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We study the possibility to enhance the phase space density of non-interacting particles submitted
to a classical laser field without spontaneous emission. We clearly state that, when no spontaneous
emission is present, a quantum description of the particle motion is more reliable than semi-classical
description which can lead to large errors especially if no care is taken to smooth structures smaller
than the Heisenberg uncertainty principle. Whatever the definition of position-momentum phase
space density, its gain is severely bounded especially when started from a thermal sample. More
precisely, the maximum of the position-momentum phase space density, can only increase by a factor
M for M-level particles. This bound comes from a transfer between the external and internal degrees
of freedom. Therefore, it is impossible to increase the position-momentum phase space density in

the same internal state.

PACS numbers:

It is usually believed that the phase space density
(PSD) of non-interacting particles cannot be increased
by using only pure Hamiltonian evolution and any PSD
increase would require a dissipative mechanism [I}, 2]. In
the context of laser cooling, this dissipation is usually en-
sured by spontaneous emission. Nevertheless, in recent
years, several papers suggested that some experimental
observations could support the possibility of an opti-
cal cooling without spontaneous emission [3H5]. These
counter intuitive results were also supported by theoreti-
cal arguments and semi-classical simulations using classi-
cal laser fields [6H8]. The perspective of cooling different
species including molecules has actively stimulated the
discussions [9HIT].

In this letter, we specifically address the issue of in-
creasing the PSD for non-interacting particles submitted
to classical laser fields (i.e. equivalent to quantum fields
in coherent mode [I2HI4]) and deprived of spontaneous
emission. We first determine the evolution of a position-
momentum distribution (PMD) of such particles (often
called atoms hereafter eventhough molecules are also con-
cerned) in a phase space region. In particular, we show
that a quantum treatment of the external degrees of free-
dom is more reliable than a classical treatment that may
lead to erroneous predictions. A quantum description of
position and momentum requires to revisit the definition
of the classical PMD, to define quantum analogs and to
discuss their characterizations. Because the term ”cool-
ing” is ambiguous and has often led to misinterpretations
and controversies, we perform our analysis by considering
both the PMD and several definitions of a single quantity
(rather than a distribution) called PSD in a generic way.
Somehow, the most straightforward definition of PSD is
the maximum of PMD. Other definitions, such as those
derived from different entropies, are used to account for
the populations and correlations of the internal and ex-

ternal degrees of freedom. With these careful definitions,
we establish that PSD can marginally increase in the case
of an initial thermal distribution. Yet the gain is shown
to be bounded by the number M of internal levels.

First of all, it is important to recall that the evo-
lution of non-interacting particles can be derived from
a single particle statistics. In this framework, we do
not study single realizations of many-particle evolution
that may cause PMD modification driven by ergodic-
ity, Zermelo-Poincaré recurrence or Fluctuation theo-
rems [15] as through coarse grained PMD [I6], 17] or by
phase-space volume surrounding particles (such as ellip-
soid emittance growth in beams) [I8]. Therefore, we as-
sume the ensemble evolution as entirely derived from the
one-particle density matrix p in the quantum case and,
in the classical case, from the (statistical averaged single
particle) classical PMD p(r,v,1).

The most general evolution of the classical PMD un-
dergoing a (non-random) external force F'(r, v, t) is given
by the continuity equation:
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where % is the material derivative. This clearly shows
that a velocity-dependent force is necessary to change the
PMD p. The Doppler cooling scheme, using for example
the classical Lorentz oscillator model, is a textbook ex-
ample of velocity-dependent force. However, in Hamilto-
nian mechanics, according to the Vlasov-Liouville’s the-
orem %’; = 0 for non-interacting particles, p is constant.
This is consistent with the continuity equation because
friction forces cannot be included in our closed system
with external fields [87]. Since quantum mechanics is
also based on a Hamiltonian description, one may won-
der how the maximum of a PMD could be increased. A
major difference actually comes from the treatment of
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FIG. 1: Left: Pulse sequence, a m-pulse coming from the
right (red) followed by a m-pulse coming from the left (green).
Right: basic idea of PMD maximum increase. The first 7-
pulse transfers one atom from |p + hk,g) to |p,e) without
affecting the atom already in state |p, g), thereby increasing
the total number of particles in |p) by a factor 2. Trying
to add a third particle in the same momentum |p) cell, by
applying a second m-pulse counter-propagating, simply swaps
the particles in each state with no gain in |p) population.
Wree = hk> /2m and 2 are the recoil and Rabi frequencies
respectively.

the internal degrees of freedom that cannot be rigorous
in classical physics. Regarding the electromagnetic in-
teractions, the time evolution of the internal degrees of
freedom is generally calculated by the quantum master
equation acting on the density matrix because it may
also include non-unitary evolutions due to spontaneous
emission. The semi-classical evolution of the external
degrees of freedom is then usually obtained by Ehren-
fest’s theorem. This framework provides satisfying pre-
dictions for Doppler cooling where the change of semi-
classical PMD maximum is essentially attributed to spon-
taneous emission. However even without spontaneous
emission, several semi-classical studies suggest that the
maximum of a PMD can be modified (7-pulse, rapid adia-
batic passage (RAP), Stimulated RAP, bichromatic fields
B, B, 6, [8, 10]). Their common idea is that a coher-
ent force, resulting from absorption and stimulated emis-
sions, depends on the particle velocity via the Doppler
effect. So a large increase of the PMD maximum seems
possible from the continuity equation . In the follow-
ing, we will show that the concept of semi-classical force
is only partly correct and that the Ehrenfest’s theorem
can lead to an important overestimation of the cooling
efficiency. We will show that a proper quantum mechan-
ical treatment exhibits a limited gain in the PMD, its
maximum being the number M of internal levels.

The basic physical mechanism and maximum gain
of PMD can be understood using an ensemble of non-
interacting two-level atoms (with ground |g) and excited
le) internal states) and momentum states |p). Because
the atoms do not interact with each other and do not
undergo spontaneous emission, the one-particle Hamilto-
nian where the fields are classical is sufficient to describe

FIG. 2: PMD evolution starting with an initial Gaussian
PMD (normalized to a maximum of 1 and represented by
black lines on the projections). The histogram of the position
momentum semi-classical evolution for cell size of 1/(5k) in
position and 7k/10 in momentum (a) and smoothed distri-
bution (b) as well as the total (ground plus excited states)
Wigner (c) and Husimi (d) functions are shown after a pair
of m-pulses (left-right) with Rabi frequency 2wrec and pulses
detuning —2wrec-

the dynamics (see Supplemental Material(SM), Eq.(2)
[19]). We ran several simulations based on various op-
tical schemes, including bichromatic fields, rapid adia-
batic transfers and m-pulses. In all cases, we found the
same limitations on the gain of the PMD maximum. The
underlying reasons can be understood with the example
sketched in Fig. It shows how a light pulse (with
Doppler detuning and Rabi frequency 2 wisely adjusted
to address a narrow line recoil transition) may bring two
atoms in the same momentum state |p) while the in-
ternal state of the displaced atom is changed. Any at-
tempt to increase further the population of |p) is vain be-
cause the rates of absorption and stimulated emission are
equal which prevents to increase the population in |p).
This qualitatively explains the limited gain in position-
momentum PSD gain by a factor 2 for 2-level atoms.

We now confirm this limitation by accurate calcula-
tions for two pulses in one dimension as depicted in Fig.
[[l The classical evolution and the quantum evolution of
an initial two-dimensional (thermal) Gaussian PMD in
(r,p) are given in Fig. 2l The quantum evolution is based
on the density matrix master equation p(r,p,t) (SM,



Eq.(12)[19]) and the Wigner function W(r,p,t) (SM,
Eq.(13-15) [19]). The semi-classical evolution makes use
of Newton’s equation of motion with a force (SM, Eq.(21)
[19]) resulting from the Ehrenfest’s theorem and Bloch
equations (SM, Eq.(20) [19]) using the ik — 0 limit of
the Wigner quantum evolution (see SM,[19]). The evolu-
tion of the semi-classical PMD was calculated with a bil-
lion of test particles. The final distribution corresponds
to the number of atoms in a position-momentum cell
whose size has been arbitrarily chosen as 1/(5k) in posi-
tion and Ak/10 in momentum. In these conditions, the
maximum of the semi-classical PMD is subject to a large
gain (factor 20), which significantly overcomes the quan-
tum approaches where the maximum gain of the Wigner
PMD reaches 2.5. The semi-classical approach should
indeed be handled with precaution to predict the PMD
evolution. When spontaneous emission is present, the
collapse of the atomic wavepacket [20] smooths out the
evolution on a time scale longer than the spontaneous
emission time. Therefore the internal variables relax fast
enough and follow quasi-adiabatically the slower exter-
nal motion; so the evolution of the Wigner distribution is
reduced to the semi-classical one as demonstrated in the
SM [19]. On the contrary, without spontaneous emission,
correlations may appear between internal and external
variables [21] invalidating the semi-classical approach.

The physical relevance of the previous calculations
have to be discussed in the light of the position-
momentum uncertainty principle because both the quan-
tum and semi-classical distributions exhibit structures
smaller than the minimum uncertainty. This problem
is often present in the distributions processed in cooling
or brightening studies [3H5] 10, [11]. This issue can be
solved by performing a convolution of the PMD with a
Gaussian function corresponding to the Heisenberg limit
or0p = h/2, which gives the smoothed coarse grained
distributions shown in Fig. b,d), where we chose
ko, = % = % Applied to a Wigner function, we
obtain the so-called Q(r,p,t) Husimi distribution which
is the optimal probability distribution for joint position
and momentum measurement [22]. The effect is quite
striking since, in our example, the classical and quan-
tum smoothed PMD are very similar (but still different)
and both indicate a maximum gain of 2. The similitude
may depend on the specificities of our toy model. Other
protocols could give rise to far more significant differ-
ences. Indeed, even with a smoothing post-procedure,
the semi-classical evolution should fail at the time when
particles initially in the ground state and contained in an
Heisenberg-bounded PSD region undergo different forces
(or Rabi frequencies).

In order to precisely understand the role of the inter-
play between internal and position-momentum degrees,
we now adopt an analysis relying on the density matrix
p. For this purpose, we use the quantum PSD as a quan-
tity linked to the entropy S (per particles and per unit

of kp) through to the Boltzmann’s formula
S=—-—InD, (2)

where D defines the PSD quantitatively. This definition
is similar to the Sackur-Tetrode formula S = —InD + 2
that gives the thermal classical PSD used by the ul-
tracold atoms community (the number of particles con-
tained in a de Broglie’s wavelength sized box reaches
unity when quantum degeneration is reached). We first
consider the Von Neuman entropy Syx = —Tr[p1n(p)] =
— > ; Ailn();) where A; are the eigenvalues of the sin-
gle particle density matrix p. These eigenstates gener-
ally do not correspond to physical observables |i) as the
energy eigenstates for example. So other quantities are
commonly used, such as the informational Shanon en-
tropy Ssn = — >, pi In p; where p; = (i|p|i) is the pop-
ulation of the i*" eigenstate. Consequently, we define
Dvyy and Dgy, from Eq.. These particular cases belong
to two distinct and general categories: eigenvalue-based
(or spectral) entropy and population-based (or informa-
tional) entropy. The first kind is independent of the rep-
resentation basis and thus invariant under Hamiltonian
evolution while the second kind depends on the repre-
sentation and consequently is likely to change over time.
In these conditions, one can wonder whether a quantum
entropy can decrease or not. To answer this question,
we reconsider the evolution during the pair of m-pulses
that gave rise to the PMD in Fig. However, in order
to calculate Dgy and Dyyn more easily, we now assume
that the atoms are initially fully delocalized in position,
which implies that the initial density matrix is Gaussian
diagonal when expressed in |p) basis. We checked that
this small modification had almost no effect on the evo-
lution of the gain observed from the PMD (Fig. 2 shows
that the smoothed spatial distribution was almost not af-
fected by the time evolution). As expected, we see in Fig.
Bl (a) that the Von Neuman entropy is invariant while the
Shanon entropy is not. More fundamentally, an initial
thermal state provides the largest possible PSD and pro-
hibits further PSD increase [1]. Indeed, the minimum
Shanon entropy is achieved by a thermal Gaussian state
[23] and then equals the Von-Neuman entropy. So in our
case Dgp(t) < Dgn(0) = Dyn(0). Yet it is noticeable
that, unlike the Von-Neumann PSD, the Shanon PSD
can locally increase as observed in Fig. (a) between
Wrect = 7/4 and wyect = 7/2 when the density matrix
is no more Gaussian diagonal. Thus, cooling is indeed
possible if starting from non-thermal states (as the one
produced at time wyect = 7/4).

Finally, we would like to discuss the decrease of Dgy
and the invariance of Dy, which seems to contradict the
results of Fig. ] where all the distribution maxima in-
crease. This apparent contradiction comes from the fact
that the whole density matrix we consider is composed
of two subspaces: the full atomic system AB (p = pap)
is formed by the external degrees of freedom (part A)
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FIG. 3: Evolution of several definitions of PSD, normalized
to their initial value: (Husimi, max[p], Von Neuman Svn
and Shanon Ssy entropies) under same conditions as in Fig.
but with initial full spatial delocalization. a): evolution
for the total (external + internal degree of freedom). b):
only external degree of freedom (denoted A) for max [,6‘4],

InaX[Q{A}}ADéﬁ}anduDéf}boundaibyQ.

and the M internal degrees of freedom B (here M = 2).
As the PMD in Fig. [2] are functions of the coordinates
(r,p) (part A), it is thus more appropriate to evaluate
StA (or DIAY) ie. S (or D) restricted to A by us-
ing the partial trace over the internal degrees of freedom
pa = Trpp instead of p. The quantity ST4} is not sub-
mitted to the constraints imposed to S because entropy
can be exchanged between the two subspaces. For in-
stance, Syn verifies the subadditivity and the Araki-Leib
inequality S{{,’;B} - S\{,ﬁ} < S{{,ﬁ} < S\{,‘;B} + S{{,ﬁ} where
the maximum of S\{”B\}} is log M [24H27]. Using Eq. 1} we
thus find the fundamental inequality

1
MD{AB} < DAY < mpiAB} (3)

that bounds the PSD evolution. The gain limit of M is a
fundamental result of our study. This latter also holds for

Sé{f ' and consequently Déf} can only increase by a fac-

tor M for an initial thermal state because Déf} < D;{,';}
both quantities being equal for an initial diagonal (or
thermal) state. As discussed in the SM [I9], this is gen-
eral and can be extended to other PSD definitions based
on entropy, functions or maximum of PMD that are all
bounded by the same factor M. This is consistent with
our numerical results in Fig. showing the evolution
of the quantities max [p4], max [Q{4}], S\{,ﬁ} and Séf}
(SM, Eq.(37-38) [19]). As an important precaution, we
mention that using pseudo phase space density defini-
tions, as the ones filtering a specific state (such as for the
ground state only Sé‘?7 cf. SM Eq.(39) [19]), it is possible
to find larger increase than a factor 2.

In conclusion, in absence of spontaneous emission and
using classical laser fields, we have shown that a quan-
tum description is more reliable than a semi-classical de-
scription of the atomic motion which can lead to large

errors. We have also shown that the total eigenvalues-
based PSD can not increase. This conclusion can be ex-
tended to informational population-based PSD (max [p],
Ssh entropy or max [()]) when the initial state is a diag-
onal state. Still, a sample initially prepared in a thermal
state and thereby without quantum correlation can ex-
hibit a gain of the PMD maximum or PSD up to the
number M of internal states (or ultimately M? if ini-
tial correlations exist in the initial state, see SM [19]).
The direct and fundamental consequence of this analy-
sis, holding for any kind of free particles or particles in
time-dependent trapping potential is that cooling mech-
anisms based on coherent field momentum transfer with-
out spontaneous emission (such as adiabatic passages,
bichromatic, 7-pulses [5l [6] [8, 10, 111, 28]) have a limited
efficiency and could only lead to a position-momentum
PSD gain of M. This is still of interest for studies that
need more particles in a same phase space area regardless
of the internal distribution (for laser manipulation, de-
tection, collisional studies, ...). However, increasing the
full PSD is impossible, in other words, the production
under coherent fields of all particles in the same internal
state with a larger PSD than the initial one is impossi-
ble without spontaneous emission. An obvious way to
overcome this limitation is to allow a single spontaneous
emission event per particle [29H31] because the third an-
cilla spontaneous emission space has almost an infinite
dimension to extract entropy (see [ B2H41]). A sec-
ond option for cooling is to create entanglement between
particles and the light field [42] 43] or by using non sta-
tistical methods such as informational cooling (stochas-
tic cooling being one famous example) [44] [45] or cavity
cooling [24] [42] [46], [46H49]. A final alternative would be
to use non-classical quantum fields. Because absorption
or stimulated emission rates are not equivalent anymore
(with the simple example of Fock states), the last step
sketched in Fig. |1l would allow one to put more atoms at
the same phase space location [I4]. In other words, when
the optical field is no longer considered as a parameter,
the total system is now composed of 3 sub-systems (ex-
ternal, internal degrees of freedom and quantized field).
Our previous demonstrations could then be applied: the
(external) PSD can be increased by the number of avail-
able micro-states in the other (internal and field) spaces.
If the latter are sufficiently large, there is a priori no the-
oretical limit on cooling even without spontaneous emis-
sion [3}, 7, 91 10, (24, 46, [4%).
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NON-RELATIVISTIC HAMILTONIAN OF NON-INTERACTING PARTICLES

We here recall the equations of motion for laser cooling of atoms. The reader can refer to textbooks such as [50].

Quantized or (semi-)classical hamiltonian

We here study the quantum Hamiltonian H of a two generic levels |1) and |2) (representing the ground |g) and
the excited |e) states in [51]) of a particle (mass m) under the effect of electromagnetic fields. The generalisation to
M level system is straightforward but will not be detailed for the sake of simplicity. We separate the "motional” (or
trapping) fields that do not couple |1) and |2), such as trapping potential V;, V5 produced for example by magnetic
coils, magnets or electrodes through Zeeman (—f.B) or Stark effect (—d.E), and the laser fields E that do couple
|1) and |2).

For N non-interacting particles the full hamiltonian can be written as H = Ef\il H® + Hgoq + Ef\il I:[i(;g’ﬁel 4

59
where H® is the hamiltonian 2p—1 + Vi (7, ) [1) (1] + Va(#4,1)[2) (2] for the position and momentum p;, r; of the ith
m
particle. The trapping field is arbitrary but the simplest case corresponds to harmonic traps: V; = E; + %mwﬂ“Q.
N
A base of the Hilbert space will be an ensemble of states ® |pi, 1 or 2); ® [Mgsngs) when using the Fock notation
i=1
for the field. We treat the N particles as totally independent and use the density matrix formalism (written as p) to
describe the system of N identical particles as a statistical ensemble. The external field is common to the N atoms
and this can automatically generate entanglement between the atoms or collective behaviour that can indeed lead to
cooling [42] 43]. As explained in the article, this is not our interest here and we shall study only the single particle
case. In the dipolar approximation and neglecting the Roentgen term, despites the fact that it can create surprising
radiation forces on the atoms [52 53], the Hamiltonian for a single particle reads as:

A= 2O (Ve D202 - dEG O+ D@D + ke (ahins +1/2) @
ko

where d is the transition dipole element (assumed to be real d = (2|¢#|1)) and E(r,t) is a quantized real field. For in-
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stance for a single plane wave field (in a volume L3) E(r,t) = g i 213
€0
k,o

The initial state is uncorrelated and density operator can be written as an atomic (external and internal degrees of
freedom) and a field part as p = pat ® fficld = Pext @ Pint @ Pficld-

In the semi-classical approximation, we would like to replace the field operators (denoted with the hat ") by their
classical expectation values, namely ag, and d;rw by c-numbers ax, and aj,, such as E(7,t) by E(#,t) becomes in
the Hamiltonian

H= 2% + Eu (7, )1 (1] + Ea(,4)[2) 2] — d-B(#, ¢)(]2)(1] + [1)(2])

Classical fields

This can be done, by using coherent states |«), that are eigenstates of the annihilation operator a: a|a) = ala),
by using the unitary transformation under the operator U = 15(04 xe~ )T and neglecting the quantum field that now
describes spontaneous emission only [12HI4].

Therefore, in the following we assume to have classical laser fields with different frequencies wr,, wave-vectors ki,
or temporal phase ®1,(t): E(f,t) = E'(7,t) + E/T(’f,t) _ %ZL [EL<t)ei(kL.'i'—th—<I>L(t)) + EE(t)e—i(kL.‘f‘—WLt—q)L(t)):I.
The rotating wave approximation leads to

A2

H= 2p—m + VA )|+ Va(#,1)|2)(2] — d.E'(7,1)[2)(1] — d.E"T(#,1)[1)(2]) (5)



We will now use this Hamiltonian to describe the evolution. In matrix notation with the \1 2) basis, the Hamiltonian

N 7yt
H becomes H = (I‘f; I‘;) where the coupling term is V = —d.E'(7,t) = —— Z Ey (t)e! ke P mwnt=L(t) — ZL: L.
Density matriz
. . 0p A
The time evolution zha = Hp — pH leads to:
J
<8gil 35”?) _ 1 ( [Hla Pn] + VTP21 Pl%V [5%/2m, fpra] + V1P12 - P12V2 + VTP?Q - PllVT)
% % [9%/2m, ponr] + Vapor — pon Vi + Vi — poaV [Ha, pos] + V1o — por V'
[
Wigner functions
The Wigner-Weyl transform of this equation gives the time evolution of the Wigner function defined as
1 e n ir!
Wirpit) = 5 [ (0= B /2005 5.0 lp + 5207 (6)
through the so-called Moyal bracket, governed by
ow 1
(HxW —WxH) (7)

ot ih

The x-product can be evaluated using the convenient formula [22] for any generic function p; 2(r, p)

h 0 h O
(p1* p2)(r,p) = Pl(r+1587p7p7155)p2(7’7p)
h 0 h O

(p2 % p1)(r,p) = pQ(T—ZQ%,p+ 25 ==)p1(r,p)

that we have restricted to a one dimensional motion for simplicity.

Therefore, when no 7, p product are present in p = p(7, p), the Wigner(-Weyl) transform W;(r, p; t) is the unmodified
classical observable expression p(r,p). An important example is a conventional Hamiltonian, H = P /2m + V(#,t),
for which the transition from classical mechanics is the straightforward quantization: Wy (r,p;t) = H(r,pit) =
p?/2m + V(r,t).

The expressions containing e’*t* can be expanded by using exponential (Taylor) series that indicates

eihL(rt s é‘ozn)f(r,p7 t) = e*L7 f(r,p F hky,/2,t). and finaly using hQp (r,t) = d.ELei(kL‘r_“Lt_‘bL(t)), we obtain:

% + %% - I—[Vl(r—i-zzap) Vi(r —igﬁp)]: Wii(r,p,t) = 212 (Qj (r, t)W21(T,p+ L) = Qp(r, ) Wia(r,p + %,t)) (8)
:%4*%%* 7[V1(r+z§8p) V2(T‘*igap)]: Wia(r,p,t) = —— ZL:Qz(r,t)(Wzg(r,p+ %,t)fwu(r,p,m%,t)) 9)
:%Jr%%fl—[Vg(rJrzﬁa )— Vl(rfigap)]: Wai(r,p,t) = 7%ZQL(T7t)(W11(T,p7hﬁ,t)*WQQ(T,p*i’ hkTL,t)) (10)
% + %% — —[Vg(r+zra ) — Va(r — igap)]: Waa(r,p,t) = ——Z Qr(r,t)Wia(r,p — % t) — QF (r,t)Wai(r,p — % t)[11)

For completeness, we mention that a (1D) spontaneous emission rate I' can be added if needed, by including the
terms [21], 54].



e LT O Wanlr -+ )i
8‘;;'11 = _gwu(r,p)
82;21 » — —ng(TaP)
82;'22 » = —I'Waa(r,p)

3 12
where O(p’) is the probability density distribution for the projection of spontaneous emission ©(p’) = 3 (1 + 1?2)

Pr pr
for a dipolar radiation pattern) on the atomic recoil momentum for p, = hk.

Equation of motion of the Husimi distribution can be derived [55H59] and present non-zero second term of the
Liouville equation (similar to Egs.(§)-(11])

Connection with Liouville equation

In the absence of light fields, Taylor series expansion indicates that the evolution of the diagonal terms W;; is given
by:
DW;; . oWy I B c’)W“ 8V GW“ Z 25 9228 828+1m 825+1Wii
Dt 9t m  Or (25 + 1)] Or2s+1  Qgp2stl

L . i
We recover the Liouville’s equation,

= 0, under the influence of the potential V', but only for a quadratic

potential V;(r,t) = a(t) + b(t)r + c(t)r?. However, when higher derivatives of V;(r) are present, additional terms will
give rise to diffusion and the quantum Wigner function gradually deviates from the corresponding classical phase
space probability density. So a non-harmonic potential is a clear way to modify the Wigner phase space density. This
argument also applies to the Husimi function.

Interaction picture: free evolution

The evolution of H(t) is given by the unitary time evolution operator U, () = e~i/ Hi)/h In matrix notation,
the evolution operator is Uy = ([(])1 [5') > The interaction picture consists in defining a new density matrix p’ (t) =
2

0 VIt

. . . e dut .
Ul (#)p(t) Uy (t), which evolves under the modified Hamiltonian H! = Ul HU, + ihd—tOUo = <VI 0

) where V1 =
Uivu,.
Because several laser frequencies are possibly present, the interaction picture is more appropriate than the Bloch

rotating frame. The latter would imply to choose one laser frequency as a reference. The interaction picture removes
this arbitrariness.

Density matriz

Using the momentum representation, where 7 acts as ihd, on 1(p) = (p|t)), we have e'*"|p) = |p + hk) We find
N 1 i (5P
V1|p> = =3 zL: Ip + hkL>QLe—z(6L+t) (12)
k
5P = wL—(E2—E1)/h——L(p:I:hkL/2) (13)
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where hQy(t) = d.Epe~®®) and 5€i = 02 + 6P (p) £ 6% : The detuning & = wy, — (E2 — E1)/h, the Doppler shift
62 (p) = —kp,.p/m and recoil frequency 6% = —hk? /2m appear naturally.
With p; = U] pi;U;, the evolution reads as:

8p F2) T N Nal
< g; p12> Z (VI P21 P12V VI Pz2 P11VIT> (14)
9p ap A
gil giz in P11 22V VIP12 P21VI

Assuming there is no external field from now and using plfjp = {p \p” Ip) = (P —p*)t/2mh (B —Ej)t/h p P the latter
can be written as:

’ ’
Ip'p Ip'p cop+ ’ ’ - op+ Lop+ ’ Il L op—
(808;1 9p ;2 1 QiezéL thé;l{ +hkL)p _ QLpI€2(p+hkL)€716L t QiezéL tplélé +hkr)p _ Qipl{fl(p hkL)e“SL t
/ ! = - Lopl — ’ ’ . p+ L opl — ’ ’ Lop—
ap'8 P aplhF 2 Qr e~ 907 "t I (P’ =RkL)p 1P (p+hky) —isPT e —is? ~t 1(p'—hkL)p « 1P (p—hkL) 6P~ ¢
e "L —-Q e "L Qre *L —Q e’L
5t 5 L P11 LP 22 L P12 LP 21

(15)

Wigner function

It is quite convenient to use the so-called non-diagonal Wigner functions by defining W =W, ! / h as the Wigner

transform function associated to pij = (i|p"|5). So Wij(r,p,t) = e Fi~Fi )t/hWin( fpt/m,p, t) and the evolution
equations become:

o (npit) = XL: [Q} (7, p, t)W3, (r — hkyt/2m,p + hky,/2,1)] (16)
81(;1;211 (r,p,t) = 211%: Qr(r,p, t) (Wi (r — hkpt/2m, p + hkr,/2,t) — Wi (r 4+ hkpt/2m,p — hkp/2,t))  (17)
82?!2 (r,p,t) = > S[Q5(r,p,)W3, (r + hkpt/2m, p — hky/2,1)] (18)
L
where

QL(np’ t) — QLei(kLr+kLpt/m—égt—<I>L(t)) (19)

Single laser case (Bloch equation)

When there is only one laser, we can define

I/T/vlll (T7 b, t) = Wlll (’I", p; t)

W212(Tap7 t) = WQIQ(T - hkLt/map + hkLa t)

4 —i(ky p FLPt 504 hkr,t hkr,

Wh(r,py) = e S otimonpl - S04 T )

If we assume €, real, the evolution is governed by

o Wi — Wi - Rk O -

&% = —Q W + TLa*W (20)
0 .+ ~ hky, O
0 &1 Wil - Wi, hkp 0 -
- _ 5p+ W 0 22 ML o1i7 1 29
6tJW21 Tl + 2 2m or SWa (22)



hkp, 0
We recognize the standard Bloch equations except for the term in Q—L —. We can thus retrieve the Bloch equations
m

,
from the exact Wigner function evolution by performing series expansion in ik. This approach justifies the semi-
classical equation for the particles evolution that we derive from heuristic considerations.

SEMI-CLASSICAL EVOLUTION

From the quantum evolution, we can derive the semi-classical evolution of the atomic motion. The underlying
assumption is that the displacement of the atom during the internal relaxation time is very small. The internal
variables follow quasi-adiabatically the external motion [2I]. It is then possible to separate the internal and the
external degree of freedom.

The Doppler or recoil effects, or the use of the stationary state of the Bloch equation can be done with hand-waving
arguments (see for instance in Ref. [60]). Nevertheless, the Lagrangian description (individual particles are followed
through time), Eulerian description and interaction picture that freeze the motion in the Eulerian description may
lead to confusion. We will clarify this distinction.

Definition of a force

For simplicity, we neglect the external potentials (but they can be included in the interaction picture if needed).
In the semi-classical approach, the particle motion is classical: for a given particle initially at r(ty) = 7o and
v(tg) = vy at time t = ty its trajectory in phase space r(t),p(t) = mwo(t) is given by Newton’s equation of motion
dv
mE(t) = F(r(t),v(t),t).
The standard way to define the force in laser cooling is by using the Ehrenfest theorem (see for instance [61] 62],

but other methods exists [63H65]). Knowing the light field seen by the atom at the position r with velocity v = p/m
enables to solve the optical Bloch equations (density matrix &(¢) evolution) to determine the atomic internal state.

. 0d.E
The force is then derived from F = —tr[6(¢t)VH] = <5'7> The usual optical Bloch equations where o;;(t) stands
r

for 0;;(t; 7o, vo, to) read as

(5 ) = 30 (O om0 = Qa0 hout) | QOO Yoml) ) Yy
9en 2m 2 Qu(r(t), t)(o11(t) — o22(1)) Qu(r(t), t)o12(t) — Qf (r(t), t) o2 (t)

where Qy,(r,t) = Qpetlkrr—wnt=21) Tpe rapidly oscillating terms can be removed by introducing slowly varying
quantities as Ui[j(t) = ¢ B =BG (1),

The absence of Doppler shift in the expression of Qy,(r,¢) may be surprising, especially when compared to Eq. (15))
(using p’ = p = p(t), r = r(t) and hky, put to 0). The explanation is the following: we use r(t) = 7(¢; 1o, vo, to)
so the Lagrangian description where individual particles are followed through time, whereas, when dealing with the
Wigner W (r,v,t) or PSD p(r,v,t) picture, we use in the Eulerian description. The connection between Lagrangian
and Eulerian coordinates explains why the Doppler effect is correctly taken in both Eq. with Qr(r(t),t) =

Qpeibrr®=wrt=®ut) " and in Eq. with Qp(r, p, t) = Qe (berhept/m=05i=2L()) In any case, the instantaneous

dr(t
laser phase seen by the atoms is correct, including the Doppler effect because tl(t ) =p(t)/m
Similarly, in the Eulerian description the force is thus given by Tr[6(¢ )Vﬁ ], or Tr[ (t)!VV!] using the cyclic
invariant of the trace. We have VI (r,p,t) Z —Qu(r,p,t) so VVI(r,p,t) = —zz —QL (r,p,t).
So in conclusion and back to our Lagrangian descrlptlon we have:
F(r@),vt),t) =S |on(t Z hkp Q% (r(t), 1) (24)

As we chose plane waves (or VEr, = 0), there is no direct dipolar force. Also, because of the interplay between the
Bloch equations (Eq and the force (Eq, the atomic velocity v(t) and position r(t) should be updated in a
short time interval (typically ps), and the calculation of the Bloch equation evolution iterated on a similar time scale
[60].
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Phase space evolution equation

Here, we would like to justify the equations we just derived assuming a separation of the external and internal
degrees of freedom. However, we know that without spontaneous emission, this is valid only if the ratio of resonant
photon momentum to atomic momentum dispersion is small ik/Ap < 1. In such a case, the rapid processes acting on
the internal degrees of freedom can be separated from the slow processes associated with translational motion. The
dynamics of the atomic ensemble is thus determined by the slow change of the distribution function in translational
degrees of freedom w(r, p) = W11 + Was and the expansion in %k, that we will derive here for completeness, is justified

21&

ne analogue of the classical phase space distribution p is the total distribution function in translational degrees
of freedom, w(r,p,t) as plotted in [51, Fig. 2(b)]. Equations (8{11) (written for simplicity without the external
potentials), become:

o 0] 1
{—+£— Wii(r,p,t) = —— > (Q} (r,)War(r,p+ hkL/2,t) — Qp(r,t)Wia(r, p + hkL/2,1)) (25)
ot m Or | 21 T
0 p O Ey — E5] 1
-+ —— - W t) = —— QF (r, t) (W hkr,/2,t) — W- — hkr,/2,t 26
(6~ | W) = g S QL0 Waslr -+ ke /2,0 = Wi~ i /2,) (26)
o} 7] Ey — E5] 1
— + gi + ! 2 WQI(Tvpu t) = — I ZQL(Tu t)(Wll(sz - h’kL/27t) - W22("',P + hkL/Q)t)) (27)
ot  mor th | 2i 4
7] 0] 1
{—+£— Was(r,p,t) = —— > (Qp(r,t)Wia(r,p — hkL/2,t) — QF (r,t)Wai (r, p — hkL/2,1)) (28)
ot m Or | 21 T

with hQy(r,t) = d.Epe!kr-m—wrt=®1),

An frequently used method to derive a continuity equation as [51, Eq.(1)] for p = w is to expand the Wigner
distribution equations in a power series of the photon momentum hk [21], 54, [66H70]. In the presence of spontaneous
emission, the second order leads to the standard Fokker-Planck equation [21 54} 66-70]. The simplest formulation is

hkr,
restricted to the first order approximation, therefore Woy (r, p F hky,/2,t) = Way(r,p,t) F — 5 88 Way (r,p,t). To this
first order in Ak, the sum of and is:
0 p 0 . 0
o+ Lot = = 3 [0 W () (29)

L

Since the recoil momentum Ak is small, the variation of atomic translational motion is slower than the atomic
internal state change. The latter follows the varying translational state w(r, p,t) [71]. Fast relaxation of the internal
atomic state means that, the functions W;;(r, p,t) follow the distribution function w(r, p,t).

At zero order in fik;, we have the simplest approximation W;;(r,p,t) = W%(r,p, tyw(r,p,t). Eq. 1D leads to

9 po OIF (r,p, t)w(r,p,1)]
N t —
[81& T mor ] wirprt) = op (30)
We recognize a continuity equation as [51l Eq.(1)] with the force given by
F(r,p,t) =S |Wai(r,p,t) Y Bk (r, 1) (31)
L

So in a classical picture, this expression of the force shall be used to calculate individual particles trajectories.

The evolution of the Wigner function is given by Eqs.—, with W;;(r,p,t) = W%(r,p, t)w(r,p,t), to obtain

WY (r + pt/m,p,t)

ot = Z (r + pt/m, t)Wm(TJFPt/maP, )] (32)
L

0

OW3, (r —|—azt)t/m7p, t) _ % Z Qu(r + pt/m, t)(Way(r + pt/m,p,t) — Wi (r + pt/m,p,t)) (33)
L

0

OWay(r +azt7t/m7p, 1) _ Z & [Qf(r + pt/m, t)ng(r + pt/m, p, t)} (34)
L



11

0 0 oWy ¢ t

where we have used [at + 5187‘} WP (r + pt/m,p,t) = 1 (r +a]; /m, p, )

We partially recognize the optical Bloch equations (Eqs7 with o;(t) = WZ%- (ro + pot/m, po,t) [2I]. This is the
usual first order in time connection between Lagrangian and Eulerian specification: 7(t) = 7(t; 79, vo, to) ~ 19 + vot,
p(t) = po. So to first order o;;(t) ~ WZ(; (r(t),p(t),t) and the force given by Eq. is exactly the same force as
Eq..

An alternative way to derive these expressions consists in using the interaction picture. A similar method using
w!(r,p,t) = Wi, + Wy Wh(r,p,t) ~ W-Io(r,p, tHw(r,p,t) from Eqs.— leads, to first order in Aky, to:

ij

oWy, X 10
at (7’7]), t) = - ;S |:QL(r7p7 t)WZI (T,p, t):| (35)
owl° 1 0 0
e (rpt) = 52 > Oulrp ) (Way () = Wiy (r,p,1)) (36)
L
6WQIQO * I 0
o nt) = 29 (95, WA (., )] (37)

which are the usual Bloch equations in the particle frame. The Doppler effect is here explicitly included. Indeed,
the continuity equation reads as

ow’ t 0 9]
W(ﬁput) = - [_mﬁr + ap:| (FI(T,p,t)’LUI(’I’7p7t))

for the force F(r + pt/m,p,t) = F'(r,p,t) = Y hkpS¥ (r, p, t)W4, (7, p, 1)°.
This is indeed the classical continuity equation [51, Eq.(1)]. In the interaction picture p(r, p,t) = p! (r — pt/m, p,t)
leads to
ap!

)+ |

t 9 O, 101 _
—ar + 817} (p"F)(r,p,t) =0 (38)

where F(r,p,t) = FI(r — pt/m,p,t).

DEFINING QUANTITATIVELY THE PSD

We explicit the different quantities related to the generic term Phase Space Density (PSD) and Position Momentum
Distribution (PMD) that are used in the core of the article:

e The PMD are functions of position (r) and momentum (p).
e The PSD are single values that are used to characterized how much the system is cold and dense.
The PSD quantities can be put into two main categories:

1. Position-momentum based PSD: will simply be the maximum of the PMD functions (such as the Wigner or
Husimi distributions).
2. Entropy based PSD: will simply be the value D = e~ for a given entropy S. The entropies are defined using
the density matrix p. They are of two types:
e Informational (or population-based, or diagonal) PSD: values linked to populations p; = (i|p|é) of specific
states |¢) (usually a complete basis set) chosen for their physical interest.

e Eigenvalues (or spectral) PSD: values relying on eigenvalues \; of the density matrix p.
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The PSD can include or not the internal states:

e For the full system, the PSD is calculated from the whole density matrix of the full particle system AB (p = pap)
where A and B denote the subspaces related to the external and internal degrees of freedom respectively. Note
that a quantification of the optical field would require a dedicated subspace C' and would lead to p = papc-

e For the sole position-momentum, we are only interested in the degrees of external freedom, i.e. coordinates 7, p
regardless the internal degrees of freedom. Thus, the total density matrix is replaced by the partial density
matrix obtained by tracing out the B part: p4 = Trpp. For instance, with a 2 level particle and a |p, g/e) basis,

(plpa®)Ip’) = (P, glp®)Ip', 9) + (p,elp(t)lp’, €).

Position Momentum Distribution

The ”usual” Wigner function W = Wy, + We,, as plotted in Fig. 2 c) is given by Eq. @ with:

1 R P
Woo(r.p,t) = 55 [ {p—'/2.9llp+p/2, g)e " /" dp' (39)
and an equivalent expression for the excited state We,.

A ”smooth” version is obtained by averaging Eq. over an equivalent cell area of 2mo,.0,, weighted by a Gaussian

function, which corresponds to the so called Weierstrass transform (in 1D):

Weaoy, op(r,p) = /dr’dp’W(r,p)Gar,ap (r,r'sp,p")

(r—r)? _ (p—p))?

where G, o, (r,7";p,p') = %e( 2or 27p ) Ws. .0,(r,p) represents a probability resulting from simultaneous
measurement of position and momentum that is performed with a device whose uncertainties are o, and o), of is also
used in this work [72H76]. The Q-Husimi distribution is a special case with a minimal equivalent cell area of h/2
occurring when 0,0, = h/2. This is the optimal distribution obtained for joint position and momentum measurement
[77]. The Husimi function is defined and positive and is equal to the average of the density operator over a coherent
state |a(r,p) = ;- + zg%) So, Q(r,p,t) = 2(alpala) is the probability distribution of the outcome of a heterodyne
measurement performed on the state o) [78]. Q(r,p,t) = Quq(r, p, 1) + Qqgq(r,p,t) = L({, glplev, g) + (v, €|plev, €)) is
the function plotted in Fig. 2 d). Its maximum is plotted in Fig. 3.

Informational phase space density

Several states |i) can be used to define an informational PSD, such as energy states |E;), momentum states |p) or
also coherent states |a(r,p)). For instance, if only the external degrees of freedom (subspace A) is of interest, the
energy eigenstates are F, = p?/2m for free particules, E, = hw(n + 1/2) for 1D harmonically trapped particles. If,
on the other hand, the full system AB is considered, the internal energy must be added.

Several definitions of PSD are possible depending of the choice of the function of the parameters f(p;) (see discussion
below). An important one is the (Gibbs-)Shanon entropy Ssp = — >, p; In p;. So, for the full space AB,

Ssu =~ _(p, 9lplp, 9) n((p, glplp, 9)) + > _(p,€lflp, €) In({p, e|lp, €))] (40)

p p

while for the external degrees of freedom only,

S& =- > (. glp®)p. g) + (p. el p(t)|p, €)) In((p, g p(t)|p, g) + (b, €l p(1)Ip, €)).- (41)

p

Finally, considering a specific internal state only, e.g. the ground state, it can be also defined

S$ == "(p,glplp. g) n({p, glplp, 9))- (42)
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Spectral phase space density

The spectral PSD can be seen as a special case of population entropy when the state |i) are the eigenstates of the
density matrix, i.e. p; = A;. This gives rise to another definition of PSD known as Von Neumann entropy Syn =
— >, AiIn(X;). Such a definition has the advantage of being independent of the basis choice and is unambiguously
defined from the density matrix as Syx = —Tr[pIn(p)]. The related PSD Dyx = eV~ was plotted for the full density
matrix in Fig. 3 (a) and the partial density matrix in Fig. 3 (b). The possible modification of S{{,‘;} is obviously linked
to the mutual entropy Sé’;} + Sé,};} - {{,?IB} defining the maximal cooling (work) that can be achieved in quantum
thermodynamics [23]. The triangle inequality (Eq. 3 in the article) indicates that a subtly correlated system could

even lead to an increase of Déﬁl} by a factor M? [27]. However, under the canonical conditions where only one internal
state is populated, the gain of D\{;ﬁ]} is bounded to M since S{{,’;B}(O) = S{{,AN} (0) and S{{,’;B}(t) = S\%IB}(O). This is

consistent with the results shown in Fig. 3(b) where the gain on D{{,'ﬁl} is greater than one but lower than M = 2.

Other entropy definitions

Other functions f of the parameters can be used to define the entropy. For instance power function leads to Tsallis
entropy: S, = ﬁ 1—>,p}]. For ¢ — 1, it is reduced to the Shanon entropy and for ¢ — oo to the maximal

1/q
. . . _ o g B ‘
population of p (because qlg{.lo Illlg = |I-lloc, that is qlggo ( E |pi ) = miaxpl).
7

Combining with logarithmic function leads to the Rényi entropy Sg) = 1%(1 log [>°, pf]. The case ¢ = 0 is the
Hartley or max-entropy, ¢ — 1 is the Shannon entropy, ¢ = 2 is the Collision or simply called ”Rényi” entropy and
q — oo the min-entropy.

It is important to realize that for a given choice of f, a given PSD will have a population version f(p;) but also
an eigenvalues one (when p; = ;). Sometimes terminology is ambiguous and it is important to precise if we use
a function of p; or \;. Fortunately, some definition are not ambiguous, for instance the Von Neumann entropy is
always an eigenvalue one. The Von Neumann entropy is therefore always the Shannon entropy over the spectrum of p.
Similarly the so called (Tsallis-2) linear entropy (because it approximates the Von Neumann entropy when Inp =~ p—1
[79]) Sp =1 =3, A =1 —Tr(p?) is usually used over the spectrum of p because it is linked to the measure of the
purity of the quantum state (purity being defined by Tr(p?) [2] 80]).

Relation between PSD and PMD

The function f can also be used to define a single value PSD from a PMD. For instance, we can define the so-called
Wehrl entropy Sy = — / Q(r,p)InQ(r,p) drdp. This is a continuous (or differential) entropy for Q(r,p) seen as a

probability density function. Wehrl’s entropy is the classical limit A — 0 of the Von Neumann quantum entropy [81].

The linear entropy could also be used because, compared to other definitions of entropy, it has the privileged status
to have a direct Weyl-Wigner-Moyal transcription: Sg = 1—Tr(p%) =1—h R4 p)? dr dp (so called Manfredi-Feix
entropy) [79, 82 [83].

Relation and bounds between PSD
Informational versus spectral PSD

A useful bound concern the fact that an informational entropy is always larger than the corresponding spectral
entropy.

The key argument is based on the Schur-Horn’s theorem (that indicates essentially that p; < A;) and on the fact
that, in order to to keep some basic properties of the entropies such as increasing with disordered, the functions f
are concave (so based on power or logarithmic functions). Then Jensen’s inequality for concave function proves the
result [23126] B4H86].

For instance f(z) = —xIn(z) leads to Ss, > Syn (or Dgy < Dyn).
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Invariance of full PSD
Invariance of full eigenvalues PSD are obvious using series of f(x), the unitarity of the evolution operator U
(p(t) = U@®)p(0)UT), and the cyclic invariant of the trace. The fact that all function of the eigenvalues ); are
conserved was the argument used in Ref. [I] to mention that the min entropy So = —logmax; \; = —log |||l Or
the spectral radius Do, = ||p]|cc = max;(\;) of p, that is the maximum occupation number of quantum eigenstates \;
are conserved under hamiltonian evolution (and so that the related PSD can no evolved).

Bound by the number of internal states M

The evolution operator U can also be used to demonstrate some bounds [2] such as:
max [p(1)] < M max p4(0)] (43)

That is demonstrated by considering max, [(p|pa(t)|p)] = Z?i1<p(],i|ﬁ(t)\p0,i> in addition to (po,i|p(t)|po,i) =
ZpJ’ Upoi,pjppj,pj(O)U;ijUi < max [p4(0)] ZpJ' UpoipiUpjpoi < Max [pa(t)] that arises from the unitarity of the evolu-
tion operator U.

In a similar manner (using f(z) = =™ and lim, 0 ||.|ln = ||-]/cc On theorem 5 of [86]) it can be shown (see also [78])
that the Husimi function @ as well as the Wehrl entropy are bounded by the same factor M. More detail and other
bounds can be find on Ref. [23-26] [84-30]

As an important final precaution, we mention that using pseudo phase space density definitions, as based on filtering
of some specific states (such as for the ground state only Séi) =— Zp<p, 91plp, g) In({p, g|p|p, 9))), it is possible to find
larger increase than a factor M. This is because such pseudo-PSD are not based on a valuable density matrix.
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