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We prove semi-classical resolvent estimates for real-valued potentials V ∈ L ∞ (R n ), n ≥ 3, of the form V = VL + VS, where VL is a long-range potential which is C 1 with respect to the radial variable, while VS is a short-range potential satisfying VS(x) = O x -δ with δ > 1.

Introduction and statement of results

The goal of this paper is to extend the semi-classical resolvent estimates obtained recently in [START_REF] Klopp | Semiclassical resolvent estimates for bounded potentials[END_REF], [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF] and [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF] to a larger class of potentials. We are going to study the resolvent of the Schrödinger operator P (h) = -h 2 ∆ + V (x) where 0 < h ≪ 1 is a semi-classical parameter, ∆ is the negative Laplacian in R n , n ≥ 3, and V ∈ L ∞ (R n ) is a real-valued potential of the form V = V L + V S , where V L ∈ C 1 ([r 0 , +∞)) with respect to the radial variable r = |x|, r 0 > 0 being some constant, is a long-range potential, while V S is a short-range potential satisfying (1.1) |V S (x)| ≤ C 1 (|x| + 1) -δ with some constants C 1 > 0 and δ > 1. We suppose that there exists a decreasing function p(r) > 0, p(r) → 0 as r → ∞, such that (1.2) V L (x) ≤ p(|x|) for |x| ≥ r 0 .

We also suppose that (1.3) ∂ r V L (x) ≤ C 2 (|x| + 1) -β for |x| ≥ r 0 with some constants C 2 > 0 and β > 1. As in [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF] we introduce the quantity g ± s (h, θ) := log (|x| + 1) -s (P (h) -E ± iθ) -1 (|x| + 1) -s

L 2 →L 2
where L 2 := L 2 (R n ), 0 < θ < 1, s > 1/2 is independent of h and E > 0 is a fixed energy level independent of h. Our first result is the following Theorem 1.1. Suppose the conditions (1.1), (1.2) and (1.3) fulfilled with δ and β satisfying the condition

(1.4) δ > 3, β > 3.
Then there exist constants C > 0 and h 0 > 0 independent of h and θ but depending on s and E such that for all 0 < h ≤ h 0 we have the bound (1.5) g ± s (h, θ) ≤ Ch -4/3 log(h -1 ). If the conditions (1.1), (1.2) and (1.3) are fulfilled with δ and β satisfying the condition (1.6) δ > 3, β = 3, then we have the bound (1.7) g ± s (h, θ) ≤ Ch -4/3 log(h -1 ) 3/2 log log(h -1 ) -1 .

When V S ≡ 0 and V L satisfying conditions similar to (1.2) and (1.3), it is proved in [START_REF] Datchev | Quantative limiting absorption principle in the semiclassical limit[END_REF] when n ≥ 3 and in [START_REF] Shapiro | Semiclassical resolvent bounds in dimension two[END_REF] when n = 2 that (1.8) g ± s (h, θ) ≤ Ch -1 with some constant C > 0 independent of h and θ. Previously, the bound (1.8) was proved for smooth potentials in [START_REF] Burq | Lower bounds for shape resonances widths of long-range Schrödinger operators[END_REF] and an analog of (1.8) for Hölder potentials was proved in [START_REF] Vodev | Semi-classical resolvent estimates and regions free of resonances[END_REF]. A high-frequency analog of (1.8) on Riemannian manifolds was also proved in [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] and [START_REF] Cardoso | Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds[END_REF]. When V L ≡ 0 and V S satisfying the condition (1.1) with δ > 3, the bound (1.5) has been recently proved in [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF]. Previously, (1.5) was proved in [START_REF] Klopp | Semiclassical resolvent estimates for bounded potentials[END_REF] and [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF] for real-valued compactly supported L ∞ potentials. When n = 1 it was shown in [START_REF] Dyatlov | The mathematical theory of scattering resonances[END_REF] that we have the better bound (1.8) instead of (1.5). The method we use to prove Theorem 1.1 also allows us to get resolvent bounds when the conditions (1.4) and (1.6) are not satisfied, which however are much weaker than the bound (1.5). More precisely, we have the following Theorem 1.2. Suppose the conditions (1.1), (1.2) and (1.3) fulfilled with δ and β satisfying either the condition

(1.9) 1 < δ ≤ 3, β > 1,
or the condition

(1.10) δ > 3, 1 < β < 3.
Then, there exist constants C > 0 and h 0 > 0 independent of h and θ but depending on s and E such that for all 0 < h ≤ h 0 we have the bounds

(1.11) g ± s (h, θ) ≤ Ch -2 3 -m 1 log(h -1 )
ν if (1.9) holds, and

(1.12) g ± s (h, θ) ≤ Ch -4 3 -1 2 (3-β)m 2 log(h -1 ) ν if (1.10) holds,
where

m 1 = max 7 3(δ -1) , 4 3(β -1) ≥ 7 6 , m 2 = max 1 δ -β , 4 3(β -1) > 2 3 , ν = max 1 δ -1 , 1 β -1 .
Clearly, this theorem implies the following Corollary 1.3. Suppose that V L ≡ 0 and let V = V S satisfy the condition (1.1) with 1 < δ ≤ 3.

Then, there exist constants C > 0 and h 0 > 0 independent of h and θ but depending on s and E such that for all 0 < h ≤ h 0 we have the bound

(1.13) g ± s (h, θ) ≤ Ch -2δ+5 3(δ-1) log(h -1 ) 1 δ-1 .
To prove the above theorems we follow the same strategy as in [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF] which in turn is inspired by the paper [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF]. It consists of using Carleman estimates with phase and weight functions, denoted by ϕ and µ below, depending only on the radial variable r and the parameter h, which have very weak regularity. It turns out that it suffices to choose ϕ belonging only to C 1 and µ only continuous. Thus we get derivatives ϕ ′′ and µ ′ belonging to L ∞ , which proves sufficient for the Carleman estimates to hold. Note that higher derivatives of ϕ and µ are not involved in the proof of the Carleman estimates (see the proof of Theorem 3.1 below). In order to be able to prove the Carleman estimates the functions ϕ and µ must satisfy some conditions (see the inequalities (2.3) and (2.9) below). On the other hand, to get as good resolvent bounds as possible we are looking for a phase function ϕ such that max ϕ is as small as possible. The construction of such phase and weight functions is carried out in Section 2 following that one in [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF]. However, here the construction is more complicated due to the more general class the potential belongs to.

It is not clear if the bounds (1.5), (1.7), (1.11) and (1.12) are optimal for L ∞ potentials. In any case, they seem hard to improve unless one menages to construct a better phase function. By contrast, the optimality of the bound (1.8) for smooth potentials is well known (e.g. see [START_REF] Datchev | Resonances and lower resolvent bounds[END_REF]).

The construction of the phase and weight functions revisited

We will follow closely the construction in Section 2 of [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF] making some suitable modifications in order to adapte it to the more general class of potentials we consider in the present paper. We will first construct the weight function µ as follows:

µ(r) = (r + 1) 2k -1 for 0 ≤ r ≤ a, (a + 1) 2k -1 + (a + 1) -2s+1 -(r + 1) -2s+1 for r ≥ a, where a = h -m with m =            m 0 (1 + 2ǫλ) if (1.4) holds, m 0 + ǫλ/2 + ǫT 1 if (1.6) holds, m 1 + νǫλ + ǫT 2 if (1.9) holds, m 2 + νǫλ + ǫT 3 if (1.10) holds, where ǫ = log 1 h -1 , λ = log log 1 h , m 0 = max 2 3 , 1 δ-3
, m 1 , m 2 and ν are as in Theorem 1.2, while T j > 0, j = 1, 2, 3, are parameters independent of h to be fixed in the proof of Lemma 2.3. Furthermore,

k =            1 -ǫ if (1.4) holds, 1 -ǫλ 2m 0 -ǫt 1 if (1.6) holds, 2 3m 1 -2νǫλ 3m 2 1 -ǫt 2 if (1.9) holds, β-1 2 -(β-1)νǫλ 2m 2 -ǫt 3 if (1.10) holds,

and

(2.1) s = 1 + ǫ 2 where t j > 1, j = 1, 2, 3, are parameters independent of h to be fixed in the proof of Lemma 2.3. Clearly, the first derivative (in sense of distributions) of µ satisfies

(2.2) µ ′ (r) = 2k(r + 1) 2k-1 for 0 ≤ r < a, (2s -1)(r + 1) -2s for r > a.
The following properties of the functions µ and µ ′ are essential to prove the Carleman estimates in the next section.

Lemma 2.1. For all r > 0, r = a, we have the inequalities

(2.3) 2r -1 µ(r) -µ ′ (r) ≥ 0, (2.4) µ ′ (r) ≥ ǫ(r + 1) -2s , (2.5) µ(r) µ ′ (r) ǫ -1 a 2k (r + 1) 2s , (2.6) µ(r) 2 µ ′ (r) ǫ -1 a 4k (r + 1) 2s .
Proof. It is easy to see that for r < a (2.3) follows from the inequality

f (r) := 1 + (1 -k)r -(r + 1) 1-2k ≥ 0 for all r ≥ 0 and 0 ≤ k ≤ 1. It is obvious for 1/2 ≤ k ≤ 1, while for 0 ≤ k < 1/2 we have f ′ (r) = 1 -k -(1 -2k)(r + 1) -2k ≥ k ≥ 0.
Hence in this case the function f is increasing, which implies f (r) ≥ f (0) = 0 as desired. For r > a the left-hand side of (2.3) is bounded from below by

2r -1 ((a + 1) 2k -1 -s) > 0
provided a is taken large enough. The lower bound (2.4) is an immediate consequence of (2.1) and (2.2), while the bounds (2.5) and (2.6) follow from (2.4) and the fact that µ = O(a 2k ). ✷

We now turn to the construction of the phase function ϕ ∈ C 1 ([0, +∞)) such that ϕ(0) = 0 and ϕ(r) > 0 for r > 0. We define the first derivative of ϕ by

ϕ ′ (r) = τ (r + 1) -k -τ (a + 1) -k for 0 ≤ r ≤ a, 0 for r ≥ a, where (2.7) τ = τ 0 h -1/3
with some parameter τ 0 ≫ 1 independent of h to be fixed in Lemma 2.3 below. Clearly, the first derivative of ϕ ′ satisfies

ϕ ′′ (r) = -kτ (r + 1) -k-1 for 0 ≤ r < a, 0 for r > a.
Lemma 2.2. For all r ≥ 0 we have the bounds

(2.8) h -1 ϕ(r)            h -4/3 log(h -1 ) if (1.4) holds, h -4/3 (log(h -1 )) 3/2 (log log(h -1 )) -1 if (1.6) holds, h -2 3 -m 1 (log(h -1 )) ν if (1.9) holds, h -4 3 -1 2 (3-β)m 2 (log(h -1 )) ν if (1.10) holds. Proof. Since k < 1 we have max ϕ = a 0 ϕ ′ (r)dr ≤ τ a 0 (r + 1) -k dr ≤ τ 1 -k (a + 1) 1-k (1 -k) -1 h -1 3 -m(1-k)
and

(1 -k) -1            ǫ -1 if (1.4) holds, (ǫλ) -1 if (1.6) holds, 1 if (1.9) holds, 1 if (1.10) holds. Since m(1 -k) =            O(ǫ) if (1.4) holds, ǫλ/2 + O(ǫ) if (1.6) holds, m 1 -2 3 + νǫλ + O(ǫ) if (1.9) holds, 1 2 (3 -β)m 2 + νǫλ + O(ǫ) if (1.10
) holds, and taking into account that h -ǫλ = ǫ -1 and h -ǫ = e, we get (2.8) from the above bounds.

✷ Let φ ∈ C ∞ 0 ([1, 2]), φ ≥ 0, be a real-valued function independent of h such that ∞ -∞ φ(σ)dσ = 1. Given a parameter b ≫ r 0 to be fixed in the proof of Theorem 3.1 below, independent of h, set ψ b (r) = b -1 ∞ r φ(σ/b)dσ.
Clearly, we have 0

≤ ψ b ≤ 1 and ψ b (r) = 1 for r ≤ b, ψ b (r) = 0 for r ≥ 2b. For r > 0, r = a, set A(r) = µϕ ′2 ′ (r)
and

B(r) = 3 µ(r) h -1 C 1 (r + 1) -δ + h -1 Q b ψ b (r) + |ϕ ′′ (r)| 2 h -1 ϕ ′ (r)µ(r) + µ ′ (r) +µ(r)(1 -ψ b (r))C 2 (r + 1) -β
where Q b ≥ 0 is some constant depending only on b. The following lemma will play a crucial role in the proof of the Carleman estimates in the next section.

Lemma 2.3. There exist constants b 0 = b 0 (E) > 0, τ 0 = τ 0 (b, E) > 0 and h 0 = h 0 (b, E) > 0 so that for τ satisfying (2.7) and for all b ≥ b 0 , 0 < h ≤ h 0 we have the inequality

(2.9) A(r) -B(r) ≥ - E 2 µ ′ (r)
for all r > 0, r = a.

Proof. For r < a we have

A(r) = -ϕ ′2 ′ (r) + τ 2 ∂ r 1 -(r + 1) k (a + 1) -k 2 = -2ϕ ′ (r)ϕ ′′ (r) -2kτ 2 (r + 1) k-1 (a + 1) -k 1 -(r + 1) k (a + 1) -k ≥ 2kτ (r + 1) -k-1 ϕ ′ (r) -2kτ 2 (r + 1) k-1 (a + 1) -k ≥ 2kτ (r + 1) -k-1 ϕ ′ (r) -τ 2 a -k µ ′ (r).
Taking into account the definition of the parameters a and τ we conclude (2.10)

A(r) ≥ 2kτ (r + 1) -k-1 ϕ ′ (r) -O(h km-2/3 )µ ′ (r)
for all r < a. Observe now that if (1.4) holds, we have

km -2/3 = m 0 -2/3 + 2ǫλm 0 -O(ǫ) ≥ 4ǫλ/3 -O(ǫ) ≥ ǫλ provided λ is big enough. If (1.6) holds, we have km -2/3 = 1 - ǫλ 2m 0 -ǫt 1 (m 0 + ǫλ/2 + ǫT 1 ) -2/3 = m 0 -2/3 + ǫ(T 1 -m 0 t 1 ) -O(ǫ 2 λ 2 ) ≥ ǫm 0 t 1 provided we take T 1 = 3m 0 t 1 . If (1.9) holds, we have km -2/3 = 2 3m 1 - 2νǫλ 3m 2 1 -ǫt 2 (m 1 + νǫλ + ǫT 2 ) -2/3 = 2T 2 3m 1 -m 1 t 2 ǫ -O(ǫ 2 λ 2 ) ≥ ǫm 1 t 2
provided we take

T 2 = 6m 2 1 t 2 . If (1.10) holds, we have km -2/3 = β -1 2 - (β -1)νǫλ 2m 2 -ǫt 3 (m 2 + νǫλ + ǫT 3 ) -2/3 = (β -1)m 2 2 - 2 3 + (β -1)T 3 2 -m 2 t 3 ǫ -O(ǫ 2 λ 2 ) ≥ ǫm 2 t 3
provided we take

T 3 = 6m 2 t 3 β-1 . Using that h ǫλ = ǫ, h ǫ = e -1 , we conclude that (2.11) h km-2/3 ≤            ǫ if (1.4) holds, e -m 0 t 1 if (1.6) holds, e -m 1 t 2 if (1.9) holds, e -m 2 t 3 if (1.10) holds.
Taking ǫ small enough and t 1 , t 2 , t 3 big enough, we obtain from (2.10) and (2.11) that in all cases we have the estimate (2.12)

A(r) ≥ 2kτ (r + 1) -k-1 ϕ ′ (r) - E 4 µ ′ (r)
for all r < a. We will now bound the function B from above. Note that taking h small enough we can arrange that 2b < a/2. Let first 0 < r ≤ a 2 . Since in this case we have ϕ ′ (r) ≥ Cτ (r + 1) -k with some constant C > 0, we obtain

B(r) µ(r) h -2 Q b (r + 1) -2δ + ϕ ′′ (r) 2 h -1 ϕ ′ (r) + µ(r)(1 -ψ b (r))(r + 1) -β Q b (τ h) -1 µ(r)(r + 1) 1+k-2δ ϕ ′ (r) 2 τ (r + 1) -k-1 ϕ ′ (r) + h µ(r)ϕ ′′ (r) 2 µ ′ (r)ϕ ′ (r) µ ′ (r) +(1 -ψ b (r))(r + 1) 2k-β Q b τ -3 h -1 (r + 1) 1+5k-2δ τ (r + 1) -k-1 ϕ ′ (r) + τ hµ ′ (r) +(1 -ψ b (r))(r + 1) 1-β µ ′ (r) Q b τ -3 0 τ (r + 1) -k-1 ϕ ′ (r) + (τ 0 h 2/3 + b -β+1 )µ ′ (r)
where Q b > 0 is some constant depending only on b and we have used that k < (2δ -1)/5 in all three cases. Taking h small enough, depending on τ 0 , and b big enough, independent of h and τ 0 , we get the bound

(2.13) B(r) ≤ C Q b τ -3 0 τ (r + 1) -k-1 ϕ ′ (r) + E 4 µ ′ (r)
with some constant C > 0. In this case we get (2.9) from (2.12) and (2.13) by taking τ 0 big enough depending on b and C but independent of h. Let now a 2 < r < a. Then we have the bound

B(r) µ(r) µ ′ (r) 2 h -1 (r + 1) -δ + |ϕ ′′ (r)| 2 µ ′ (r) + (r + 1) -β+1 µ ′ (r) h -2 (r + 1) 2-2δ + τ 2 (r + 1) -2k µ ′ (r) + a -β+1 µ ′ (r) h -2 a 2-2δ + τ 2 a -2k µ ′ (r) + a -β+1 µ ′ (r) h 2m(δ-1)-2 + h 2km-2/3 + h m(β-1) µ ′ (r) ≤ E 4 µ ′ (r)
provided h is taken small enough. Again, this bound together with (2.12) imply (2.9). It remains to consider the case r > a. Using (2.5) we get

B(r) µ(r) h -1 (r + 1) -δ 2 µ ′ (r) + (r + 1) -β µ(r) ǫ -2 h -2 a 4k (r + 1) 4s-2δ µ ′ (r) + ǫ -1 a 2k (r + 1) 2s-β µ ′ (r) ǫ -2 h -2 a 4k+4s-2δ + ǫ -1 a 2k+2s-β µ ′ (r) h 2m(δ-2k-2s)-2-2ǫλ + h m(β-2k-2s)-ǫλ µ ′ (r)
where we have used that ǫ -1 = h -ǫλ . When (1.4) holds we have

m(δ -2k -2s) -1 -ǫλ = (m 0 + 2ǫλm 0 )(δ -3 + ǫ) -1 -ǫλ ≥ m 0 (δ -3) -1 + ǫλ(2(δ -3)m 0 -1) ≥ ǫλ and m(β -2k -2s) -ǫλ ≥ m 0 (β -3) -O(ǫλ) ≥ m 0 (β -3)/2. When (1.6) holds we have m(δ -2k -2s) -1 -ǫλ = (m 0 + ǫλ/2 + ǫT 1 ) δ -3 + ǫλ m 0 + ǫ(2t 1 -1) -1 -ǫλ = m 0 (δ -3) -1 + (δ -3)ǫλ/2 -O(ǫ 2 λ 2 ) ≥ (δ -3)ǫλ/2 -O(ǫ 2 λ 2 ) ≥ (δ -3)ǫλ/3 and m(β -2k -2s) -ǫλ = (m 0 + ǫλ + ǫT 1 ) ǫλ m 0 + ǫ(2t 1 -1) -ǫλ ≥ ǫt 1 m 0 .
When (1.9) holds we have

m(δ -2k -2s) -1 -ǫλ = (m 1 + νǫλ + ǫT 2 ) δ -1 - 4 3m 1 + 4νǫλ 3m 2 1 + ǫ(2t 2 -1) -1 -ǫλ = m 1 (δ -1) - 7 3 + ((δ -1)ν -1)ǫλ + ǫ((δ -1)T 2 + m 1 (2t 2 -1)) -O(ǫ 2 λ 2 ) ≥ ǫm 1 t 2 and m(β -2k -2s) -ǫλ = (m 1 + νǫλ + ǫT 2 ) β -1 - 4 3m 1 + 4νǫλ 3m 2 1 + ǫ(2t 2 -1) -ǫλ = m 1 (β -1) - 4 3 + ((β -1)ν -1)ǫλ + ǫ((β -1)T 2 + m 1 (2t 2 -1)) -O(ǫ 2 λ 2 ) ≥ ǫm 1 t 2 .
When (1.10) holds we have

m(δ -2k -2s) -1 -ǫλ = (m 2 + νǫλ + ǫT 3 ) δ -β + (β -1)νǫλ m 2 + ǫ(2t 3 -1) -1 -ǫλ = m 2 (δ -β) -1 + ((δ -1)ν -1)ǫλ + ǫ((δ -β)T 3 + m 2 (2t 3 -1)) -O(ǫ 2 λ 2 ) ≥ ǫm 2 t 3 and m(β -2k -2s) -ǫλ = (m 2 + νǫλ + ǫT 3 ) (β -1)νǫλ m 2 + ǫ(2t 3 -1) -ǫλ = ((β -1)ν -1)ǫλ + ǫm 2 (2t 3 -1) -O(ǫ 2 λ 2 ) ≥ ǫm 2 t 3 .
We conclude from the above inequalities that

(2.14) h 2m(δ-2k-2s)-2-2ǫλ + h m(β-2k-2s)-ǫλ ≤            ǫ 2 + h γ if (1.4) holds, ǫ γ + e -m 0 t 1 if (1.6) holds, 2e -m 1 t 2 if (1.9) holds, 2e -m 2 t 3 if (1.10) holds,
with some constant γ > 0 independent of h. It follows from (2.14) that taking h small enough and t 1 , t 2 and t 3 large enough, independent of h, we can arrange the bound

(2.15) B(r) ≤ E 2 µ ′ (r).
Since in this case A(r) = 0, the bound (2.15) clearly implies (2.9). ✷

Carleman estimates

In this section we will prove the following Theorem 3.1. Suppose (1.1), (1.2) and (1.3) fulfilled and let s satisfy (2.1). Then, for all

functions f ∈ H 2 (R n ) such that (|x| + 1) s (P (h) -E ± iθ)f ∈ L 2 and for all 0 < h ≤ h 0 , 0 < θ ≤ ǫha -2k
, we have the estimate

(|x| + 1) -s e ϕ/h f L 2 ≤ Ca 2k (ǫh) -1 (|x| + 1) s e ϕ/h (P (h) -E ± iθ)f L 2 (3.1) +Ca k τ θ ǫh 1/2 e ϕ/h f L 2
with a constant C > 0 independent of h, θ and f .

Proof. We will adapt the proof of Theorem 3.1 of [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF] to this more general case. We pass to the polar coordinates (r, w) ∈ R + × S n-1 , r = |x|, w = x/|x|, and recall that L

2 (R n ) = L 2 (R + × S n-1 , r n-1 drdw).
In what follows we denote by • and •, • the norm and the scalar product in L 2 (S n-1 ). We will make use of the identity (3.2) r (n-1)/2 ∆r -(n-1)/2 = ∂ 2 r + ∆ w r 2 where ∆ w = ∆ w -1 4 (n -1)(n -3) and ∆ w denotes the negative Laplace-Beltrami operator on S n-1 . Set u = r (n-1)/2 e ϕ/h f and P ± (h) = r (n-1)/2 (P (h) -E ± iθ)r -(n-1)/2 , P ± ϕ (h) = e ϕ/h P ± (h)e -ϕ/h . Using (3.2) we can write the operator P ± (h) in the coordinates (r, w) as follows

P ± (h) = D 2 r + Λ w r 2 -E ± iθ + V
where we have put D r = -ih∂ r and Λ w = -h 2 ∆ w . Since the function ϕ depends only on the variable r, this implies

P ± ϕ (h) = D 2 r + Λ w r 2 -E ± iθ -ϕ ′2 + hϕ ′′ + 2iϕ ′ D r + V. We now write V = V S + V L with V S (x) = V S (x) + ψ b (|x|)V L (x) and V L (x) = (1 -ψ b (|x|))V L (x). For r > 0, r = a, introduce the function F (r) = -(r -2 Λ w -E -ϕ ′ (r) 2 + V L (r, •))u(r, •), u(r, •) + D r u(r, •) 2
where V L (r, w) := V L (rw). It is easy to check that its first derivative is given by

F ′ (r) = 2 r r -2 Λ w u(r, •), u(r, •) + ((ϕ ′ ) 2 -V L ) ′ u(r, •) 2 -2h -1 Im P ± ϕ (h)u(r, •), D r u(r, •) ±2θh -1 Re u(r, •), D r u(r, •) + 4h -1 ϕ ′ D r u(r, •) 2 +2h -1 Im ( V S + hϕ ′′ )u(r, •), D r u(r, •) .
Thus, if µ is the function defined in the previous section, we obtain the identity

µ ′ F + µF ′ = (2r -1 µ -µ ′ ) r -2 Λ w u(r, •), u(r, •) + (Eµ ′ + (µ(ϕ ′ ) 2 -µ V L ) ′ ) u(r, •) 2 -2h -1 µIm P ± ϕ (h)u(r, •), D r u(r, •) ±2θh -1 µRe u(r, •), D r u(r, •) + (µ ′ + 4h -1 ϕ ′ µ) D r u(r, •) 2 +2h -1 µIm ( V S + hϕ ′′ )u(r, •), D r u(r, •) .
Using that Λ w ≥ 0 together with (2.3) we get the inequality

µ ′ F + µF ′ ≥ (Eµ ′ + (µ(ϕ ′ ) 2 -µ V L ) ′ ) u(r, •) 2 + (µ ′ + 4h -1 ϕ ′ µ) D r u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 - µ ′ 3 D r u(r, •) 2 -θh -1 µ u(r, •) 2 + D r u(r, •) 2 -3h -2 µ 2 (µ ′ + 4h -1 ϕ ′ µ) -1 ( V S + hϕ ′′ )u(r, •) 2 - 1 3 (µ ′ + 4h -1 ϕ ′ µ) D r u(r, •) 2 .
In view of the assumptions (1.2) and (1.3) we have

(µ V L ) ′ = µ ′ V L + µ V ′ L = µ ′ (1 -ψ b )V L -µψ ′ b V L + µ(1 -ψ b )V ′ L ≤ µ ′ (1 -ψ b )p(r) + µb -1 φ(r/b)p(r) + µ(1 -ψ b )C 2 (r + 1) -β ≤ µ ′ (1 -ψ b )p(b) + O(r)b -1 φ(r/b)p(b)µ ′ + µ(1 -ψ b )C 2 (r + 1) -β ≤ O(1)p(b)µ ′ + µ(1 -ψ b )C 2 (r + 1) -β ≤ E 3 µ ′ + µ(1 -ψ b )C 2 (r + 1) -β
provided b is taken large enough. Observe also that the assumption (1.1) yields

| V S | ≤ |V S | + ψ b |V L | ≤ C 1 (r + 1) -δ + Q b ψ b where Q b = sup |x|≤2b |V L (x)|.
Combining the above inequalities we get

µ ′ F + µF ′ ≥ 2E 3 µ ′ + (µ(ϕ ′ ) 2 ) ′ u(r, •) 2 -3µ 2 (µ ′ + h -1 ϕ ′ µ) -1 (h -1 C 1 (r + 1) -δ + h -1 Q b ψ b + |ϕ ′′ |) 2 + µ(1 -ψ b )C 2 (r + 1) -β u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 -θh -1 µ u(r, •) 2 + D r u(r, •) 2 = 2E 3 µ ′ + A(r) -B(r) u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 -θh -1 µ u(r, •) 2 + D r u(r, •) 2 .
Now we use Lemma 2.3 to conclude that

µ ′ F + µF ′ ≥ E 6 µ ′ u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 -θh -1 µ u(r, •) 2 + D r u(r, •) 2 .
We integrate this inequality with respect to r and use that, since µ(0) = 0, we have

∞ 0 (µ ′ F + µF ′ )dr = 0.
Thus we obtain the estimate

E 6 ∞ 0 µ ′ u(r, •) 2 dr ≤ 3h -2 ∞ 0 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 dr (3.3) +θh -1 ∞ 0 µ u(r, •) 2 + D r u(r, •) 2 dr.
Using that µ = O(a 2k ) together with (2.4) and (2.6) we get from (3.3)

∞ 0 (r + 1) -2s u(r, •) 2 dr ≤ Ca 4k (ǫh) -2 ∞ 0 (r + 1) 2s P ± ϕ (h)u(r, •) 2 dr (3.4) +Cθ(ǫh) -1 a 2k ∞ 0 u(r, •) 2 + D r u(r, •) 2 dr
with some constant C > 0 independent of h and θ. On the other hand, we have the identity

Re ∞ 0 2iϕ ′ D r u(r, •), u(r, •) dr = ∞ 0 hϕ ′′ u(r, •) 2 dr and hence Re ∞ 0 P ± ϕ (h)u(r, •), u(r, •) dr = ∞ 0 D r u(r, •) 2 dr + ∞ 0 r -2 Λ w u(r, •), u(r, •) dr - ∞ 0 (E + ϕ ′2 ) u(r, •) 2 dr + ∞ 0 V u(r, •), u(r, •) dr. This implies ∞ 0 D r u(r, •) 2 dr ≤ O(τ 2 ) ∞ 0 u(r, •) 2 dr (3.5) +γ ∞ 0 (r + 1) -2s u(r, •) 2 dr + γ -1 ∞ 0 (r + 1) 2s P ± ϕ (h)u(r, •) 2 dr
for every γ > 0. We take now γ small enough, independent of h, and recall that θ(ǫh) -1 a 2k ≤ 1. Thus, combining the estimates (3.4) and (3.5), we get

∞ 0 (r + 1) -2s u(r, •) 2 dr ≤ Ca 4k (ǫh) -2 ∞ 0 (r + 1) 2s P ± ϕ (h)u(r, •) 2 dr (3.6) +Cθ(ǫh) -1 a 2k τ 2 ∞ 0 u(r, •) 2 dr
with a new constant C > 0 independent of h and θ. Clearly, the estimate (3.6) implies (3.1). ✷

Resolvent estimates

Theorems 1.1 and 1.2 can be obtained from Theorem 3.1 in the same way as in Section 4 of [START_REF] Vodev | Semi-classical resolvent estimates for short-range L ∞ potentials[END_REF]. Here we will sketch the proof for the sake of completeness. Observe that it follows from the estimate (3.1) and Lemma 2.2 that for 0 < h ≪ 1, 0 < θ ≤ ǫha -2k and s satisfying (2.1) we have the estimate It follows from (4.4) that the resolvent estimate (4.5) (|x| + 1) -s (P (h) -E ± iθ) -1 (|x| + 1) -s L 2 →L 2 ≤ 4M 2 holds for all 0 < h ≪ 1, 0 < θ ≤ ǫha -2k and s satisfying (2.1). On the other hand, for θ ≥ ǫha -2k the estimate (4.5) holds in a trivial way. Indeed, in this case, since the operator P (h) is symmetric, the norm of the resolvent is upper bounded by θ -1 = O(h -2km-2 ). Finally, observe that if (4.5) holds for s satisfying (2.1), it holds for all s > 1/2 independent of h. Indeed, given an arbitrary s ′ > 1/2 independent of h, we can arrange by taking h small enough that s defined by (2.1) is less than s ′ . Therefore the bound (4.5) holds with s replaced by s ′ as desired.
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with a constant C > 0 independent of h and θ.