly bounded in Ω -{x 1 , . . . , xm }.

And, finaly, we have:

∂ ν u i → ∂ ν u + N j=1 α j δ xj , α j ≥ 4π weakly in the sense of measures. ( 10 
)
Proof of theorem 1.2:

Without loss of generality, we can assume that 0 = x 1 is a blow-up point (either, we are in the regular case). Also, by a conformal transformation γ, we can assume that Ω = B + 1 , the half ball, and ∂ + B + 1 is the exterior part, a part which not contain 0 and on which u i converge in the C 1 norm to u. Let us consider B + ǫ , the half ball with radius ǫ > 0.

We know that:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
Thus we can use integrations by parts (Gauss-Green-Riemann-Stokes formula). The second Pohozaev identity applied around the blow-up 0 = x 1 gives:

B + ǫ ∆u i (x • ∇u i )dx = ∂ + B + ǫ g(∇u i )dσ, (11) with 
, g(∇u i ) = (ν • ∇u i )(x • ∇u i ) -x • ν |∇u i | 2 2 .
After integration by parts, we obtain:

B + ǫ 1 -log |x| 2d
V i e ui dx+ 

B + ǫ < x|∇V i > 1 -log |x| 2d V i e ui dx+ ∂B + ǫ 1 -log |x| 2d V i e ui (x•ν) = = ∂ + B + ǫ g(∇u i )dσ, (12) 
Thus,

B + ǫ 1 -log |x| 2d
V i e ui dx -

B + ǫ 1 -log |x| 2d V e u dx+ + B + ǫ < x|∇V i > 1 -log |x| 2d
V i e ui dx - V i e ui dx = 0,

But,

γ(B + ǫ ) 1 -log |x| 2d
V i e ui dx = ∂γ(B + ǫ )

∂ ν u i + o(ǫ) + o(1) → α 1 > 0.

A contradiction.

V+ ǫ 1 -

 1 i e ui (x • ν) -∂B log |x| 2d V e u (x • ν) = = ∂ + B + ǫ g(∇u i ) -g(∇u)dσ = o(1),First, we tend i to infinity after ǫ to 0, we obtain: