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Abstract   This chapter addresses the challenges associated with assessing and im-

proving the resilience of interdependent critical infrastructure systems under poten-

tial disruptive events. A specific set of analytical tools are introduced based on 

quantitative models of infrastructure systems operation and their functional interde-

pendencies. Specifically, the game-theoretic attacker-defender and defender-at-

tacker-defender modeling techniques are applied to assessing the resilience of in-

terdependent CI systems under worst-case disruptions, and advising policymakers 

on making pre-disruption decisions for improving the resilience of interdependent 

infrastructures. A case of interdependent power and gas systems is presented to 

show the proposed model and highlight the significance of protecting interdepend-

ent CIs. 
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1 Introduction 

The phrase, “critical infrastructure protection (CIP),” did not appear in print until in 

1997, when the “Marsh report” [1] provided the first definition of infrastructure as 

“a network of independent, mostly privately-owned, man-made systems that func-

tion collaboratively and synergistically to produce and distribute a continuous flow 

of essential goods and services”. Then, critical infrastructures (CIs) are defined as 

network systems that provide life-essential services [2] and whose incapacity or de-

struction can have a debilitating impact on the health, safety, security, economics, 

and social well-being, including the effective functioning of governments [3, 4]. 

CI systems, usually distributed on large geographical extensions, are complex 

collections of many interacting elements (or subsystems) having an internal dy-

namic structure and comprising a unified whole. More importantly, different CIs do 

not operate in isolation of one another – the Internet requires electricity, transporta-

tion networks often use sophisticated control and information systems, the genera-

tion of electricity requires fuels, and so forth. CIs are physically, geographically, 

cyber and logically dependent and interdependent, thus called interdependent CIs 

[5, 6].  

On one side, the interdependencies can improve the operational efficiencies of 

CI systems, but on the other side they can also create new vulnerabilities by provid-

ing new hazards and introducing additional channels for failure propagation within 

and across different CIs, i.e., the disruption of one part of a CI may trigger a domino 

effect causing the loss of functionality of other key services, as seen in various re-

cent disasters ranging from hurricanes to large-scale power outages and terrorist 

attacks [7, 8].  

By recognizing the significance of these issues, many governments and organi-

zations have initiated interdependent CIs protection plans aiming at strengthening 

the security and resilience of national/regional interdependent CIs, such as issuing 

“Critical infrastructure resilience: final report and recommendations” in 2009 in 

USA [9]; publishing “Australian Government’s Critical Infrastructure Resilience 

Strategy” in 2010 in Australia [10]; issuing “Climate Resilient Infrastructure: Pre-

paring for a Changing Climate” in 2011 in UK [11]; initiating the European Pro-

gramme for Critical Infrastructure Protection and lanuching a Thematic Area to ad-

dress it systematically since 2006 in European Union [3]. In these plans, the concept 

of infrastructure “resilience” has been highlighted. 

“Resilience” has many definitions, without a broadly accepted one, even only 

focusing on CIs [12-15]. A complicating aspect in previous attempts to define resil-

ience is the recognition that “resilience is a family of related ideas, not a single 

thing” [16]. Zolli and Healy [17] provide perhaps the most comprehensive discus-

sion of the concepts of resilience. Recently, other authors have also provided fairly 

comprehensive surveys and summaries of the growing literature on resilience and 

its relationship to the study of risk, specifically for engineered infrastructure sys-

tems [12, 18, 19]. Although there are no unique resilience definition and no common 
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resilience metric, there still exist some consensuses. Basically, resilience is recog-

nized as the capability of a system to withstand internal/external stresses and to 

recover from them. The main difference for various resilience definitions and met-

rics is that such capability to face adverse events can be considered (and computed) 

with reference to the time needed to recover, to the time slot in which urban services 

do not work, to the number of citizens reallocated, to the urban efficiency loss, and 

so forth [12, 13, 20, 21]. Nevertheless, these are all factors directly related to the 

system functionality and to its ability to guarantee continuity, even when the global 

equilibrium is compromised. Thus, a distinguishing feature of resilience is the ad-

aptation in the way that components work together to achieve persistence in the 

ability of a system to function over time, and in the presence of disruptions. 

In this chapter, we consider the challenges associated with assessing and improv-

ing the resilience of interdependent CI systems under potential disruptive events. 

We describe a specific set of analytical tools based on quantitative models of infra-

structure systems operation and their functional interdependencies. Specifically, we 

are interested in (1) assessing the resilience of multiple interdependent CIs, (2) iden-

tifying critical vulnerabilities that threaten their continued function, and (3) advising 

policymakers on making pre-disruption decisions for CI resilience improvement. 

We apply the game-theoretic attacker-defender (AD) and defender-attacker-de-

fender (DAD) modeling techniques [22] to assess the worst-case disruptions to sys-

tem function and to identify the most effective defensive measures against them. 

The remainder of this chapter is organized as follows. Section 2 begins with the 

quantitative CI operation and interdependency models. Section 3 discusses the de-

tailed formulation of the optimization framework for assessing and improving the 

resilience of interdependent CIs. Section 4 illustrates how to apply this framework 

to a specific example. Concluding remarks are provided in Section 5. 

2 Operational Models of Interdependent Infrastructures 

A CI system can be viewed as a collection of interconnected components that work 

together to accomplish a particular, domain-specific function. It achieves this 

through either human or automated decision making that responds to the demands 

placed on the system to deliver the best possible service in any given situation. This 

decision-making process is usually termed the operation of the system, and an op-

erational model of a system is used to quantitatively evaluate the service perfor-

mance of a system by explicitly embracing this decision making in its formulation. 

2.1 Optimization-based System Operation Model 

The operation of modern infrastructure systems is fundamentally driven by the de-

mands that are placed on their functionality. The system as a whole needs to “work”, 

i.e., providing service to its users, which are often seen as objectives (e.g., minimize 
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unmet demand of service) and, then, measured in terms of system functionality. In 

addition, the operation of the CI system is restricted by what is possible, due to 

physical, economic, or regulatory constraints, e.g., the amount of electric power that 

a transmission line carries cannot exceed its capacity. In this respect, constrained 

optimization [23] is ideally suited to model this type of decision problem: system 

operators make decisions, in an optimum way, about the behavior of the system in 

pursuing these objectives (what we want the system to do) while subject to its con-

straints (what the system can do). 

In constrained optimization models of CI system operations, potential courses of 

actions are modeled by decision variables, and the solution to a particular problem 

indicates decisions that should be taken to reconcile objectives and constraints in an 

optimum manner with regard to the specified objective. Importantly, this model 

technique is naturally suited to represent disruptions to CI systems as changes to 

input data [24]. For example, the operation of an electric power transmission net-

work can be modeled by linear programming (LP) based on the direct circuit (DC) 

representation, taking available generation units, transmission lines and buses, and 

identifies the set of power flows that minimizes unmet demand [25]. If the system 

loses a transmission line in a disruption, we simply need to leave the damaged trans-

mission line “out” of the model (e.g., using an indicator variable to represent its 

unusable state [13, 25]) and resolve the same operation model (or slightly modified 

model, e.g., give more weight to the quality of system service rather than the cost 

of system operation in the objective function when facing disruption); then, the so-

lution to this modified problem will indicate the best possible response of the sys-

tem. 

For illustration purpose, a commonly used network flow-based approach [26] is 

used here to model the operation of interdependent CIs, where each CI is modeled 

as a network and their interdependencies are represented via inter-links. Formally, 

the set of CIs of concern is denoted by 𝜿. Each infrastructure system 𝑘 in 𝜿 is mod-

eled by a network 𝐺𝑘(𝑁𝑘, 𝐿𝑘) described by a collection of nodes 𝑁𝑘 and edges 𝐿𝑘. 

Each link 𝑙 ∈ 𝐿𝑘  in CI network 𝑘 has an associated capacity 𝑓�̅�
𝑘  representing the 

maximal amount of flow that can pass through it, while each node 𝑛 ∈ 𝑁𝑘 has a 

supply capacity �̅�𝑛
𝑘  and a required demand �̂�𝑛

𝑘  of flow for its nominal operation. 

Flow distributes through the CI networks according to the flow capacities of the 

links and supply capacities of the nodes, following flow conservation. 

For CI network 𝑘 ∈ 𝜿, its resilience to a disruptive event is regarded as the sys-

tem functionality level immediately after the event, normalized by the total satisfied 

demand level 

𝑅𝑘 =
∑ 𝑑𝑛

𝑘
𝑛∈𝑁𝑘

∑ �̂�𝑛
𝑘

𝑛∈𝑁𝑘

 (1) 

where 𝑑𝑛
𝑘 denotes the satisfied flow at node 𝑛 ∈ 𝑁𝑘. Then, the overall resilience of 

interdependent CIs under this event is represented by the weighted sum of the resil-

ience of each CI network, expressed by 
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𝑅 = ∑ 𝑤𝑘𝑅𝑘

𝑘∈𝜿

 (2) 

where 𝑤𝑘 is the weighting factor for the resilience of CI network 𝑘. 

Then, the mathematical formulation of the operation model (OM) of CI net-

work 𝑘 ∈ 𝜿 is represented by 

𝑂𝑀(𝑘): max
𝒐𝑘∈𝕆𝑘

𝑅𝑘 (3) 

where the system operators seek to maximize the total satisfied demand level. Set 

𝕆𝑘 represents the feasible space for decision variable 𝒐𝑘. Different feasible opera-

tion spaces 𝕆𝑘 may be formulated for different CI systems with various physical, 

economic, and/or regulatory constraints. An example of formulation of 𝕆𝑘 by ap-

plying the network flow approach is given as follows: 

𝕆𝑘 = {𝒐𝑘: [𝑠𝑛
𝑘, 𝑓𝑙

𝑘 , 𝑑𝑛
𝑘]|0 ≤ 𝑠𝑛

𝑘 ≤ �̅�𝑛
𝑘 , ∀𝑛 ∈ 𝑁𝑘 (4) 

0 ≤ 𝑑𝑛
𝑘 ≤ �̂�𝑛

𝑘 , ∀𝑛 ∈ 𝑁𝑘 (5) 

−𝑓�̅�
𝑘𝑧𝑙

𝑘 ≤ 𝑓𝑙
𝑘 ≤ 𝑓�̅�

𝑘 𝑧𝑙
𝑘, ∀𝑙 ∈ 𝐿𝑘 (6) 

𝑠𝑛
𝑘 − ∑ 𝑓𝑙

𝑘

𝑙∈𝐿𝑘|𝑜(𝑙)=𝑛

+ ∑ 𝑓𝑙
𝑘

𝑙∈𝐿𝑘|𝑑(𝑙)=𝑛

− 𝑑𝑛
𝑘 = 0 , ∀𝑛 ∈ 𝑁𝑘} (7) 

where constraint (4) bounds the output of flow generation at node 𝑛 to its capacity. 

Constraint (5) ensures that the real satisfied demand cannot exceed the required de-

mand for each node. Constraint (6) limits the flow across link 𝑙 in network 𝑘 to its 

capacity. The term 𝑧𝑙
𝑘 in (6) models the operation status of link 𝑙 in network 𝑘, i.e., 

𝑧𝑙
𝑘 = 1 if link 𝑙 is operating; 𝑧𝑙

𝑘 = 0, otherwise. Finally, constraint (7) guarantees 

flow conservation at each node, where 𝑜(𝑙) indicates the origin or sending node of 

line 𝑙 and 𝑑(𝑙) indicates the destination or receiving node of line 𝑙. The direction of 

a transmission line is predefined and given as input to the model. 

If there is a centralized agent who is in charge of making decisions about the 

behavior of interdependent CIs, the operation model (OM) can be represented by 

𝑂𝑀: max
𝒐∈𝕆

𝑅 (8) 

where 𝒐 = ⋃ 𝒐𝑘
𝑘∈𝜿 . The objective function is now modified to the overall resilience 

of all CI networks in 𝜿. It is noted that 𝕆 = ⋃ 𝕆𝑘
𝑘∈𝜿  does not necessarily hold 

when we consider the interdependencies among different CIs, i.e., additional con-

straints may be posed to the operations of individual CI systems. For example, load 
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shedding for a substation bus in an electrical power system is allowed when consid-

ering only the power system itself; this may not be permitted (e.g., due to regulatory 

constraints) when this bus provides power to some critical compressor stations of a 

national gas transmission system. 

2.2 Infrastructure Interdependency Model 

Different types of interdependencies exist among CI networks. Rinaldi et al. [5] 

defined four principal classes of interdependencies: physical, cyber, geographic, 

and logical. Physical interdependency means the state of one CI depends on the 

material output(s) of the other; cyber interdependency means the state of one CI 

depends on information transmitted by the information infrastructure; geographical 

interdependency means a local environmental event can create state changes in mul-

tiple CIs; logical interdependency means the state of each CI depends on the state 

of the other via a mechanism that is not a physical, cyber, or geographic connection. 

For a detailed and comprehensive discussion about CI interdependency, interested 

readers can refer to recent surveys [6, 27].  

For illustration purpose, we discuss here how to model CI interdependency quan-

titatively by referring to interdependent power and gas networks (IPGNs). For 

IPGNs, typical connections include: i) sink-source connections where a gas city gate 

can fuel a gas turbine engine, which is an electric generator, ii) sink-sink connections 

where a city gate requires some energy from an electrical load to regulate its valves, 

and iii) sink-transmit connections where compressors consume electricity from an 

electrical load to increase the pressure on a gas pipeline, as sufficient line pressure 

is a feasibility requirement for the gas network.  

All these interdependencies can be modeled by defining a set of ordered compo-

nents pairs (𝑖, 𝑗) associated with node 𝑖 in one CI network and component (node or 

line) 𝑗 in another network, where the interdependency relation for (𝑖, 𝑗) works if the 

flow demand of node 𝑖 is fully satisfied [28-30]. We use the following notations to 

facilitate explanation: 

𝐿𝑛
𝑘,𝑛𝑏𝑟

 Set of neighboring lines of node 𝑛 ∈ 𝑁𝑘, i.e., 𝐿𝑛
𝑘,𝑛𝑏𝑟 =

{𝑙|𝑙 ∈ 𝐿𝑘: 𝑜(𝑙) = 𝑛 or 𝑑(𝑙) = 𝑛} 

𝐹𝑖,𝑗
𝑘→𝑚 Set of ordered pairs (𝑖, 𝑗) associated with node 𝑖 in CI network 𝑘 and 

node 𝑗 in CI network 𝑚, and node 𝑗 is operational only when the de-

mand of flow of node 𝑖 in network 𝑘 can be fully satisfied 

𝑀𝑖,𝑗
𝑘→𝑚 Set of ordered pairs (𝑖, 𝑗) associated with node 𝑖 in CI network 𝑘 and 

line 𝑗  in CI network 𝑚 , and line 𝑗  operates with its full capacity 

when the demand of flow of node 𝑖 in network 𝑘 is fully satisfied; 

otherwise line 𝑗 operates with a reduced capacity 𝑓𝑗
𝑚 

For the former two types of interdependencies in IPGNs, component 𝑗 will be 

completely failed if the interdependency relation for (𝑖, 𝑗) does not work. The sink-
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transmit connections in IPGNs are modeled as capacity reduction, i.e., the capacity 

of line 𝑗 is reduced if the interdependency relation for (𝑖, 𝑗) does not work [31]. For 

this, we define a binary variable 𝛿𝑖𝑗
𝑘→𝑚 to represent the interdependency from node 

𝑖 in network 𝑘 to component (node or line) 𝑗 in network 𝑚: 𝛿𝑖𝑗
𝑘→𝑚 = 1 if the inter-

dependency works normally and 𝛿𝑖𝑗
𝑘→𝑚 = 0  otherwise. For each ordered pair 

(𝑖, 𝑗) ∈ 𝐹𝑖,𝑗
𝑘→𝑚 ∪ 𝑀𝑖,𝑗

𝑘→𝑚, the interdependency works normally, i.e., 𝛿𝑖𝑗
𝑘→𝑚 = 1, only 

if the demand level at node 𝑖 in network 𝑘 is fully satisfied, i.e., 𝑑𝑖
𝑘 = �̂�𝑖

𝑘, as de-

scribed by the following constraint: 

𝑑𝑖
𝑘 − 𝛿𝑖𝑗

𝑘→𝑚�̂�𝑖
𝑘 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐹𝑖,𝑗

𝑘→𝑚 ∪ 𝑀𝑖,𝑗
𝑘→𝑚 (9) 

For each node 𝑗 in the ordered pair (𝑖, 𝑗) ∈ 𝐹𝑖,𝑗
𝑘→𝑚, the flow generation is bounded 

by zero or its generation capacity, as stated by constraint (10), and its demand level 

is bounded by zero or the required demand, as stated by constraint (11):  

𝑔𝑗
𝑚 − 𝛿𝑖𝑗

𝑘→𝑚�̅�𝑗
𝑚 ≤ 0, ∀(𝑖, 𝑗) ∈ 𝐹𝑖,𝑗

𝑘→𝑚 (10) 

𝑑𝑗
𝑚 − 𝛿𝑖𝑗

𝑘→𝑚�̂�𝑗
𝑚 ≤ 0, ∀(𝑖, 𝑗) ∈ 𝐹𝑖,𝑗

𝑘→𝑚 (11) 

Furthermore, if node 𝑗 is not functioning, all its attached lines will not work and 

the flow on these lines should be zero, as described by constraint (12):  

−𝛿𝑖𝑗
𝑘→𝑚𝑓�̅�

𝑚 ≤ 𝑓𝑙
𝑚 ≤ 𝛿𝑖𝑗

𝑘→𝑚𝑓�̅�
𝑚, ∀(𝑖, 𝑗) ∈ 𝐹𝑖,𝑗

𝑘→𝑚, 𝑙 ∈ 𝐿𝑗
𝑚,𝑛𝑏𝑟 (12) 

Finally, constraint (13) models the sink-transmit interdependencies in IPGNs; 

the capacity of line 𝑗 in network 𝑚 decreases from its normal level 𝑓�̅�
𝑚 to a reduced 

level 𝑓𝑗
𝑚 (𝑓𝑗

𝑚 < 𝑓�̅�
𝑚) if the demand of its dependent node 𝑖 in network 𝑘 is not fully 

satisfied (𝛿𝑖𝑗
𝑘→𝑚 = 0): 

−𝛿𝑖𝑗
𝑘→𝑚𝑓�̅�

𝑚 − (1 − 𝛿𝑖𝑗
𝑘→𝑚)𝑓𝑗

𝑚 ≤ 𝑓𝑗𝑡
𝑚

≤ 𝛿𝑖𝑗
𝑘→𝑚𝑓�̅�

𝑚 + (1 − 𝛿𝑖𝑗
𝑘→𝑚)𝑓𝑗

𝑚, ∀(𝑖, 𝑗) ∈ 𝑀𝑖,𝑗
𝑘→𝑚 

(13) 

Until now, we have shown that the interdependency relations in IPGNs can be 

formally represented by constraints (9)-(13). These constraints can, then, be added 

into the operation models of the interdependent networks, i.e., model (8) if we are 

considering the context of the centralized decision making. The feasible operation 

space 𝕆 is, therefore, given by: 

𝕆 = {𝒐: [𝑠𝑛
𝑘 , 𝑓𝑙

𝑘, 𝑑𝑛
𝑘]|(4) − (7), (9) − (13), ∀𝑘} (14) 
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3 System Resilience under Disruptions 

3.1 Impact Models of Disruptions 

In practice, CI systems face various types of internal/external shocks, e.g., technical 

failures, accidents, natural hazards, and deliberate attacks. The study of failures in 

engineering systems has yielded an extensive literature on system reliability and 

probabilistic risk analysis [32-34]. However, the concept of resilience is usually 

discussed in the context of high-impact low-probability (HILP) events [35, 36], i.e., 

the risks that are difficult or even impossible to foresee (e.g., due to a lack of statis-

tically evident historical data of the event); therefore, probabilistic assessment may 

not be applicable in this case. Furthermore, for deliberate threats induced by an in-

telligent, goal-oriented terrorist, probabilities may not be suitable for modeling the 

behavior of the adversary [37]. Brown and Cox [38] show that probabilistic assess-

ment of terrorism risk can even lead to misleading results. 

Instead of focusing on the source of a disruption, we look at the problem form 

the point of view of the system functionality. Specifically, we consider disruptions 

as the simultaneous losses of one or more system components and assess the per-

formance of CIs under the worst-case disruptions. To identify the worst-case dis-

ruptions, a hypothetical intelligent adversary (an attacker) is considered to have per-

fect knowledge and capable of using limited resources to intentionally damage the 

CIs. From the point of view of system operators, the attacker is not necessarily a 

real human being. Instead, it could be mother nature, a terrorist, simple bad luck, or 

anything else that causes the simultaneous loss of components; the operators are 

concerned with doing the best they can to maintain the functionalities of CIs fol-

lowing the loss of these components. We emphasize that the purpose of assuming a 

personalized attacker here is simply to identify worst-case disruptions, not to model 

the actual behavior of any particular adversary. 

Formally, the damage of CI systems in a disruption is represented by the state 

variables of the systems components, e.g., 𝑧𝑙
𝑘 for network line 𝑙 ∈ 𝐿𝑘 where 𝑧𝑙

𝑘 = 0 

if link 𝑙 is attacked; 𝑧𝑙
𝑘 = 0 otherwise, as explained in constraint (6). It is noted that 

here we consider only the failure of network links since the failure of a network 

node is equivalent to the simultaneous failures of all the links connecting to it. Then, 

the impact of disruptions to interdependent CI systems is represented by the follow-

ing attacker-defender (AD) model [13, 22, 24, 25] 

min
𝒛∈ℤ

max
𝒐∈𝕆(𝒛)

𝑅 (15) 

where the state variable 𝒛 is now determined by the attacker, and ℤ represents the 

set of all possible links attacks. The system operators still face the same functional-

ity maximization problem, i.e., the operation model (8), whose feasible operation 

space 𝕆(𝒛) is now a function of the system state 𝒛 obtaining from the attacker’s 
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behavior. In other words, after the realization of the attacks, the systems will adapt 

their behaviors to maintain continuity of functionality in presence of the disruptions 

caused by the attacks.  

3.2 Resilience Assessment 

The above-introduced AD model can be used to assess the resilience of interde-

pendent CI systems to the worst-case disruptions. Before that, we should carefully 

define the constraints on 𝒛, to avoid that the obvious “absolute worst-case” turns 

out to be that with the simultaneous loss of all system components that leads to 

complete failure of the systems. A straightforward idea would be to limit the maxi-

mum number of lost components by a cardinality constraint, as follows: 

∑ ∑(1 − 𝑧𝑙
𝑘)

𝑙∈𝐿𝑘

≤ 𝐵𝐴 

𝑘∈𝜿

 (16) 

where 𝐵𝐴  characterizes the disruption “magnitude” of the attack in terms of the 

maximum number of links that can simultaneously fail in the attack. This parame-

terization is useful because it allows considering different levels of disruptions and 

assessing the best achievable worst-case functionality of CI systems as a function 

of the disruption “magnitude” 𝐵𝐴, obtaining the so-called “resilience curve” [24].  

Furthermore, the cardinality constraint (16) can be generalized to any notion of 

“budget” by specifying a cost associated with attacking each component in the sys-

tems. Furthermore, any available information of the attacker’s intent of attacking, 

or on the disruptive event’s threat profile to the systems, can be carefully formulated 

in terms of additional constraints on 𝒛 to narrow down the space ℤ. For instance, 

the impact of a natural hazard like a hurricane on CI system components is usually 

quantified, in a probabilistic manner, based on the physical model of the hurricane 

threat (e.g., gust wind speed) [39] and the fragility models of system components 

[40]. The resulting failure probabilities of system components can be related to their 

binary damage state variables 𝒛 through Shannon’s information theory. Interested 

readers can refer to Ref. [41] for a detailed formulation of this model. 

3.3 Resilience Improvement 

The usefulness of resilience assessment is limited unless it is used to guide the plan-

ning for the resilience improvement of interdependent CIs: to build and enhance 

resilience of the CI systems is the ultimate goal. In the context of the AD model, 

this means improving the functionality of CI systems under the worst-case simulta-

neous losses of system components. Nevertheless, doing so will require investment 

on certain actions, e.g., hardening and upgrading weak system components to in-

crease their chances of survival under disruptions. To quantify this pre-disruption 
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decision, the AD model is extended to the so-called defender-attacker-defender 

(DAD) model, as follows [22, 24, 25, 41, 42]: 

max
𝒚∈𝕐

min
𝒛∈ℤ

max
𝒐∈𝕆(𝒚,𝒛)

𝑅 (17) 

where 𝒚 is a decision variable representing defensive investments and 𝕐 represents 

the set of all feasible investments. These investment decisions potentially change 

the set of feasible system operations 𝒐 ∈ 𝕆(𝒚, 𝒛). The first level problem in (17) is 

to identify the optimal set of network lines to protect so that the overall resilience 

of the interdependent CIs is maximized. The worst case system disruptions and the 

successive adaptive actions are considered in the middle-low level prob-

lem ℋ(𝒚) = min
𝒛∈ℤ

max
𝒐∈𝕆(𝒚,𝒛)

𝑅, which is almost identical to the prior model (15), ex-

cept that the feasible system operation space 𝕆(𝒚, 𝒛) now depends also on the in-

vestment decisions 𝒚. 

For illustrative purpose, this chapter considers a typical ex-ante resilience strat-

egy, i.e., protecting CI network lines. Protected lines are assumed to be invulnerable 

and cannot be damaged in a disruption. Other possible resilience improvement ac-

tions like constructing new components [25] can be easily incorporated into this 

analysis framework. Formally, we let binary variable 𝑦𝑙
𝑘 represent the investment 

decision that 𝑦𝑙
𝑘 = 1 if link 𝑙 in network 𝑘 is protected, 0 otherwise. The ability to 

invest in improvements is constrained by limited resources. Therefore, the set of 

feasible investments 𝕐 can be represented by 

𝕐 = {𝒚|𝑦𝑙
𝑘 ∈ {0,1}, ∀𝑙 ∈ 𝐿𝑘 , 𝑘 ∈ 𝜿 

∑ ∑ 𝑐𝑙
𝑘,𝑃𝑦𝑙

𝑘

𝑙∈𝐿𝑘

≤ 𝐵𝑃  

𝑘∈𝜿

} 
(18) 

where 𝑐𝑙
𝑘,𝑃

 denotes the cost of protecting link 𝑙 in network 𝑘, and 𝐵𝑃  parametrizes 

the total protection budget.  

The feasible system opeartions space 𝕆(𝒚, 𝒛) can now be specified by consider-

ing the real function state of a network link 𝑙 in network 𝑘: if the link is protected 

𝑦𝑙
𝑘 = 1, it will be always functional no matter if it is attacked (𝑧𝑙

𝑘 = 0) or not (𝑧𝑙
𝑘 =

1); otherwise, its function state will depend on whether it is attacked. Therefore, the 

real function state of the link can be represented by [𝑦𝑙
𝑘 + (1 − 𝑦𝑙

𝑘)𝑧𝑙
𝑘], and 𝕆(𝒚, 𝒛) 

is given by 

𝕆(𝒚, 𝒛) = {𝒐: [𝑠𝑛
𝑘 , 𝑓𝑙

𝑘, 𝑑𝑛
𝑘]|(4)(5)(7), (9) − (13), ∀𝑘 

−𝑓�̅�
𝑘[𝑦𝑙

𝑘 + (1 − 𝑦𝑙
𝑘)𝑧𝑙

𝑘] ≤ 𝑓𝑙
𝑘 ≤ 𝑓�̅�

𝑘 [𝑦𝑙
𝑘 + (1 − 𝑦𝑙

𝑘)𝑧𝑙
𝑘], ∀𝑙 ∈ 𝐿𝑘 , ∀𝑘} 

(19) 

The max-min-max formulation (17) configures a mixed-integer nonlinear tri-

level programming problem, whose solution is challenging. Due to the presence of 
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binary variables 𝛿𝑖𝑗
𝑘→𝑚 in the third level, the second and third level min-max prob-

lems cannot be merged into a single min problem using the KKT conditions (or the 

strong duality) of the third level max problem [43]. In this regard, sophisticated 

decomposition or approximation methods are required for the model solutions, e.g., 

the recently developed “Column-and-Constraint Generation” (C&CG) method [44], 

is proven to be effective in dealing with mixed integer programming recourse prob-

lems [13, 25, 42]. 

4 Numerical Example 

This section presents a simple numerical study involving IPGNs, adapted from [42]; 

the network layouts of the two systems are shown in Fig. 1. The interdependency 

relations are described as follows: the gas node g8 depends on the power demand 

node p11; the gas node g7 depends on the power demand node p10; the gas node 

g1 depends on the power demand node p4; the gas node g3 depends on the power 

demand node p9; the power generation node p1 depends on the gas demand node 

g9 [42]. 

 

Fig. 1. The layout of the interdependent power and gas systems [42] 

For simplicity, we assume that protecting one link in the interdependent CIs 

needs one unit of protection resources and set the cardinality constraint (16) to all 

possible link attacks. The weighting factor 𝑤𝑘 is set as 0.5 for the resilience of both 

the power and gas systems.  

We first investigate the resilience assessment of the IPGNs. Fig. 2 illustrates the 

worst-case system disruptions by attacking from one to five links and Fig. 3 shows 

the combined power and gas systems resilience associated with the worst attack 

disruptions, and the second worst (i.e., rank order 2) through fifth-worst (i.e., rank 

order 5) combination of system resiliences for each attack budget. These second-
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worst through fifth-worst results were obtained by adding a new constraint that 

eliminates the previous solution. From the Figure, it is possible to see that the com-

bined system resilience generally decreases as the attack budget increases for the 

worst case attack, which is expected. Furthermore, the second-worst attacks do not 

necessarily have strictly larger resilience than the worst cases, e.g., for the cases 

𝐵𝐴 = 1, 4 and 5. In other words, the identified worst-case scenarios are not unique 

but are accompanied by some equally bad ones, implying that defending against 

only one of the worst cases is not likely to improve the overall system resilience to 

attacks. 

 

Fig. 2. Worst-case link attacks. (a) The worst-case single link attack is of link g8-g9, resulting in 

a combined power and gas system resilience R=0.782, i.e., 21.8% power and gas demands can-

not be satisfied. (b) The worst-case two-link attack is of links p6-p11 and p9-p10, resulting in 

R=0.586. (c) The worst-case three-link attack is of links g1-g4, g2-g8, and g3-g6, resulting in 
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R=0.451. (d) The worst-case four-link attack is of links g3-g6, g4-g5, p6-p11, and p9-p10, result-

ing in R=0.429. (e) The worst-case five-link attack is of links p4-p9, p6-p11, p7-p9, p13-p14, 

and g4-g5, resulting in R=0.352. 

 

Fig. 3. The combined power and gas system resilience associated with the worst-case, the sec-

ond-worst through the fifth-worst attacks for each attack budget 

Second, when the protection investment is considered, we solve the DAD model 

for different combinations of protection budget 𝐵𝑃  and attack budget 𝐵𝐴 . Fig. 4 

shows the combined power and gas resilience as a function of the attack budget 𝐵𝐴 

under different 𝐵𝑃. From the Figure, it can be seen that in the case of no defense, 

the resilience decreases almost linearly with the increase of 𝐵𝐴, which can be miti-

gated by increasing the protection budget 𝐵𝑃 , i.e., 𝐵𝑃 = 2, 4, 6 and 8. However, due 

to the non-uniqueness of the worst case attack for some attack budgets, the improve-

ment of system resilience is not always promising. For example, the combined sys-

tem resilience is increased by only 2.3% when 𝐵𝑃  is increased from 0 to 2 for 𝐵𝐴 =
1, compared to the average improvement of 28.4% for other attack scenarios under 

the same increase of 𝐵𝑃 .  

Then, we investigate the importance of considering interdependency for system 

protection decisions. In practice, a coordinated protection agency for different CIs 

may not exist. Thus, each system makes its own protection decisions without con-

sidering the interdependencies. To investigate this case, we assume there is a gov-

ernor who distributes the budget evenly to the power and gas systems, and each of 

them protects itself separately without considering the interdependencies among 

them, while the attacker disrupts the two systems by recognizing the interdepend-

encies. We call this strategy “separate protection” to differentiate it from the “coor-

dinated protection” where the interdependent systems are protected as a whole. Fig. 

5(a) shows the combined power and gas system resilience as a function of the attack 

budget 𝐵𝐴 for the separate protection and the coordinated protection when the pro-

tection budget 𝐵𝑃 = 4. It is clearly shown that the combined resilience values in the 
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case of separate protection are always smaller than those in the case of coordinated 

protection. The difference of the combined system resilience between the two cases 

can reflect the importance of considering interdependencies in interdependent CIs 

protection. Fig. 5(b) presents the difference of the combined system resilience be-

tween the two cases for different protection budget 𝐵𝑃 . From this Figure, it can be 

seen that when 𝐵𝑃  is relatively small, the difference of the combined system resili-

ence is relatively insignificant, e.g., under or around 0.1 when 𝐵𝑃 = 2; when 𝐵𝑃  

increases, the difference becomes increasingly significant. These results highlight 

the significance of protecting interdependent CIs as a whole against potential dis-

ruptions, especially when the protection budget is relatively high. 

 

Fig. 4. The combined resilience of the interdependent power and gas systems 

 

Fig. 5. (a) The combined system resilience curves as a function of the attack budget 𝐵𝐴 for the 

separate protection and the coordinated protection when 𝐵𝑃 = 4; (b) The combined resilience 

difference between the separate protection and the coordinated protection as a function of the at-

tack budget 𝐵𝐴 when 𝐵𝑃 = 2, 4, 6 and 8. 
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5 Concluding Remarks 

This chapter has introduced a set of quantitative models of operation of interde-

pendent CI systems and their functional interdependencies. The game-theoretic AD 

and DAD models are introduced and advocated to be used for assessing and im-

proving the resilience of interdependent CIs under worst-case disruptions. By as-

suming an intelligent attacker and exploiting its optimization, these multi-level de-

fender-attacker models aim to estimate a worst case damage scenario for any 

feasible protection strategy. It is noted that the tri-level DAD game takes the iden-

tical form of two-stage adaptive robust optimization (ARO) [45, 46], albeit the DAD 

game model and the two-stage ARO have different origins. This modeling frame-

work has been successfully applied to identify the optimum resilience strategies for 

electric power grids [25, 47, 48], rail systems [49], commodity distribution net-

works [24], and facility networks [50]. 

Although in the present models we restrict the adaptive behavior of the systems 

to the normative decisions (i.e., only network flow can be re-dispatched), the frame-

work is also flexible enough to incorporate other adaptive behaviors/decisions in 

the presence of disruption, to the extent that one can describe the way in which this 

might happen. For example, we have shown in [13] that the decisions about the 

repair sequence of damaged components under limited repair resources can be care-

fully defined and incorporated into the third level system operation model after dis-

ruptions, resulting in a more comprehensive consideration of system resilience. 

By considering the simultaneous losses of system components, the present model 

is agnostic about the source of a disruption, providing a rapid and objective way of 

calculating the consequence of damage to any set of components, and can, therefore, 

be used to identify vulnerabilities and to evaluate the improvement in resilience 

provided by any protection plan. Furthermore, as we have mentioned at the end of 

Section 3.2, when we are able to calculate the failure probabilities of system com-

ponents, this information can be carefully formulated as additional constraints on 𝒛, 

e.g., through Shannon’s information theory, to narrow down the space ℤ and obtain 

the “most-likely” (informed by the failure probabilities) worst case disruptions. 

Finally, our results of the numerical example demonstrate the significance of 

having a centralized decision maker to protect interdependent CIs as a whole against 

potential disruptions. However, in practice, many CI systems are owned or operated 

by the private sector and a centralized decision-making agent does not exist. There-

fore, in terms of future research, it would be interesting to investigate whether and 

how different kinds of interaction/collaboration mechanisms among these inde-

pendent decision-makers will improve the resilience of individual CI systems and 

all the interdependent CIs as a whole.  
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