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Parametrically excited inertial sensors S. Amir Mousavi Lajimi * and Eihab Abdel-Rahman * * * Motion Research Group, Faculty of Engineering, University of Waterloo, Canada, N2L 3G1 * * Department of Systems Design Engineering, University of Waterloo, Canada, N2L 3G1 Summary. A parametrically excited microsystem including a base beam and a pair of sense electrodes to measure the induced displace- ment is studied in this work. The excitation frequency is near twice the effective natural frequency of the cantilever creating principal parametric resonance. By using analytical and numerical methods, the response is characterized and demonstrated in frequencyresponse and calibration curves. An application of the sensor as a single-axis inertial sensor to measure acceleration is investigated in this work. Ultimately the design of the inertial sensor is improved by studying the nonlinear dynamics of the structure.

Mathematical methods

The extended Hamilton's principle is used to derive the equation of motion, Galerkin's method is employed to discretize the equation and obtain a single-mode approximation of the equation of motion, and the method of multiple scales is used to solve the single-mode approximation model and obtain the response amplitude and phase equations. Two cases are studied where the desired quantity, i.e. the acceleration, appears along, see Fig. 1a, and normal to, see Fig. 1b, the excitation force.

Equation of motion

The structure includes a base beam (the driving element) and a secondary beam (the sensing element). For both case one, Fig. 1a" and case two, Fig. 1b, the sense beam's motion is detected by employing two side electrodes creating a differential sense capacitor. We present our results in terms of displacement to provide an immediate understanding of the motion with respect to the initial gap between the electrodes and the moving mass (the cantilever). 

Case 1

The motion of the base beam is characterized by its amplitude and frequency. The fringing field effects are taken into account given that the beam is considerably exposed to the electrode. We consider Crespo da Silva and Glynn's [START_REF] Crespo Da Silva | Nonlinear flexural-flexural-torsional dynamics of inextensional beams I. equations of motion[END_REF] fundamental mathematical model of a cantilever including the geometric nonlinearity. Following Lajimi and Heppler [START_REF] Lajimi | Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body[END_REF], the axial force denoting the linearly varying axial load for a uniform beam is replaced with

p(ŝ, t) = M + m( l -ŝ) âe -ω2 b âb cos(ω b t) (1) 
Furthermore, the electrostatic force acts in transverse direction on areas where beam is between the two electrodes including the fringing field effect. We are interested to investigate the case where the sense electrodes are not loaded with AC signal and therefore the output voltage is affected by the motion. Combining Crespo da Silva and Glynn's [START_REF] Crespo Da Silva | Nonlinear flexural-flexural-torsional dynamics of inextensional beams I. equations of motion[END_REF], Anderson et al. [START_REF] Anderson | Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam[END_REF]'s and Lajimi and Heppler's [START_REF] Lajimi | Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body[END_REF] mathematical models, for the beam under axial force and base excitation including quadratic damping we obtain the equation of motion as

v + v = -α v -β v| v| -d 2 4v v v + v 3 + v 2 v - 1 2 d 2   v s 1 ∂ 2 ∂t 2 s 0 v 2 ds ds   + a e -a b cos ωb t v -(1 -s)v + V ( t) 2 ν + ν f (1 -v) (1 -v) 2 - ν + ν f (1 + v) (1 + v) 2 H(s, t) (2) 
in nondimensional form. Using Galerkin's method a single-mode approximation of the equation of motion is obtained and later solved using a perturbation method.

Case 2

The difference between case one and two is under investigation to identify the possible advantages of one over the other. For this case the external acceleration including gravity (â e ) is assumed to act along the sense direction and appear as a bias force in the equation of motion. Therefore the external acceleration appears as an independent forcing term in the right hand side of (2) modifying the initial curvature of the beam and the electrostatic force.

Results

We perform a preliminary analysis to characterize the effect of quadratic damping varying the coefficient from 0.04kg/m 2 to 0.12kg/m 2 and plot the frequency-response curve in Figure 2a and the maximum amplitude of the response vs. β in Figure 2b. For operation in air we use a 0.08kg/m 2 β, for medium vacuum we use 0.04kg/m 2 , and for high vacuum 0.02kg/m 2 . At the extrema we have d v / dσ = 0 and therefore d a pf / dσ = 0. Figures 3a and3b show the variation in the maximum amplitude and the corresponding phase for an increasing set of base-acceleration. The phase is almost constant around 90 as expected. 
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CONCLUSIONS

Unlike directly excited oscillators, the resonant response of parametrically excited oscillators is available only in a limited, well defined, frequency domain where it appears as an instability in addition to the forced response. Once the activation level is crossed, the resonant response grows rapidly as a function of excitation level and provides a tool to measure the desired parameter effectively.

Figure 1 :

 1 Figure 1: Cantilever beam under parametric excitation (a) excitation and external acceleration appear appear along each other and (b) excitation and external acceleration appear perpendicular to each other .

Figure 2 :

 2 Figure 2: The frequency-response curves (a) and the maximum response curve (b) for varying the quadratic damping coefficient ( β) other parameters are Q = 30, VDC = 10V, âb = 1.5µm, -• -β = 0.02kg/m 2 , --β = 0.04kg/m 2 , -• -β = 0.06kg/m 2 , --β = 0.08kg/m 2 , and --β = 0.1kg/m 2 .

Figure 3 :

 3 Figure 3: The maximum response curve (a) and the corresponding phase (b) for increasing the base-acceleration parameter for an in-air operation of the accelerometer Q = 30 (other parameters are VDC = 10V, β = 0.08kg/m 2 ).