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Under the responsibility of the Regional Specialized Meteorological Centre (RSMC)

of La Réunion, the southwest Indian Ocean (SWIO) has tropical cyclone activity

close to that of the North Atlantic. Like most territories of the SWIO basin, La Réu-

nion island is highly vulnerable to cyclone-induced hazards and the potential impact

of nearby storms is closely related to their track and intensity evolution. Although

storm track and intensity forecasts have been steadily improving in the last decades,

a great amount of uncertainty remains. Operational centres have therefore developed

probabilistic products such as uncertainty cones for the prediction of storm track and

intensity over the different cyclone basins. Unfortunately, the cone approach does

not fully match the end-user needs for efficient decision-making. This article pro-

vides a method to generate alternate probabilistic scenarios of tropical system track

and intensity forecasts around an official forecast. The method has been calibrated

and evaluated to answer the needs of the Système de Prévision des Inondations en

contexte Cyclonique (SPICy) project that aimed to explore new probabilistic fore-

cast products for tropical system induced hazards such as coastal inundations. A

hybrid method has been developed to benefit from both climatological and dynami-

cal existing approaches. A first set of climatology-built scenarios is generated using

the statistical distribution of RSMC La Réunion forecast errors. This initial set is then

modulated using real-time information provided by the ensemble prediction system

of the European Centre for Medium-range Weather Forecasts (ECMWF). The final

product is a set of about 20 scenarios that are built around the official determin-

istic forecast with some associated probabilities. Performance scores demonstrate

the efficiency of the method against other evaluated systems especially in the first

2 days of the forecast. The reasonable number of defined scenarios is cost efficient

and makes it possible to perform further impact-oriented applications such as wave

and storm surge simulations.

KEYWORDS

ensemble prediction, probabilistic forecasts, southwest Indian Ocean, tropical

cyclones

1 INTRODUCTION

Being able to forecast a tropical system track and intensity a

few days ahead is a main issue for territories subject to storm

hazards and their induced impacts. Islands such as La Réu-

nion are regularly impacted by storms during the southwest

Indian Ocean (SWIO) austral summer. Due to the small

size and sharp topography of the island, the level and loca-

tion of the impacts are highly dependent on the final track

and intensity of the storm passing nearby. Although numerical

models have made great progress in the last decades in fore-

casting the tracks and intensities of such phenomena, there is
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still a great deal of uncertainty associated with deterministic

forecasts (e.g. Plu, 2011; DeMaria et al., 2014). Small fore-

cast errors may lead to inadequate decisions and consequently

to material or human losses.

The Regional Specialized Meteorological Centre (RSMC)

of La Réunion issues track forecasts and warnings for coun-

tries in the SWIO area up to a 5-day lead time whenever

a tropical storm (TS) or tropical cyclone (TC) affects this

region. In this particular basin, a TS is defined as a tropical

system with estimated maximum 10 min average wind speed

(Vmax) between 34 and 63 knots (kn, 0.514 m/s). A TC is

defined as a tropical system with Vmax greater than 64 kn. In

2011, RSMC La Réunion developed a technique to evaluate

and display track forecast uncertainty (Dupont et al., 2011).

Uncertainty circles are built around the official track forecast

and calculated using the Ensemble Prediction System (EPS)

of the European Centre for Medium-range Weather Forecasts

(ECMWF). The cone of uncertainty comprises circles associ-

ated with each forecast lead time and represents the dispersion

of the EPS ensemble. The greater the uncertainty, the wider

the cone. This cone thus reflects the degree of confidence that

forecasters can have in their track forecasts.

The uncertainty cone approach has proven valuable dur-

ing the last few cyclone seasons. However, it does not fully

match the end-user concerns and needs for detailed infor-

mation on the potential impacts of winds, precipitations and

oceanic phenomena such as swell and surge, with their asso-

ciated probabilities. Hence the idea of designing a method

that would generate alternate scenarios to the RSMC official

deterministic forecast and that would quantify their associated

probabilities to be able to subsequently derive probabilis-

tic forecasts of cyclone-induced hazards (devastating winds,

torrential rain, marine and river inundations) as described

for example in Davis et al. (2010). The Système de Prévi-

sion des Inondations en context Cyclonique (SPICy) project

(http://spicy.brgm.fr/en) led by the French Geological Survey

(BRGM), in which Météo-France was involved, was a good

opportunity to explore a new probabilistic approach for TS or

TC track and intensity forecasts. This project aims at improv-

ing the information provided to authorities and users when

a tropical system threatens La Réunion Island in particular

but can be extended to other regions if it proves to provide

effective innovative products for decision-makers. One com-

ponent of the project is to provide probabilistic track and

intensity forecasts to force atmospheric, wave and surge mod-

els and derive probabilistic forecasts of oceanic and coastal

conditions.

Since the 2006–2007 hurricane season, the National Hur-

ricane Center (NHC) has implemented a probabilistic model

that gives spatial estimation of the probability of winds

exceeding certain thresholds such as 34, 50 and 64 kn on

the expected passage of a tropical system evolving in the

Atlantic or North Pacific Oceans (DeMaria et al., 2009).

A Monte-Carlo method is used to generate 1,000 alterna-

tive forecasts around the a-priori-considered-the-most-likely

official forecast by randomly sampling from the NHC track

and intensity forecast error 5-year distribution computed from

previous cyclone seasons. Track errors are broken down into

“Along-Track” (AT) and “Cross-Track” (CT) errors to facil-

itate computations. Each generated position is calculated by

vectorially adding AT and CT errors to the official expected

position while the random intensity error is added to the

official intensity forecast. The originality of the method is

that it takes into account the serial correlation of both track

and intensity errors between the various lead times using

linear regressions. The authors indeed demonstrate the cor-

relation between TC track and intensity forecasts for all 12

h periods from 12 to 120 h. This Monte-Carlo method was

initially considered within the SPICy project but soon had

to be abandoned due to the amount of computing resources

required to run 1,000 simulations to generate associated sur-

face wind, ocean wave and surge. Alternative methods have

been developed for TC track forecasts. Qi et al. (2014) pro-

pose a selective ensemble mean technique based on various

ensemble prediction systems while Zhang and Yu (2017)

explore a probabilistic forecast scheme based on the selective

consensus of ensemble prediction systems. Jun et al. (2017)

recently introduced an unequally weighted technique to gener-

ate multi-model ensemble forecasts for western North Pacific

TC tracks. For intensity forecasts, probabilistic approaches

are explored using, for example, a climatology-based forecast

scheme (Chen et al., 2016) or an analogue ensemble technique

(Alessandrini et al., 2018).

To meet the project goal, a method was built to generate

a reasonable number of scenarios that modulates both track

and intensity with a distinct probability assigned to each sce-

nario. The limited number of scenarios fulfils operational

computing time constraints while covering a large spectrum

of possibilities.

Section 2 provides statistics of RSMC La Réunion TS and

TC official forecast errors with respect to numerical models

from the ECMWF. Section 3 describes the scenario genera-

tion method while section 4 analyses its performance. Section

5 is a summary of the article.

2 STATISTICS ON RSMC LA RÉUNION
OFFICIAL TS AND TC FORECAST ERRORS
(TRACK AND INTENSITY)

The RSMC official (deterministic) forecast is chosen as the

starting point of our ensemble generation process for a bet-

ter consistency of the suite of forecasting products deliv-

ered in terms of track, intensity, and associated impacts.

To validate this fundamental choice, statistics are com-

puted over five recent cyclone seasons from 2011/2012

to 2015/2016 and over the RSMC area of responsibility

(40◦S–0◦S/30◦E–90◦E) to evaluate the RSMC official fore-

cast performance. For the purpose of the SPICy project, we

focus on lead times 0 h (analysis), 12, 24, 48, 60 and 72 h.

http://spicy.brgm.fr/en
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TABLE 1 Intensity and position forecast errors at 0, 12, 24, 36, 48, 60 and 72 h lead times for three forecasting systems (RSMC, IFS
and EPSm) during five TC seasons (2011/2012 to 2015/2016)

Lead time (h) 0 12 24 36 48 60 72

DPE (km) RSMC 28 63 96 130 168 206 253

IFS 53 74 100 133 168 207 249
EPSm 54 80 111 146 192 239 289

DP-RMSE (km) RSMC 39 76 119 161 206 253 312

IFS 65 93 125 164 202 249 303
EPSm 69 104 142 185 238 298 361

CTE (km) RSMC 0 −8 −15 −19 −22 −21 −19
IFS −15 −18 −20 −18 −21 −25 −24

EPSm −15 −20 −24 −26 −34 −37 −40

RSMC −2 −14 −23 −34 −46 −61 −83

ATE (km) IFS 3 −5 −17 −32 −44 −64 −93

EPSm −3 −17 −36 −54 −75 −93 −127

Np RSMC 1,183 1,178 1,166 1,134 1,083 1,014 941

IFS 581 569 543 505 473 432 396

EPSm 587 576 554 525 488 456 422

DVmax (kn) Observed Vmax>=48 kn lead time RSMC 0 −2 −4 −4 −4 −3 −1

IFS −8 −7 −6 −6 −3 0 0
EPSm −14 −14 −15 −15 −14 −13 −14

Vmax-RMSE (kn) RSMC 6 13 18 21 23 23 22
IFS 23 24 24 24 22 23 22
EPSm 25 26 27 27 26 26 26

Nv RSMC 498 508 509 489 450 396 347

IFS 249 249 231 209 180 157 130

EPSm 244 244 228 206 178 155 129

Direct position mean (DPE) and root-mean-square (DP-RMSE) errors (km), as well as cross-track error (CTE, km), along-track error (ATE, km),

maximum wind error (DVmax, kn) and maximum wind root-mean-square error (Vmax-RMSE, kn). The best score out of the three evaluated

systems is highlighted in boldface. For maximum wind errors, cases when the observed wind is lower than 48 kn at the corresponding lead time are

not considered (minimum stage of severe tropical storm). For each evaluated system, the size of the considered sample is indicated (Np for position

and Nv for Vmax).

The “official” RSMC track is a consensus forecast resulting

from a manually analysed forecasting process, which relies

on output from available deterministic numerical models and

ensemble systems provided by various modelling centres (e.g.

ECMWF, Météo-France, the Met Office or National Centers

for Environmental Prediction (NCEP)), as well as knowl-

edge on individual model historical performances. Table 1

shows statistical scores of RSMC official forecast (RSMC),

ECMWF deterministic model forecast (IFS) and ECMWF

Ensemble Prediction System mean scenario from individual

members (EPSm). Scores are computed at various lead times

using RSMC La Réunion best-track (BT) dataset as a ref-

erence for observed positions and intensities. Leroux et al.
(2018) provides detailed information on the techniques used

at RSMC La Réunion to generate BT data (which eventually

feed International Best Track Archive for Climate Steward-

ship (IBTrACS) global dataset). Data from the ECMWF mod-

els were obtained through the THORPEX Interactive Grand

Global Ensemble (TIGGE)-portal (Swinbank et al., 2016).

Track forecasts are evaluated by the direct position error

(DPE), cross-track error (CTE) and along-track error (ATE).

TC intensities are defined by the maximum wind speed Vmax.

Vmax from BT data is an estimated maximum 10 min aver-

age wind speed whereas for the IFS and EPS models, Vmax

is directly provided by ECMWF’s storm tracker. Intensity

errors are obtained by subtracting the BT intensity from the

predicted intensity Vmax.

Scores indicate that RSMC operational forecasts perform

better than the IFS and EPS numerical systems at short

term (0–36 h) both in position and intensity, with a mean

DPE of 96 km at 24 h lead time (Table 1). However, at

longer ranges (48–72 h), the RSMC and IFS systems perform

equally with no significant intensity bias and a maximum

wind root-mean-square error around 20 kn. Note that all fore-

casting systems generate an overall negative CTE bias that

reaches some 20 km beyond 24 h lead time, highlighting a

more or less systematic deviation of the forecast to the right

of the observed track.

Table 1 also shows that scores of the mean EPS (EPSm) are

worse than those of the RSMC and IFS systems for all param-

eters and all lead times. For the maximum wind parameter, a

systematic negative bias is visible which is not surprising con-

sidering the coarser resolution of this ensemble system with

respect to that of the IFS.
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In conclusion, although the performance of RSMC predic-

tions have not been compared with those of other numerical

models but considering that ECMWF models are currently

among the most accurate for TC forecasting over the south-

west Indian Ocean basin (Yamaguchi et al., 2015), it is

assumed that the appraised operational forecast made by

RSMC La Réunion is overall more skilful than numerical

models taken individually (especially in the first 36 h of the

forecast) and can thus be considered as a robust reference for

our method which aims to generate alternate scenarios (from

the official one) with associated probabilities.

3 METHOD

As mentioned in section 2, the starting point of our method

is the official forecast provided by RSMC La Réunion every

6 h whenever a TC is monitored within the RSMC area of

responsibility.

3.1 General overview of the method

Initially, two different existing techniques were considered.

The first one, hereinafter referred to as “CLIM”, only con-

siders the climatological errors (statistical ATE-CTE-DVmax

error distribution over 5 years). The second one, here-

inafter referred to as “EPS” considers a purely dynamical

approach and uses the ECMWF ensemble system. In fact,

further investigations showed that a hybrid approach (called

“CLIM-EPS”) is generally preferable to the two individ-

ual ones.

The hybrid method is mainly a two-step approach. The

first step consists in generating a first set of scenarios using

the climatological technique (CLIM); the second step con-

sists in modulating this first set of scenarios by integrating

some information on the dispersion using the EPS system.

In that manner, relevant real-time information is added to the

predictability of the TC event. Basically, the original “clima-

tological” probabilities applied to each scenario (issued from

the statistical error distribution in the first step) are weighted

by the EPS members’ distribution.

Since the final goal is to provide information on local

impacts (waves, storm surge, and wind), the whole method

is calibrated to end up with some 15–30 TC scenarios in

order to be able to perform further applications on each sce-

nario within reasonable computing time response to match

operational constraints.

3.2 Step 1: Build clusters from climatological errors

3.2.1 Input data
To build our climatological scenarios, we use a sample

of ATE-CTE-DVmax triplets of errors computed over the five

TC seasons from 2011/2012 to 2015/2016. In contrast

to section 2, errors are now obtained by subtracting the RSMC

FIGURE 1 The 826 reconstructed tracks (in red), from 0 to 72 h lead time,

around the RSMC official forecast (black dotted line) of TC Bejisa from

base time 0000 UTC 31 December 2013 using the error sample from five

TC seasons (2011/2012 to 2015/2016) [Colour figure can be viewed at

wileyonlinelibrary.com].

forecast from the respective BT data for each of the three

parameters. Therefore, DVmax is positive when the predicted

intensity is underestimated, ATE and CTE are positive if the

observed BT position is ahead and to the left of the predicted

track for an anticlockwise rotation, respectively. The sample

is composed of 826 forecasts. Each forecast is composed of

seven triplets (one triplet per lead time from 0 to 72 h). Each

element of the forecast error sample is therefore a vector of

3× 7 variables.

Figure 1 shows, for TC Bejisa and for base time 0000 UTC

31 December 2013, the 826 reconstructed scenarios around

the RSMC official forecast up to 72 h, using the whole

error sample. For each element of the error sample (sea-

sons 2011/2012 to 2015/2016), a new scenario can be built

by adding the associated error vector to the RSMC initial

scenario for each lead time up to 72 h.

Given the limited size of our error sample (826 elements

and 5 seasons), the choice was made to consider all available

forecasts to build the error statistical distribution. Never-

theless, Figure 2 shows some systematic dependencies of

the forecast error on typical characteristics of the initial

(observed) state of the forecast. Four criteria of the system

are considered: initial longitude (LON), initial latitude (LAT),

initial intensity (Vmax), and initial size (R34KT) as defined

by the radius of gale-force wind (34 kn), following Leroux

et al. (2018). Root-mean-square errors (RMSE) were calcu-

lated for direct position (DP) and maximum wind (Vmax).

Results show a weak dependency of the position error on

the four criteria. In contrast, intensity scores exhibit a strong

dependency on initial size with larger errors for small systems

(lower tercile of the sample) which confirms what Leroux

http://wileyonlinelibrary.com
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FIGURE 2 Mean DP and Vmax root-mean-square error (RMSE) of

RSMC forecasts for lead times 24, 48 and 72 h during five TC seasons

(2011/2012 to 2015/2016) considering four criteria: Initial latitude (LAT),

longitude (LON), intensity (Vmax), and size as defined by the radius of

gale-force wind (R34KT). In the LAT, LON and R34KT criteria, the initial

sample (grey bar) is divided into three terciles: Lower (T1), median (T2)

and upper (T3) terciles. For example, T1 in the R34KT criterion

corresponds to small-size storms. In the Vmax criterion, the distribution is

divided into three classes using the Vmax thresholds for TC classification

(below 48 kn, between 48 and 64 kn, and above 64 kn) [Colour figure can be

viewed at wileyonlinelibrary.com].

et al. (2018) found for midget systems. Intensity forecast

errors seem bigger for TCs (initial Vmax greater than 64 kn

at the initial forecast time). This result could be partly due

to rapid intensification processes – which are still very dif-

ficult to forecast – knowing that there is a higher propensity

for systems to intensify rapidly for an initial intensity between

65 and 75 kn (Leroux et al., 2018). Finally, intensity forecast

errors depend on storm latitude and decrease from the Equa-

tor (T3) to the Pole (T1, large negative values of LAT). With

an increasing sample of forecast errors in the future, it might

be valuable to consider these dependencies when building the

climatological scenarios of an updated version of our method.

3.2.2 Classification
As said before, operational constraints in terms of delivery

time for final products limit the number of scenarios that we

can consider. One efficient way to reduce the number of sce-

narios, without losing useful information within the spectrum

of possibilities, is to partition the original error sample.

Clusters are built through an agglomerative hierarchical

cluster analysis (HAC: Murtagh and Contreras, 2012) applied

on the 826 error vectors described above. The aggregation

process is done following Ward’s criterion (Ward, 1963).

Prior to the HAC, each column of the initial error matrix

(3× 7 columns and 826 rows) is standardized and a princi-

pal component analysis (PCA) is applied to the 826 vectors

of standardized error.

As often in classification operations, the critical part con-

sists in choosing the most relevant number of classes. Many

criteria can be considered but the important background con-

straint here is to end up with a limited ensemble of scenarios

(maximum 30). As discussed later on, further tests showed

that the number of climatological classes should not exceed 50

to comply with the operational constraint. On the other end,

the number of climatological classes should be sufficient to

end up with a final number of scenarios greater than 15. To

objectively select the final number of classes, two indices are

considered: the connectivity and the silhouette width (Handl

et al., 2005). The connectivity (to be minimized) indicates to

what extent the neighbours of each element in the data space

can be assigned to the same class. The silhouette width (to

be maximized) analyses how well elements of the sample are

clustered and brings some indication of the average distance

between clusters. The evolutions of the connectivity index and

of the silhouette width as a function of the number of classes

varying from 30 to 60 indicate two privileged number of

classes: 35 and 45 (Figure 3). Considering the two initial con-

straints in terms of the final number of scenarios (ensemble

size), the best compromise was to keep 45 classes. With this

choice, applying the whole method (further described), leads

to a number of scenarios between 12 and 30 (81% of the cases

having more than 15 scenarios). With 35 climatological clus-

ters, 30% of the cases would have an ensemble size below 15.

3.2.3 Climatological scenarios and their associated
probability
A number of 45 distinct error vectors can be built by aver-

aging the elements of each cluster of errors. Each vector is

given a probability that is proportional to the number of ele-

ments that fall into that class. Then 45 climatology-built

scenarios can be generated by applying the 45 error vectors

(ATE-CTE-DVmax from 0 to 72 h lead time) to any official

deterministic scenario issued by RSMC La Réunion. To illus-

trate this, Figure 4 shows the 45 CLIM scenarios associated

with the TC Bejisa forecast issued on 0000 UTC 31 December

2013.

3.3 Step 2: Consider “real-time” predictability

As demonstrated in Dupont et al. (2011), an uncertainty cone

built using the distribution of EPS members is more relevant

than a climatology-built cone. Step 2 of the method exposed

here is meant to benefit from the valuable EPS inputs and add

real-time uncertainty to the 45 CLIM scenarios built in step 1.

Difference vectors are computed with respect to the

ensemble mean for each of the 51 individual EPS members;

http://wileyonlinelibrary.com
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(a) (b)

FIGURE 3 (a) Connectivity index and (b) silhouette width as a function of the number of clusters related to the HAC performed on the 826 error vectors

defining the sample [Colour figure can be viewed at wileyonlinelibrary.com].

(a) (b)

FIGURE 4 (a) Tracks and (b) maximum wind Vmax (kn) up to 72 h lead time for 40 CLIM scenarios (coloured lines) around the RSMC official forecast

(black dotted line) issued at 0000 UTC 31 December 2013 for TC Bejisa. Each scenario is referenced by a number indicated at the end of the track and carries

a probability (%) indicated in the right panel legend. BT data are added for verification (black dashed line) [Colour figure can be viewed at

wileyonlinelibrary.com].

these 51 ATE-CTE-DVmax vectors are then added to the

RSMC official track (e.g. Figure 5 for TC Bejisa) to build a

new set of 51 tracks. In consistence with the CLIM scenar-

ios built in step 1, the EPS ensemble is realigned (or centred)

on the reference RSMC forecast (e.g. Figure 6 for TC Bejisa).

This realigned EPS ensemble forecast is called EPS-REC in

the rest of the article.

Each of the 51 EPS-REC scenarios is then assigned to the

nearest climatological class, using a Euclidian distance cri-

terion which leads to a modulation of the initial probability

of each of the 45 CLIM scenarios previously built. The final

probability (P.weighted.cl) of a given scenario “cl” is that of

the CLIM class (P.cl) weighted by the number of EPS-REC

members (nb.members.cl) that fall into class cl:

P.weighted.𝑐𝑙 = P.𝑐𝑙

∗

(
𝑛𝑏.members.𝑐𝑙 ∗

∑45
k=1(𝑛𝑏.elements.k)∑45

k=1(𝑛𝑏.elements.k ∗ 𝑛𝑏.members.k)

)
,

where nb.elements.k is the number of initial elements con-

tained in the 45 CLIM clusters. Note that the probability of

a climatological class decreases all the way to 0 when none

of the 51 EPS-REC members are assigned to it. In that case,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://p.weighted.cl
http://nb.members.cl
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(a) (b)

FIGURE 5 As in Figure 4 but for the 51 EPS scenarios (red lines) [Colour figure can be viewed at wileyonlinelibrary.com].

(a) (b)

FIGURE 6 As in Figure 4 but for the 51 EPS-REC scenarios (blue lines), corresponding to the realignment of the 51 EPS scenarios displayed in Figure 5 on

the RSMC official forecast (black dashed line) [Colour figure can be viewed at wileyonlinelibrary.com].

the climatological class disappears from the set of 45 orig-

inal classes. This weighting process typically decreases the

initial number of 45 CLIM classes to some 15–30 CLIM-EPS

scenarios (e.g. Figure 7 for TC Bejisa).

4 EVALUATION

The performance of a probabilistic forecasting system can

be evaluated in many different ways depending on the tar-

geted goal. A new probabilistic forecasting system is usually

evaluated against a “reference” pre-existing system. In our

case, the three methods (CLIM, CLIM-EPS and EPS-REC)

are evaluated with respect to the ECMWF EPS system that

provides 51 members that are supposedly equally probable.

The evaluation is performed for two distinct periods: sea-

sons 2011/2012 to 2015/2016, which is the learning period

used for calibrating the method, and seasons 2016/2017 to

2017/2018 that provide independent data.

4.1 Mean Euclidian distance score

We can evaluate the similarity between a predicted scenario

and an observed one (BT) by looking at the mean Euclidian

distance (MED) over the seven considered lead times (0–72 h)

for both track and intensity parameters. For a given ensem-

ble forecast (among EPS, EPS-REC, CLIM or CLIM-EPS),

in order to consider both the position (DPE) and intensity

(DVmax) errors, the Euclidian distance (deu) is computed in

http://wileyonlinelibrary.com
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(a) (b)

FIGURE 7 As in Figure 4 but for the 23 CLIM-EPS scenarios (coloured lines) [Colour figure can be viewed at wileyonlinelibrary.com].

the Principal Component Analysis space obtained from the

classification process (cf. section 3.2.2). When considering an

ensemble of forecasts, the MED is given by:

𝑀𝐸𝐷 =
nbcl∑
𝑐𝑙=1

(𝑑𝑒𝑢 ∗ P.𝑐𝑙),

where nbcl is the number of scenarios in the considered fore-

cast (necessarily lower than or equal to 45 for CLIM and

CLIM-EPS and equal to 51 for EPS and EPS-REC), deu
the Euclidian distance for class cl and P.cl the probabil-

ity of scenario number cl (whatever method is considered

among EPS, EPS-REC, CLIM or CLIM-EPS). A perfect fore-

cast leads to a MED of 0. The lowest MED corresponds

to the most accurate track and intensity forecast. Statistics

in Table 2 show that the three evaluated methods (CLIM,

CLIM-EPS and EPS-REC) give better scores than the ref-

erence system (EPS), the CLIM-EPS hybrid method per-

forming the best whatever period is considered (the learning

period 2011/2012 to 2015/2016 or the independent period

2016/2017 to 2017/2018). We can note that, overall, MED

scores are better over the independent period when we would

expect a decrease of scores due to potential over-fitting issues.

This indicates better performances of both EPS system and

RSMC forecasts during the last two cyclone seasons, with

respect to the five previous ones. It also probably rules out a

possible over-learning problem in the method design.

4.2 Probability density function of forecast errors

Another way to evaluate the performance of the method is

to look at the probability distribution as a function of the error.

For a given lead time and error interval:

P = 1

𝑛𝑏.fcst

𝑛𝑏.fcst∑
i=1

(nbcl∑
𝑐𝑙=1

(P.𝑐𝑙 ∗ F.𝑐𝑙)

)
,

where P is the mean probability between 0 and 1, nb.fcst
is the number of forecasts in the sample, nbcl is the

number of classes in each forecasting system, P.cl is the

probability of the considered member (cl) and F.cl is

assigned to 1 when a pre-defined condition is verified (e.g.

100 km<DPE< 200 km) and 0 otherwise. The pre-defined

conditions are relative to the DPE or DVmax parameters here.

Figure 8 shows the probability density function (PDF)

of the DPE variable for lead times 36 and 72 h (season

2011/2012 to 2015/2016). The CLIM-EPS method (orange

line) performs the best for both lead times. At 36 h lead time

for example, the CLIM-EPS method yields higher cumulated

probabilities at low DPEs (<100 km) and lower cumulated

probabilities at high DPEs (>200 km). Scores on independent

data (not shown) confirm the ones obtained within the learn-

ing period. A finer analysis can be obtained by splitting the

sample into three categories according to the quality of the

RSMC official forecast: “bad”, “normal” and “good”. Each

forecast is assigned to a category using the three terciles of

the MED “climatology” based on the RSMC forecasts sam-

ple. Figure 9 shows that the CLIM-EPS method is much more

skilful when the RSMC forecast can be considered as “good”

(MED< 4,64). In the “bad” forecast category (MED> 5,92),

the skill of the three methods is rather equivalent, with a weak

advantage for the CLIM-EPS method. Note that the reference

method (EPS) is the least skilful of all, whatever the lead time

and DPE.

When considering intensity errors (DVmax), the

CLIM-EPS and EPS-REC methods perform equally for

all lead times (Figure 10). The EPS distribution is skewed

toward negative errors, indicating that the EPS method

underestimates the maximum wind, most likely due to its

coarser horizontal resolution. The three evaluated methods

seem to globally correct that mean EPS bias since their error

distribution is quite symmetric and centred on zero.

http://wileyonlinelibrary.com
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TABLE 2 Mean Euclidian distance (MED); Brier score and associated skill score in parentheses (using EPS as the reference method) for
different lead times and different forecasting methods (CLIM, CLIM-EPS, EPS-REC and EPS)

Brier score (Brier skill score)

Lead time (h) MED 12 24 36 48 60 72

2011/2012 to 2015/2016
CLIM 5.8 0.27 (−0.17) 0.36 (−0.38) 0.4 (−0.33) 0.42 (−0.27) 0.42 (−0.24) 0.39 (−0.18)

CLIM-EPS 5.37 0.15 (0.35) 0.20 (0.23) 0.27 (0.1) 0.3 (0.09) 0.33 (0.03) 0.33 (0)

EPS-REC 6.1 0.14 (0.39) 0.22 (0.15) 0.28 (0.07) 0.33 (0) 0.35 (−0.03) 0.34 (−0.03)

EPS 7.76 0.23 (0) 0.26 (0) 0.3 (0) 0.33 (0) 0.34 (0) 0.33 (0)

2016/2017 to 2017/2018
CLIM 5.25 0.28 (−0.22) 0.37 (−0.37) 0.43 (−0.34) 0.46 (−0.31) 0.43 (−0.23) 0.4 (−0.14)

CLIM-EPS 4.67 0.12 (0.48) 0.18 (0.33) 0.28 (0.13) 0.32 (0.09) 0.33 (0.06) 0.32 (0.09)

EPS-REC 5.52 0.13 (0.43) 0.22 (0.19) 0.31 (0.03) 0.33 (0.06) 0.34 (0.03) 0.34 (0.03)

EPS 6.84 0.23 (0) 0.27 (0) 0.32 (0) 0.35 (0) 0.35 (0) 0.35 (0)

Brier scores consider the binary event of a system at the minimum severe tropical storm (Vmax greater than 48 knots) stage passing within a radius of

100 km from the BT position. MED and Brier scores are calculated over two different periods: The learning period corresponding to seasons 2011/2012

to 2015/2016, and an independent period corresponding to seasons 2016/2017 to 2017/2018.

(a) (b)

FIGURE 8 Direct position error (DPE) probability density functions at (a) 36 h and (b) 72 h lead times for the CLIM (red line), CLIM-EPS (orange line),

EPS-REC (solid blue line) and EPS (dotted blue line) methods. RSMC (black line) and EPSMEAN (cyan line) DPE are displayed as they stand for two

“reference” deterministic forecasts. The vertical grey line indicates the mean RSMC DPE value for each corresponding lead time [Colour figure can be

viewed at wileyonlinelibrary.com].

4.3 Skill scores

The capacity of a probabilistic forecasting system to predict

the potential impacts of an event affecting inhabited land

is another performance criterion. In the SWIO basin, it is

commonly assumed that a tropical disturbance will highly

impact the population – through strong winds, torrential rain

and coastal submersion – when it passes within a radius

of 100 km from the island at the minimum Severe Tropical

Storm stage (STS). Note that an STS is a TS with Vmax

between 48 and 63 knots. This criterion could be used to cal-

culate Brier Skill Scores (BSSs) for the three methods. Unfor-

tunately, the number of such “high impact” weather events

in the evaluation period is too small for the scores to be

statistically significant (Leroux et al., 2018). A way to bypass

this limitation and increase the size of the “high impact”

weather events is to consider that each location in the BT

dataset that is associated with a minimum STS event during

the 2011/2012–2015/2016 period is potentially inhabited.

From this assumption, Brier Scores (BSs) and BSSs can be

calculated for each of the seven lead times as follows:

𝐵𝑆𝑆 = 1 − 𝐵𝑆

𝐵𝑆Ref

with 𝐵𝑆 = 1

𝑛𝑏.fcst

𝑛𝑏.fcst∑
i=1

(pi − oi)2 and

pi =
𝑛𝑏.𝑐𝑙∑
𝑐𝑙=1

(P𝑐𝑙 ∗ F𝑐𝑙),

http://wileyonlinelibrary.com
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(a) (b)

(c)

FIGURE 9 Direct position error (DPE) probability density functions at 48 h lead times for the CLIM (red line), CLIM-EPS (orange line), EPS-REC (solid

blue line) and EPS (dotted blue line) methods, for three qualities of the RSMC official forecast: (a) “good”, (b) “medium” and (c) “bad”. The three categories

are built considering the three terciles of the mean Euclidian distance in the RSMC forecast sample. RSMC (black line) and EPSMEAN (cyan line) DPE are

displayed as they stand for two “reference” deterministic forecasts [Colour figure can be viewed at wileyonlinelibrary.com].

where the skill baseline is the EPS Brier score (BSRef), oi is

the observed event (1 if the system is at least an STS and 0

otherwise), pi is the cumulative forecasted probability of hav-

ing an STS within 100 km of the observed storm location (BT

data) for a given lead time. Scores in Table 2 indicate that

the CLIM-EPS hybrid method is more skilful than the oth-

ers up to 48 h. Beyond that lead time, the CLIM-EPS and

EPS-REC performances are very close to that of the original

EPS ensemble. The CLIM method is the less skilful for all

lead times, confirming the benefit of considering the real-time

information provided by the EPS spread to modulate the ini-

tial CLIM probabilities. As for MED scores and PDF errors,

impact-oriented skill evaluated through Brier scores indicate

that performances of all methods are comparable or better for

the independent period.

5 DISCUSSION AND CONCLUSIONS

A method has been developed to build alternate scenarios

(with associated probabilities) from the official deterministic

track and intensity forecast released by RSMC La Réunion

from 0 to 72 h lead time. A first set of 40 scenarios (CLIM) is

produced based on a 5-year climatology of track and intensity

forecast errors from the operational RSMC forecast cen-

tre. Probabilities are derived from the statistical distribution

http://wileyonlinelibrary.com
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(a) (b)

FIGURE 10 As in Figure 8 but for maximum wind error (DVmax) [Colour figure can be viewed at wileyonlinelibrary.com].

of errors. The CLIM probabilities are then weighted using

the “realigned” ECMWF ensemble of scenarios (EPS-REC).

This hybrid CLIM-EPS method yields some 15–30 final

scenarios depending on the EPS ensemble spread.

The three methods (CLIM, EPS-REC and CLIM-EPS)

are then evaluated using various scores. The evaluation is

performed using more than 800 RSMC official forecasts

performed since 2011.

All scores clearly indicate that the two methods

(CLIM-EPS or EPS-REC) perform the best with respect to

the original EPS or CLIM methods. This confirms the added

value of:

• using the RSMC official deterministic forecast as the ref-

erence for the ensemble generation process,

• using the real-time EPS ensemble spread information to

modulate the climatologically-built ensemble.

Up to 48 h lead time, the CLIM-EPS method is more

skilful than the EPS-REC method, especially when looking

at performances with an impact-oriented view (Brier Skill

Scores). The advantage of the CLIM-EPS method is more

obvious for track forecasts than for intensity forecasts for

which the EPS-REC method can be considered to perform

as well as the CLIM-EPS. The most interesting advantage

of the CLIM-EPS method is for cases where the RSMC

official forecast is skilful. In these cases, probabilities are

more concentrated around the official forecast than in other

methods.

Although the importance of using the RSMC official fore-

cast against the original EPS ensemble scenarios seems

clear, the choice between CLIM-EPS and EPS-REC could be

argued. Without considering scores, the first and main advan-

tage of the CLIM-EPS method is that it allows the number

of scenarios to be reduced by a factor of two or three (51

for EPS-REC, 15–30 for CLIM-EPS). This is valuable con-

sidering the limited available resources to develop further

operational impact-oriented applications (wind, rain, wave or

surge simulations) that could ideally be run on each scenario.

A second reason for choosing the CLIM-EPS method is that

initial perturbations applied to the EPS ensemble members

are mainly calibrated for medium-range lead times (beyond

48–72 h). Therefore, the spread of the EPS ensemble may be

artificially too high in the first 24–48 h of the forecast which

could explain an overall better performance of the CLIM-EPS

method for short-term forecasts.

As discussed previously, the limited number of alterna-

tive scenarios generated throughout the method (15–30) was

defined in order to fit the objectives of the SPICy project.

However, this reduced ensemble approach may lead to some

underestimation of the plume’s dispersion especially when

the predictability is low. In other words, one may ask the ques-

tion: how often does the true track or intensity fall outside

the range of the proposed scenarios? In order to answer this

question, “miss” rates have been calculated for both track and

intensity. For each forecast and lead time from 0 to 72 h, we

consider the forecast as a “miss” when more than half of the

observed positions (BT) corresponding to each lead time are

outside the cloud of points formed by the scenarios at this

specific lead time. When considering tracks, the “miss” rate

is 5% for the 550 cases from 2011/2012 to 2015/2016. For

intensity, this rate rises to 13% which could be considered

as a limitation of the method. However, when calculating the

same scores for the most recent two-year period (2016/2017

to 2017/2018), the miss rate for intensity drops to 2%. This

may be partially attributed to the EPS horizontal resolution

improvement in 2015 that may have improved the spread skill

of the EPS intensity forecast with beneficial feedback on our

CLIM-EPS forecast.

http://wileyonlinelibrary.com
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Future developments should lead to improvements and

should overpass some limitations of the CLIM-EPS method.

We mention here three main evolutions that should be

considered:

• The first one consists in improving the probability weight-

ing module that uses the EPS ensemble spread to modulate

the CLIM ensemble. The technique used and described

in section 3.3 has the advantage of substantially reducing

the size of the ensemble. This behaviour is quite conve-

nient when the predictability is high. On the other hand, the

final CLIM-EPS ensemble may be too narrow whenever

the predictability drops or the dispersion of the EPS ensem-

ble increases. The weighting technique could be revised

to increase the spectrum of possibilities (granularity) in

situations that are less predictable.

• The method does not consider modulations of the storm

structure within the produced ensemble. This is a main lim-

itation considering that our final objective is to evaluate

a storm “impact”. TC-induced hazards (rain, wind, waves

and surge) on a small mountainous island like La Réunion

are highly dependent on the size of the storm that threatens

it.

• As discussed in section 3.2.1, forecast errors show some

systematic dependencies with typical characteristics of the

initial (observed) state of the forecast. Therefore, the fore-

cast error classification process could consider various

learning subsamples in order to modulate the weight of the

initial CLIM scenarios.

The method has been implemented quasi-operationally at

RSMC La Réunion during the 2016/2017 and 2017/2018 TC

seasons. Its performances are to be evaluated regularly with

respect to ECMWF EPS current and future evolutions.
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