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Abstract

Solving the Stokes equation by an optimal domain decomposition method derived alge-
braically involves the use of non standard interface conditions whose discretisation is not triv-
ial. For this reason the use of approximation methods such as hybrid discontinuous Galerkin
appears as an appropriate strategy: on the one hand they provide the best compromise in
terms of the number of degrees of freedom in between standard continuous and discontinuous
Galerkin methods, and on the other hand the degrees of freedom used in the non standard
interface conditions are naturally defined at the boundary between elements.In this paper
we introduce the coupling between a well chosen discretisation method (hybrid discontinuous
Galerkin) and a novel and efficient domain decomposition method to solve the Stokes system.
We present the detailed analysis of the hybrid discontinuous Galerkin method for the Stokes
problem with non standard boundary conditions. This analysis is supported by numerical
evidence. In addition, the advantage of the new preconditioners over more classical choices is
also supported by numerical experiments.

Key words. Stokes problem, hybrid discontinuous Galerkin methods, domain decomposition,
restricted additive Schwarz methods
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1 Introduction

Discontinuous Galerkin (dG) methods have been first introduced in the early 1970s [RH73|] and
they have benefited of a wide interest from the scientific community. The main advantages of
these methods are their generality and flexibility as they can be used for a big variety of partial
differential equations on unstructured meshes. Moreover, they can preserve local properties such
as mass and momentum conservation while ensuring a high order accuracy. However, the cost
of these advantages is a larger amount of degrees of freedom in comparison to the continuous
Galerkin methods [EG04] for the same approximation order.

A good compromise between the previous methods, while preserving the high order, are the
hybridised versions of dG using divergence conforming spaces such as Raviart-Thomas (RT) and
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Brezzi-Douglas-Marini (BDM) [BBE13]. These methods are a subset of the hybrid discontinuous
Galerkin (hdG) methods introduced in [CGL09] for second order elliptic problems.

The hdG methods for the three-dimensional Stokes equation have been first introduced in
[CGO9]. The authors present there the mixed formulation of hdG methods defined locally on each
element. They consider many types of boundary conditions that involve normal and tangential
velocity, pressure, and tangential stress. The formulations of the methods are similar, the only
difference is in the choice of the numerical traces. The hdG methods for the Stokes equation
with Dirichlet boundary conditions have been analysed in [CGNT11] where the authors show the
optimal convergence of the error for hdG methods and present different possibilities to obtain
superconvergence. On the other hand, in [EW13a] a hdG method for two or three dimensional
Stokes equation with Dirichlet boundary conditions which is hybridisation of a symmetric interior
penalty Galerkin method [SST02] is presented and analysed. In a further paper [EWI13D] this
approach is extended to Darcy, and coupled Darcy-Stokes flows. The new formulation includes
different degrees of polynomials for finite element spaces associated with different variables.

In [LST6] the authors consider the Navier-Stokes problem, which can be seen as an extension of
the Stokes and Stokes-Brinkman problems. To obtain the global mixed formulation, the authors
choose H (div)-conforming finite elements. Moreover, they introduce the formulation that includes
a projection onto a space of lower polynomial degree. Such a modification allowed them to use
fewer degrees of freedom. In addition, it helped also to establish a connection between the hybrid
high-order [DPET5|] and the hdG methods that presented authors of both methods in their joint
paper [CDPE1LS].

Despite that the hdG methods with projection allow us to decrease the number of degrees
of freedom, nowadays most of the problems arise with linear systems that are too big for direct
solvers. Thus, parallel solvers are becoming increasingly important in scientific computing. A
natural paradigm to take advantage of modern parallel architectures is domain decomposition
method, see e.g. [SBGI6, [QV99, TW05, IDINT5]. Domain decomposition methods are iterative
solvers based on a decomposition of a global domain into subdomains. At each iteration, one (or
two) boundary value problem(s) are solved in each subdomain and the continuity of the solution
at the interfaces between subdomains is only satisfied at convergence of the iterative procedure.
The partial differential equation is the one of the global problem.

For Additive Schwarz methods and Schur complement methods, the boundary conditions on
the interfaces between subdomains, a.k.a. interface conditions (IC), are Dirichlet or Neumann
boundary conditions. For Poisson problems, there is a consensus on these IC. But for systems
of partial differential equations such as elasticity or Stokes problems, it has been envisioned that
normal velocity-tangential flux (NVTF) or tangential velocity-normal flux (TVNF) IC should
be superior to the pure velocity (Dirichlet like) or pure stress (Neumann like) IC, see [DJNI5]
Section 6.6] and references therein. In [GRO6], it was motivated by symmetry considerations.
In [DNRO9, [CDNQ13| [CDNQ12], they were obtained by an analysis of the systems of partial
differential equations by symbolic techniques mainly the Smith factorization [Smi61]. Similar
attempts to derive more intrinsic IC to the nature of the equation to solve were derived [DNOG]
for the Euler system.

Due to the difficulty of implementing these IC previous numerical tests were restricted to
decompositions where boundaries of subdomains are rectilinear so that the normal to the interface
is easy to define. The underlying domain decomposition method was a Schur complement method.
That is mainly the reason we have considered and analysed a specific hdG method where this kind
of degrees of freedom are naturally present.

In this paper we want to combine appropriate hdG discretisation and the associated domain
decomposition methods mentioned above using non standard IC. The combination of the two is
meant to provide the competitive solving strategy for this kind of partial differential equation sys-
tem. A different, but somewhat related, approach can be found in [AdDBM™14| where a dG type
discretisation is coupled to a discrete Helmholtz decomposition to propose some preconditioners.

An approach similar to the one presented in this work, but using completely discontinuous
spaces, is given in [Oik16]. Our analysis is related to the one in that paper, but the method pre-
sented herein uses H (div)-conforming spaces, which implies in turn that the Lagrange multipliers



are scalar valued. The combination of these two facts reduces the number of degrees of freedom
significantly. In addition, the use of non-standard boundary conditions (motivated by the newly
defined domain decomposition preconditioners) makes the analysis somehow more involved.

The rest of the paper is organised as follows. To start with, we introduce the problem and
notation in Section [2} In Section [3] we present the hybridisation of a symmetric interior penalty
Galerkin method that allows us to impose the TVNF and NVTF boundary conditions in quite a
natural way. The formulation is similar to the one from [LSI6] with Dirichlet boundary conditions.
In addition to different kinds of boundary conditions, we included the projection to reduce the
number of degrees of freedom. Our analysis follows the one from [LSI6] (see also |[Lehl0] for a
more detailed version). Thanks to the hdG discretisation, we can consider domain decomposition
methods with arbitrary shape of the interfaces and Schwarz type methods. In Section [] the
Additive Schwarz methods are defined at the algebraic level. Section [f] contains the numerical
results, including the convergence validation of the hdG method and a comparison of the domain
decomposition preconditioners. Finally, some conclusions are drawn.

2 Notation and preliminary results

Let © be an open polygonal domain in R? with Lipschitz boundary I' := 9Q. We use boldface
font for tensor or vector variables e.g. w is a velocity vector field. The scalar variables will be
italic e.g. p denotes pressure scalar value. We define the stress tensor o := vVu — pI and the flux
as oy, = o n. In addition we denote normal and tangential components as follows u,, := u - n,
Up ;= UL, Opp = Opn N, Opt := Oy -t, where n is the outward unit normal vector to the boundary
I" and t is a vector tangential to I" such that n -t = 0.

For D C Q, we use the standard L?(D) space with following norm

I£11% ::/ f?dx for all f € L?(D).
D
Let us define following Sobolev spaces
H™D):={veL*D): Vl|a|<md* € L*(D)} form €N,
H (div,D) :={v € [L*(D)]*: V-ve L*D)},

lex| . .
where, for a = (a1, as) € N? and |a| = a1 + as we denote 9% = M(QW' In addition, we will
1 2

use following standard semi-norm and norm for the Sobolev space H™(D) for m € N

m

iy = D 10%11Ih 1z oy = D 1 1y for all f € H™(D).

|a|=m k=0
In this work we consider the two dimensional Stokes problem:

{—VAu + Vp = f inQ,

(2.1) Veu = 0 in Q,

where u :  — R? is the unknown velocity field, p : € — R the pressure, v > 0 the viscosity which
is considered to be constant and f € [L?(Q)]? is a given function. For g € L*(T") we consider two
types of boundary conditions

e tangential-velocity and normal-flux (TVNF)

Onn = ¢g On T,
(2.2) { u = 0 onl,

e normal-velocity and tangential-flux (NVTF)

(23) {2

Up =

on I,
on I,

[enla}



which together with ([2.1)) define two boundary value problems. We will detail the analysis for the
TVNF boundary value problem

—vAu + Vp = f inQ,

Veu = 0  in

(24> Onn = g on F7
Ut = 0 onT,

since considering the NVTF boundary conditions instead is very similar. We will just add
a remark when necessary to stress the differences between them. The restriction to homogeneous
Dirichlet conditions on u; is made only to simplify the presentation.

Let {Th}},o be a regular family of triangulations of Q2 made of triangles. For each triangulation
Tr, En denotes the set of its edges. In addition, for each of element K € Ty, hi := diam(K), and
we denote h := maxgeT;, hx. We define following Sobolev spaces on the triangulation 7, and the
set of all edges in &,

L*(&,):={v: v|[p e L*(E)V E € &},
H™(Ty) == {veL*(Q): v|x € H"(K)V K € Ty} for m €N,

with the corresponding broken norms.
The following results will be very useful in what follows.

Lemma 1 (Inverse and trace inequalities). There exist C,Cpar > 0, independent of hy, such
that for all K € Ty, and polynomial function v in K the following inequalities hold

(25) |U|H5(K) < Ch}?_s|’l}|Hm(K), 0 <m< S,
(2.6) hicllvllox < Cmaz vl -

Moreover, there exists C > 0, independent of hyc, such that for any v € HY(K), the following local
trace inequality holds

27) lollor < C (i ollic + P lelms ) ) -

Proof. For (22.5]) see [EG04, Lemma 1.138] and for (2.6) see [DPE12, Lemma 1.46]. The discrete
trace inequality (2.7) follows by standard scaling arguments. O

Now we will introduce the finite element spaces that discretise the above spaces. Let us
consider the TVNF boundary value problem (2.4]). Let & > 1. To discretise the velocity u we use
the Brezzi-Douglas-Marini space (see [BBF13, Section 2.3.1])

BDMF" = {'vh € H (div, Q) : vp|x € [Py (K)> VK € n} .

In addition, for 1 < m < k + 1 we denote II* : [H™(Q)]> — BDM} the BDM projection
defined in [BBF13| Section 2.5]. The hdG formulation includes a Lagrange multiplier over the
internal edges. In order to propose a discretisation with fewer degrees of freedom, we discretise
the Lagrange multiplier u using the spaces

M = {0, € L2 (&) : Unlp € Pt (E) YV E € &},
M,’f’gl = {ﬁh € M,’f_l 20 =0 on F}.
Furthermore, we introduce for all E € &, the L?(E)-projection ®%' : L2 (E) — Py_; (E) defined

as follows. For every @ € L? (E), ®%7() is the unique element of P _; (E) satisfying

(2.8) / (I)Izj_l(ﬁl)fjh ds = / wop, ds Y o, € Py (E),
E E



and we denote ®*~1: L2 (&,) — M;~! defined as ®" | := X1 for all F € &,.
Let us denote Vj, := BDM ;f X M 561. The pressure is discretised using the following space

271 = {qh €L2 (Q) Qh|K ePr_q (K) VKE’EL}

In addition, we define the local L?(K)-projection Wh' : L?(K) — P, (K) for each K € Ty
defined as follows. For every w € L? (K), W% (w) is the unique element of Pj_; (K) satisfying

(2.9) / \Illfgl(w)vhd:c = / wopdr Vv, € P (K).
K K

We will also use the following results.

Lemma 2 (Approximation results). There exists C > 0, independent of hy, such that for all
ve[H™(K)]? andv e H™(K), 1 <m < k+ 1, the following interpolation estimates hold

e local Brezzi-Douglas-Marini approrimation
(2.10) v —1I* (v)|| . < ChE [ grm (1) »

H'U — Hk <U)HH1(K) S Ch%71 |'U|Hm(K) ,
e trace L?-projection approzimation
1
(2.11) v = @* (0)|| )i < Chi 2 [0l g iy

o local L?-projection approxzimation

(2.12) lo = e ()]l ¢ < CHR [0l i
|U - ‘I’];( (U)|H1(K) < ChTKn_1 |U|Hm(K) :
Proof. For see [BBF13, Preposition 2.5.1], for see [GR806, Lemma III.2.10], and for
see the proof of [EG04, Theorem 1.103]. O
3 Hybrid discontinuous Galerkin method

In this section we introduce the hdG method proposed in this work, study its well-posedness, and
analyse its error.

3.1 The discrete problem

From now on we will use V to denote the element-wise gradient. First, we multiply the first
equation from (2.1]) by a test function vp, € BDM, ,’f and integrate by parts. This gives
(313) — | V-(wVu)vp dsc—l—/ Vp - vp de = Z (/ vVu : Vo, daz—/ pV - vy dx

Q Q Ker, \JK K

—/ vO,u v, ds+/ p(vn), ds).
oK oK

Since the normal and tangential vectors are perpendicular (n -t = 0) we can split (3.13) as
(3.14) f/ V- (vVu)vp da:Jr/ Vp - vp de = Z </ vVu : Vop, da:f/ pV - vy dx

Q Q Ker, K K

_/8Kgm (vn), ds_/aKam (vn),, ds>.



For the solution of the Stokes problem (2.1)), o, is continuous across all interior edges. Moreover,
since v, € BDMF, then (vp,),, is continuous across all interior edges. Then we can rewrite (3.14)
as follows

(3.15) —/V-(VVu)vhd:r,—i—/Vp~vhda:: Z (/ Z/Vu:Vvhdac—/pV-'uhdm
Q Q Kot WK K

_/BK Ont (Vn), ds) —/Fann (vn),, ds.

Moreover, since o, is continuous across all interior edges, then KeT, f 51 OntUh ds = 0, for all
oy, € MF,', and we can add this to (3:15) to get

(3.16) —/V~(uVu)'uhdw—|—/Vp-vhdaz: Z (/ VVu:V'vhd:B—/pV~'uhd:c
Q Q KeT, WK K

_/aK ont ((VR), — Un) ds) —/Fann (vn), ds.

Denoting @ = u; on &, then (ut — 11) = @k_l(ut — 11) = 0 on &, and applying the boundary

conditions (2.2)) we can rewrite (3.16)) as

(3.17) —/V-(VVu)vhda:—i-/Vp-vhdw: Z (/ uVu:Vvhdw—/pV~vhda:
Q Q Kot VK K

[ (@), ((wn), ~ ) ds
oK
+ /aK V(ut — 71) (Onvn), ds

—|-Z/L oF-1 (ut — ﬂ)‘bk71 ( (vh)t — ’[Jh) dS)
hi Jox

—Aﬂwh%,

where 7 > 0 is a stabilisation parameter. Hence, we define the velocity bilinear form a : Vi, x V}, —
R as

a (('wh, ﬁlh) y ('vh, ﬂh)) = Z </K z/V'wh : V’Uh dx — / 14 (8nwh)t (('Uh)t — @h) ds

KeTh oK

(3.18) + E/@K v((wn), — @) (Onvn), ds

—H/E - M ((wp), — wn) " ((vn), — Tn) ds) ,

where e € {—1,1} and 7 > 0 is a stabilisation parameter and b : V}, X Q,’j_l — R as

(3.19) b ((vp, f}h) , qh) =— Z /K qrV - vy, dx.

KeTy

With these definitions we propose the hdG method for the TVNF boundary value problem ((2.4):
Find (up, Up,prn) € Vi X Qﬁ_l such that for all (vp, Op,qn) € Vi X Q’fb_l

a((uh’ah)’(vhaﬁh)) + b(('l)h,’[}h),ph)

(3.20) = /vah dw-l—/rg('uh)n ds
b((“haﬂh)th) = 0.

Remark 1. The use of H(div)-conforming spaces not only decrease the number of degrees of
freedom in comparison to [Oik10], but lead as well to a simpler bilinear form b.



3.2 Well-posedness of the discrete problem

Let us consider following semi-norm

~ T _ ~ 2
(3:21) Il (wn, ) (I[P :=v Y (whﬁmwhx [0nwnl3c + 5 [[@* 1<<wh>t—wh>|}aK>-
KeTyn

Lemma 3. The semi-norm ||| - ||| defined by (3.21) is a norm on Vj,.
Proof. Since ||| - ||| is a semi-norm, we only need to show that
||| ('wh,ﬁ)h) ||| =0= wp =0 and w, = 0.

Let us suppose (wp, W) € Vi and ||| (wh,wy) ||| = 0. Then Vwy, = 0 in all K € Ty, and thus
wp | = Ck for all K € T;,. Now, since wy, € [Po(K)]? in every K

197 ((wn), = @n)|| 5 = 0= (wn), = bn in cach B € &

Since Wy, is single valued on all the edges in &, then (wy), is continuous in Q. Moreover, since
wp, belongs to BDM,’:, (wn),, is also continuous in 2. Then, wy, is continuous in €2, and thus
wyp, = C € R? in . Finally, since

(wn), =(C),=00onT = wp =01in Q,
which finishes the proof since 1w, = (wp), on every edge. O

Lemma 4. There exists C > 0 such that, for all (w, ), (v,?) € [H' (Q) N H? (77L)]2 x L? (&)
and q € L? (), we have

(3.22) la ((w, @), (v,0)) [ < CI[| (w, @) ||| [[| (v, 2) ][],

(3.23) [b((w, @), q)| < \[II @) ||l lgll -

Proof. Let us start with (3.22). Using the Cauchy-Schwarz inequality we get

la ((w, @), (v,0)) [ < 2] (w, @) || |[| (v, 0) [l

+ Z W 18nwllgx llve = Ollgx + v [1Onvll5 [lwe — Do) -
KeTh

Therefore, using the triangle inequality and the trace L2-projection approximation (2.11]) we get
~ k— k— ~
18nwllon 0 = Tllox < [Onwllpx [[ve — 71 (00)|| 55 + 18nwll g |77 (00 = 0)| 5

- 1 _ -
(3.24) < Vhi |9nwl| (Cl [0l 4 (i) + N | @*" (ve — U)HaK> :

Thus, using the Cauchy-Schwarz inequality

v[[0nw| g [lve = Ollgxe < el (w, @) ([ ]| (0, 0) ]I,
V[8nvllog lwe = @l g5 < eall| (0, 0) (][] (w, @) []]-
Finally, we get (3.22) for C = (24 ¢; + ¢2). The continuity (3.23)) is analogous. O

To show the well-posedness of (3.20) we need the ellipticity of the bilinear form a and an
inf-sup condition for the bilinear form b. We start by showing that a is elliptic with respect to



Lemma 5. There exists a > 0 such that for all (vp,0p) € Vi
(3.25) a((vh,0n) . (vh, 1)) = all| (vn, n) [I]*.

If e = =1 in the definition (3.18)), then this only holds under the additional hypothesis of T being
large enough. If e = 1 in (3.18)), this inequality holds for arbitrary T.

Proof. First, since 8,vp|g € [Px_1(FE)]? for all E € &, then

(3.26) a((vn,Dn), (v, 0n)) = Y <uuh|§p(K) —v(l—¢) /SK (Onvn), © 1 ((vn), — Tn) ds

KeTh
T _ ~ 2
P 87 (om0 )-

To bound the middle term in terms of the other two, we consider two cases.

e if ¢ = 1, then (3.26]) reduces to
_ - 2
(3.27) a ((’Uh, U}L) , (Uh7'Uh)) = Z < |vh|H1(K) + I/ ||<I)k L ((vh) )HSK) .

KeThn

It only remains to show that the right hand side of (3.27)) is an upper bound (up to a constant)

for the norm ||| - ||| given by (3.21). Using the discrete trace inequality (2.6) we get
2

Z hK ||8nvhH8K < Z max |vh|H1(K)>

KeTh KeTy
and then

- 2 T _ - 2
328 llemilIP < (14 Chu) v (Ionlh + e 1957 (n), = 00 )
KeThn

which proves (3.25) with o = ﬁ
e if ¢ = —1, then (3.26]) becomes

a((Vp,0n), (Vn,Tp)) = Z (l/|’vh|?{1(K) —2v /31( (anh)t (I)kfl((,vh)t . ﬁh) ds

KeTy
T k1 o2
e L8]
Using the Cauchy-Schwarz inequality

a((vh,0n), (Vn,0n)) = Z (V ‘vh|2Hl(K) = 20 ||Onvnl| ok ||(I)ki1 ((vn), = ﬁh)”aK
KeT

T k—1 - 2
s 04 (on), = ) )
Since vy, € BDM, ,’f is a piecewise polynomial we can apply the discrete trace inequality (2.6) to
the second term, followed by the Young’s inequality to arrive at
mal

a((vn,0n) , (Vn, ) = Y <V|”h|§{1(z<) Y T [on] iy (9571 (), = Tn)| ¢

KeTh

—Wi H(I)k_l ((vn), — 5h)”2K>

2C _ -
= (’;vh|ip<m+v,wm||@’“ (on), = ) )
KeTh

>vC Z (|’vhH1(K +7||(I)k 1((”h) )HZK>

KeTy



2
Finally, if we suppose 7 > 2C2, then C := min {%, %} > 0, using (3.28]) we get (3.25|) for

o= O

_<¢
1+C2,,.°

max

The next step towards stability is proving the inf-sup condition for b, which is done next.

Lemma 6. There exists 5 > 0 independent of hx such that

sup b (v, 0n),qn) o B

— e > gl Van € Q7
(wnomevin (o) [l — Vv @ h

Proof. According to the Fortin criterion, see [EG04, Lemma 4.19], we need to prove that there

exists a Fortin operator IT : [H! (Qﬂ2 — Vj, such that for every v € [H*(Q)]? the following
conditions hold

(3.29) b((v,9),qn) =b(I(v),qn) Yan€Q) ",
(3.30) [T (v) ||| < CVV||v|| g1 ()

Let v € [H*(2)]? and let us consider the operator II (v) := (II* (v) , ®*~1 (v4)). It is well known,

see [BBF13, Section 2.5], that IT* satisfies (3.29). To prove (3.30) we denote (wp,,wy) = II (v).

Then using the discrete trace inequality (2.6) and the fact that the projection is a bounded
operator, we get

~ T _ - 2
| (wn, ) [P = > v <|wh|§11(x) + hic | Bnwnll5x + e [@* ((wn), — wh)”ax)
KeTy K
T ~
(3.31) < X o (0 ) lwnli sy + 5 Non), = nl ).
KeTy K

Applying the triangle inequality for the last term of (3.31) we arrive at

~ 2 2T 2 - 2
M wn ) 1P < 3 v (14 ) on iy + o (Iam), = wl + e = nl3) )
KeT, K
2

(3.32) = > ((1 +C20) T+ h—T (T + z?)) .

KEeT, K
Using the stability of IT¥ we get

2

(3.33) T = |1 ()[4 ey < €1 1017710

Using and the local trace inequality , then

S < o= wnlle < e (1 o= wnl + o= wnlig
(3.34) < a1 (ol [0l o) + Ehic [0f51 i) ) < @1 (62 + E) e [0l -
Finally, using the trace L2-projection approximation for the third term we get
(3.35) T <l [v] G g -

Then collecting (3.33)), (3.34) and (3.35)), we obtain (3.30) with

C = \/< (1402, ) e1 + 276 (G2 + &5) + 2@),

which finishes the proof. O



Using the last two results and the standard Babuska-Brezzi’s results [BBF13, Section 4.2] we
deduce there exists a unique solution of (3.20)). In addition, method (3.20)) is consistent that the
following result shows.

Lemma 7 (Consistency). Let (u,p) € [H' () N H? (771)]2 x L2 () be the solution of the problem

(2.4) and @ = uy on all edges of Ex. If (un,n,pr) € Vi X Qllfl solves (3.20), then for all
(Vh, O, qn) € Vi X Qﬁ_l the following holds

a((w—un,u—1p),(va,n)) + b (v — wn, & —un),qn) + b((vn,0n),p — pp) = 0.
Proof. As we have seen in Section all added terms are zero for (u,@). Thus

a((u, @), (vn, o)) + b((vn,0n),p) = /vah d:v—i—/rg(vh)n ds 7
b((’uﬂﬁ)v(Zh) =0

which proves the result. O

3.3 Error analysis
In this section we present the error estimates for the method. These estimates are proved using

the following norm

(3.36) 1w, @, p)[[n = |||(u,ﬂ)|||+\%llpl\n.

The first step is the following version of Cea’s lemma.

Lemma 8. Let (u,p) € [H' (Q) N H? ('77)}2 x L2 (Q) be the solution of [2.4), i = u; on all edges
in &, and (Wp,Up,pr) € Vi X Qi_l these of (3.20). Then there exists C > 0, independent of h

and v, such that

(330 @—uni—inp—pn)ln<C il || (= vn i 5np — an) [l
(Vh,Tn,an) EVR X Q)

Proof. Let us denote

B ((Wh, Wn,7h) » (Vh, Oy qn)) = a ((Wh, Wn) 5 (O, On)) + b ((VR, On) ,7h) + b ((Wh, Wh) 5 qn) -

Using Lemmas 5| and |§|, and [EGO04, Preposition 2.36], we get the following stability for B.
There exists Sp > 0, independent of h and v, such that for all (vp, Op,qn) € Vi X Q;‘fl there

exists (W, Wp, 1) € Vi x Q! such that ||| (wp, @n,74)|||n = 1, and
(3.38) B ((vn, On, an) (W, @n,mw)) = Bal|| (Vh, Ony an) |-

Now using Lemma [@ we get continuity of B, there exists Cp > 0
(3.39) | B ((wh, W, h) , (Vh, Un, qn))| < OBl (wh, @, ra) |kl (VR Ons gn) [f5-

Let (vh,n,qn) € Vih. Then, using Lemma the triangle inequality, (3.38)) and (3.39) we arrive
at

- - 1 - _ -
|| (vh — Wh, D — Un, qn — pr) [0 < @B((vh —w,0p — Uy qn, — D), (Wh, Wk, Th))

1 . N
+ /5733 ((w — up, % — Up,p — pn) , (Wh, Wk, 1))

Cgp L
< — || (vn — u,0n — @, qn — ) |||n-
BB

Thus, we get (3.37) with C' :=1+ %BB -
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Using standard interpolation estimates, the following error estimate is proved.

Lemma 9 (hdG error). Let us assume (u,p) € [H'(Q)NH"! (771)]2 x H* (Ty) is the solu-

tion of (2.4), and @ = wu; on all edges in E,. If (up,Un,pn) € Vi X Qﬁ_l solves the discrete
problem (3.20)), then there exists C > 0, independent of h, such that

U 1
Ba0) 1l wni = = pn) < O (Vollullmnoscry + ol )

Proof. Let us consider the Fortin operator IT defined in the proof of Lemmal6] IfII (u) = (wp, ¥y),
then by using the triangle inequality and boundedness of the projection ®*~1 we get

~ ~ 2 2
(3.41) | (w = wn, @ —an) [|P = > v <|U = Wh|p () + i [|0n (w — wn) 5
KeTy,

e 0 (= wn), — (i wh))HZK)

< 3 vl = wnlin e + hic 10n (1 = wn) 3
KeTh

2c1T 2 . - 2
+ 3 (HU — whllpx + ||U—wh||aK)
K

2
— Y <f£{< hieh 4 20T (o +sgf)) .
KeTy K

For the first term from ([3.41)), we use the BDM approximation (2.10]) to get
(3.42) T < eoh3f [ufinn ) -

Next we use the local trace inequality (2.7) to get
1
(3.43) T <3 (hKu—whﬁil(K)—i—hK |u—whi2(K)) .

Let £Fu be the usual Lagrange interpolant of degree k of u (see [EG04, Example 1.31]). Using the
triangle inequality followed by the local inverse inequality (2.5]), the local Lagrange approximation

[EG04, Example 1.106] and (2.10)), (3.43) becomes
S 2 2h Ll 2h | CF :
2 = Emiwhhﬁ”(l’f)Jr K |u— u|H2(K)+ K| u*wh|H2(K)

2¢ 2
k— 2 6
<c3 ((04 +2c5) h3E ! ‘u|H’€+1(K) + hr |‘Ck'“' - wh‘Hl(K)>

4c 2 4c
2k—11,,12 6 | pk 6 2
<c3 ((04 +205) g ™ (Ul ) + T |Lru — U‘H1(K) + T lu — whHl(K)>
(3.44) < es(ca + 25 + Acg(cr + ) )3t ulFrn i) -
For the third term in (3.41)), we use (2.7) and (2.10), to get

1
(3.45) Ty <o <hK e — w5 + h | — wh|§11(K)) < cocr0hZE T G iy -

The last term in (3.41)) is bounded using (2.11)) as follows

(3.46) T < el Julfpn i) -

11



Finally, the local L2-projection approximation ([2.12)) gives

(3.47) inf p—anllg = |lp— ¥ W), < Elkllpllae -
quk 1

h

Thus, putting together (3.41) with (3.42), (3.44)), (3.45)), (3.46), (3.47) and shape regularity of the
mesh we get

A 1
inf — VR, U —Tp,p— < Ch* —
il = o= 0np = )l < CF (VEullnensy + = plnscr )
with R
C := max {\/CQ + c3(eq 4 2¢5 + 4eg(er + ¢g)) + 27c1c9c10 + 2TC1 11, 61} ,
and the result (3.40]) follows from Lemma O

3.4 NVTF boundary conditions

As we mentioned before, the analysis in case of NVTF boundary conditions (2.3)) is similar. Thus,
we just highlight the main differences. So if we consider NVTF boundary conditions ({2.3]), then
to discretise the velocity we use the following BDM space

BDM; o := {vn, € BDM : (vp), =0onT}.

For the Lagrange multiplier we use polynomial space M. ,’f*l. And the pressure is discretised using

Z,iol = {(Ih €Qy " /qh dw=0}~
Q

In this case our product space becomes V3, := BD M, ,’f’o x M ,’f*l and we pose the following discrete
problem.
Find (up, Up,pn) € Vi X Qﬁ’_ol such that for all (vp, Op,qn) € Vi X Qﬁ)‘ol

(348) a((uh,’ah)a(’vh,flh)) + b((’v}“f)h),ph) = Afvh dw+Ag@h ds
b((un,tn),qn) = 0

In obtaining ([3.48)) the only difference step in the derivation is that now (3.16) is replaced by

—/V-(VVu)vhdw+/Vp~vhd:B: Z (/ VVu:Vvhdw—/pV-vhdw
Q Q K K

KeTh

_/[jKam((vh)t—m ds) —/Fgﬂh ds.

Concerning the analysis, the proofs of all the results presented in the last sections remain essentially
unchanged.
4 The domain decomposition preconditioner
Let us assume that we have to solve the following linear system
AU =F

where A is the matrix arising from discretisation of the Stokes equations on the domain 2, U is the
vector of unknowns and F' is the right hand side. To accelerate the performance of an iterative
Krylov method applied to this system we will consider domain decomposition preconditioners

12



which are naturally parallel [DJN15] Chapter 3]. They are based on an overlapping partition of
the computational domain.

Let {75}, be a partition of the triangulation 7. For an integer value [ > 0, we define
an overlapping decomposition {ﬁfz}fvzl such that 77571- is a set of all triangles from T}f;l and all

triangles from 7y, \ ’7;5:1 that have non-empty intersection with ’775;1, and ’771071- = Tp,;. With this
definition the width of the overlap will be of 2{. Furthermore, if W}, stands for the finite element
space associated to Tp, W,f” is the local finite element spaces on 77111 that is a triangulation of ;.

Let A be the set of indices of degrees of freedom of W}, and N} the set of indices of degrees
of freedom of W} ; for I > 0. Moreover, we define the restriction operator R; : Wy, — W} ; as
a rectangular matrix |[N}| x [NV such that if V is the vector of degrees of freedom of v, € Wy,
then R;V is the vector of degrees of freedom of W}L’i in ©;. Abusing notation we denote by Rj;
both the operator, and its associated matrix. The extension operator from W}lw- to W}, and its
associated matrix are both given by R;”. In addition we introduce a partition of unity D; as a
diagonal matrix |N}| x |AV}| such that

N
(4.49) Id = ZRiTDiRh

=1

where Id € RWVIXIVI is the identity matrix.
We are ready to present the first preconditioner, called Restricted Additive Schwarz (RAS)
[CS99] , given by

N
(4.50) Mgas™' = > Ri'Di(R;AR;")'R;.

=1

We also introduce a new preconditioner that is a modification of the above one. The modification
is similar to the Optimized RAS [SCGT07], however we do not use Robin IC. For this, let B; be
the matrix associated to a discretisation of in §; where we impose either TVNF (2.2) or
NVTF boundary conditions in €2;. Then, the preconditioner reads

N
(4.51) Mumras ' = » Ri"DiB; 'R;.

i=1

Remark 2. The improvement of convergence in the case of Optimized RAS depends on the choice
of the parameter. This parameter is depending on the problem and discretisation. The big advan-
tage of MRAS preconditioners is that they are parameter-free.

4.1 Partion of unity

The above definitions of the preconditioners can be associated with any discretisation of the
problem. However, each discretisation involves the construction of a relevant partition of unity
D;,i=1,..., N. We discuss here the construction of D; when the problem is discretised by
the hdG method in case k = 1, either with TVNF boundary conditions , or NVTF boundary
conditions . Let us introduce the piecewise linear functions y! of 7}, such that

v 1 on all nodes of T2,
Xi = ’
v 0 on other nodes.
Now we define the piecewise linear functions x! of ThlZ as follows

Sl
X.
Xi = Nl

=1 X

13



Obviously Zf\il X} = 1. We define the partition of unity matrix D; as a block diagonal matrix
where first block DPPM is associated with BDM;, second DM with M} and third D? with
QY. The degrees of freedom of the BDM elements are associated with the normal components on
the edges of the mesh. For these finite elements, the diagonal of DBPM is a vector obtained by
interpolating x! at the two points of the edges. The degrees of freedom of the Lagrange multiplier
finite elements are associated with the edges of the mesh. For these finite elements, the diagonal
of DM is a vector obtained by interpolating Xé at the midpoints of the edges. For pressure finite
elements, the diagonal of D? is a vector obtained by interpolating x! at the midpoints of the
elements.

5 Numerical results

In this section we present a series of numerical experiments aimed at confirming the theory devel-
oped in Section [3] and to give a computational comparison of the preconditioners discussed in the
previous section. All experiments have been made by using FreeFem++ [Hecl2], which is a free
software specialised in variational discretisations of partial differential equations.

5.1 Convergence validation

The computational domain for both test cases considered here is the unit square € = (0, 1)2. We
present the results for k = 1, this is, the discrete space is given by BDM,% X M}?,o x Q) for TVNF
boundary conditions and BD M, ,1’0 x M ,? X Q?L,o for NVTF boundary conditions. We test both
the symmetric method (¢ = —1) and the non-symmetric method (¢ = 1). For both cases we have
followed the recommendation given in [Lehl0), Section 2.5.2] and taken 7 = 6.

The first example aims at verifying the formulation with TVNF boundary conditions .
We choose the right hand side f and the boundary datum g such that the exact solution is given
by

w = curl [100 (1 — cos((1 — z)?)) sin(z?) sin(y?) (1 — cos((1 — y)*))], p = tan(xy).

In Figures |la] and we show the results of the usual convergence order tests for the symmetric
case and the non-symmetric case by plotting in log-log scale the error as a function of the size of
the mesh. We notice that they validate the theory from Section In addition, an optimal h?
convergence rate is observed for |[u — up||q. The proof of this fact is lacking, but it does not seem
to be an easy task due to the nature of the boundary condition of problem .

1 ol
of Al
Al
2l
5
o 8°
- @
o = O 4t
-4 - [u— upflo —a—|lu — upflo
=6 |[|(u — up, & — @)|]] st =6 |||(u — up, & — @)]l]| |
s —+llp = palle —+Ilp — prlle
o -- o) | R -- O
--=-0(h) --=-0(h)
7 ‘ ‘ ‘ ‘ 7 ‘ ‘ ‘ ‘
25 2 15 -1 -05 0 25 2 15 -1 05 0
log(h) log(h)
(a) Symmetric bilinear form (e = —1) (b) Non-symmetric bilinear form (¢ = 1)

Figure 1: Error convergence of the hdG method with TVNF boundary condition - the first example
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The second example aims at verifying the formulation with NVTF boundary conditions (3.48]).
We choose the right hand side f and the boundary datum g such that the exact solution is given
by

u:curl[:ﬂ(lf:r)Qy (1fy)2}, p=1x—1.

In Figures [2a] and we show the results of the usual convergence order tests for the symmetric
case and the non-symmetric case by plotting in log-log scale the error as a function of the size of
the mesh. We notice that they validate the theory from Section And again, an optimal h?
convergence rate is observed for ||u — up||q.

=3 =3
e 2
s 8
o 4 o 4T
(] (]
- |lu — upllo —a—|lu — upflo
&= =6~ ||(u — up, @ — @)||| | | =i =6 |[[(u — up, @ — @)|||| |
—+Ilp — prlle
6 -6 --0(h?)
==-0(h)
7 ‘ ‘ ‘ 7 ‘ ‘ ‘ ‘
25 2 15 -1 -05 0 25 2 15 -1 05 0
log(h) log(h)
(a) Symmetric bilinear form (e = —1) (b) Non-symmetric bilinear form (¢ = 1)

Figure 2: Error convergence of the hdG method with NVTF boundary condition - the second
example

5.2 Comparison of different domain decomposition preconditioners

In this section we compare the standard RAS preconditoner with the newly introduced pre-
conditioners, that is the ones based on non standard IC. We call them MRAS preconditioners (4.51
and more precisely TVNF-MRAS for which B;j is the matrix arising from the discretisation ofq-(]2_z
in ; with IC on 99);, and NVTF-MRAS for which B; is the matrix arising from the discreti-
sation of in Q; with IC on 01);. As we mentioned before, our preconditioners do not
depend on the used discretisation, that is why we add also similar preconditioners but based on a
more standard discretisation, that is, the lowest order Taylor-Hood discretisation [GR86], Chapter
II, Section 4.2]. In all cases, they are used in conjunction with a Krylov iterative solver such as
GMRES [SS86]. In addition, N stands for the number of subdomains in all tables. In all tables we
present the number of iterations needed to achieve an euclidean norm of the error (with respect to
the one domain solution) smaller than 10~%. We have implemented the RAS preconditioner
and the MRAS (4.51)), using both TVNF and NVTF interface conditions.

We start with the second example from the previous section. However, now we consider the
symmetric (¢ = —1) formulation with TVNF boundary conditions . The mesh is uniform
and contains 125 000 triangles for a total of 565 003 degrees of freedom for the Taylor-Hood
discretisation and 689 000 degrees of freedom for the hdG discretisation. We use a random initial
guess for the GMRES iterative solver. The overlapping decomposition into subdomains can be
uniform (Unif) or generated by METIS (MTS) and it has two layers of mesh size h in the overlap.

The first thing that we can notice from Table [I| is the important convergence improvement
in case of RAS applied to a system resulting from a hdG discretisation in comparison to the
RAS applied to the system resulting from the Taylor-Hood discretisation despite the fact that
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Taylor-Hood hdG
N RAS NVTF-MRAS | TVNF-MRAS RAS NVTF-MRAS | TVNF-MRAS
Unif MTS | Unif MTS | Unif MTS Unif MTS | Unif MTS | Unif MTS

4 133 311 40 39 37 37 58 95 41 45 53 50

9 336 563 58 58 52 60 94 131 62 66 69 81
16 | 315 691 60 76 59 73 101 151 68 85 80 100
25 | 427 T4 76 93 71 90 127 186 7 100 103 119
64 | 630 1132 | 113 147 112 132 196 280 | 126 172 148 183
100 | 769 1246 | 136 174 132 169 247 348 | 151 205 175 228
144 | 929 1434 | 158 201 155 192 306 408 | 178 228 192 259
196 | 1000 1637 | 180 239 168 224 354 480 | 198 326 212 299
256 | 1133 1805 | 201 265 183 286 403 536 | 226 358 233 341

Table 1: Preconditioners comparison - the first test case

the number of degrees of freedom is slightly bigger in the first case. The change in discretisation
presumably leads to better conditioned systems to solve. Also the MRAS preconditioner with
both discretisations perform better than the standard RAS method which fully justifies the use of
the new IC no matter the discretisation method. Moreover, as expected, the number of iterations
increases with respect to the number of the subdomains and this behaviour is common to the three
preconditioners. It is worth noticing that this increase is slower than the expected linear one.

We also plot the convergence of the error for the different discretisations in Figure [3] and [
We observe that in all cases the MRAS preconditioner shortens the plateau region in the
convergence curves significantly which leads, automatically, to an important reduction in the
number of iterations.

- - RAS
——NVTF-MRAS
—-—-TVNF-MRAS

> - - RAS
—— NVTF-MRAS

=-=-TVNF-MRAS

log(error)
]
]
log(error)

100 120 140 160
lterations

300 500 600 0 20 40 60 80
lterations

0 100 200 400

(a) Taylor-Hood (b) hdG

Figure 3: Convergence of error for uniform decomposition in the 8 x 8 subdomains case - the first
test case
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- - RAS
—— NVTF-MRAS
—-—-TVNF-MRAS

- - RAS
—— NVTF-MRAS
—-—-TVNF-MRAS ||

log(error)
d
log(error)

1200 0 50 100 150 200 250 300
lterations

0 200 400 600 800
lterations

(a) Taylor-Hood (b) hdG

Figure 4: Convergence of error for METIS decomposition in the 64 subdomains case - the first
test case

Now we consider the Poiseuille problem and we choose the right hand side f and the TVNF
boundary condition such that the exact solution is given by

u = [4y(1_y>70]T7 p=4—8x

The mesh is again uniform and contains 125 000 triangles for a total of 565 003 degrees of freedom
for the Taylor-Hood discretisation and 689 000 degrees of freedom for the hdG discretisation. We
use a random initial guess for the GMRES iterative solver. The overlapping decomposition into
subdomains can be uniform (Unif) or generated by METIS (MTS) and it has three layers of mesh
size h in the overlap.

Taylor-Hood hdG
N RAS NVTF-MRAS | TVNF-MRAS RAS NVTF-MRAS | TVNF-MRAS
Unif MTS | Unif MTS | Unif MTS Unif MTS | Unif MTS | Unif MTS

4 117 220 36 39 38 36 58 95 39 47 54 48

9 294 421 63 60 54 54 103 129 66 67 77 78
16 | 236 510 59 73 61 68 98 153 65 83 74 94
25 | 300 642 68 89 72 83 120 184 77 103 88 115
64 | 454 916 102 144 100 122 188 279 117 160 120 165
100 | 559 1088 | 122 173 116 154 225 349 140 198 138 215
144 | 940 1251 | 176 195 145 215 342 395 198 231 183 232
196 | 781 1346 | 166 230 146 242 325 486 191 277 173 284
256 | 881 1553 | 189 269 159 272 368 538 210 316 195 309

Table 2: Preconditioners comparison - the Poiseuille problem

The conclusions stay the same as in previous example since the reusults form Table [2| are
similar to the previous ones. We consider a different problem, however on the same mesh. Hence
the global matrix is the same in both cases. Thus, we can notice a reduction in the number of
iterations caused by the increase of the width of the overlap.

We also plot the convergence of the error for the different discretisations in Figure[5and [} We
observe that in all cases once again the MRAS preconditioner shortens the plateau region
in the convergence curves significantly which leads, automatically, to an important reduction in
the number of iterations.
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Figure 5: Convergence of error for uniform decomposition in the 12 x 12 subdomains case - the
Poiseuille problem
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log(error)
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(a) Taylor-Hood

n L L L L L L
] 200 400 1200 1400 o 50 100 150 200
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(b) hdG

L L ' J
250 300 350 400

Figure 6: Convergence of error for METIS decomposition in the 144 subdomains case - the
Poiseuille problem

The last example is on a T-shaped domain © = Int ([0, 1.5] x [0,1] U[0.5,1] x [-1,0]), and we
impose mixed boundary conditions given by

u(z,y) = (4y(1 —y), 0"  ifz=0
onn(2,y) =0, wu(z,y)=0 ifz=15
u(z,y) = (0,0)" otherwise

In Figure[7] we plot the numerical solution obtained with the hdG discretisation using 7 = 6 on a
coarse mesh. In this case, we used a mesh containing 379 402 triangles, which gives linear systems
of a size 1 712 352 for the Taylor-Hood discretisation and 2 089 735 for the hdG discretisation.
The initial guess in the GMRES iterative solver is zero. The overlapping decomposition into
subdomains is generated by METIS and it has two layers of mesh size h in the overlap.

According to Table [3] the conclusions remain the same, that is the standard RAS method
performs far better when applied to a hdG discretisation with respect to a Taylor-Hood one and the
MRAS preconditioners are better than the standard RAS preconditioner for both discretisations.
Finally, we also plot the convergence of the error of the different discretisations in Figure |8 And
again, in all cases the MRAS preconditioner shortens the plateau region.
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Figure 7: Numerical solution of the T-shaped domain problem

Taylor-Hood hdG
N | RAS | NVTF-MRAS | TVNF-MRAS || RAS | NVTF-MRAS | TVNF-MRAS
50 752 121 105 209 132 135
100 | 903 175 147 307 190 197
200 | 1272 245 211 441 264 281
400 | 1747 341 342 613 366 399
800 | 2433 469 417 863 650 549
Table 3: Preconditioners comparison - the T-shaped domain problem
Op==— - ] - : ]
~~~~~ — - RAS — - - RAS
al i, T —NVTF-MRAS||  0F_s—— ™ —— NVTF-MRAS| |
™ S, |=--=-TVNF-MRAS o —-—-TVNF-MRAS
2r \'| \\ 1
s, i . &

L
500

1000 1500
lterations
(a) Taylor-Hood

L
2000

2500

0 100

41;0 50‘0
Iterations
(b) hdG

200 300

600

L L
700 800 900

Figure 8: Convergence of error for METIS decomposition in the 800 subdomains case - the T-
shaped domain problem
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6 Conclusion

In this paper we introduced a hdG method for the Stokes equations that naturally discretises non
standard boundary value problems such as those with TVNF and NVTF boundary conditions.
This approach can be extended naturally to the case of incompressible, or nearly incompressible,
elasticity. We proved the well-posedness and convergence with respect to the norm of this
method and in the numerical experiments from Section [5.1| we validated the theory and observed
the optimal convergence.

To solve the discretised problem we introduced two different kinds of preconditioners with non
standard boundary conditions whose optimality has been proved by algebraic techniques. We
compared the newly introduced preconditioners to the more standard RAS preconditioner and
numerical tests from Section [5.2] clearly show their superiority for different test cases in two space
dimensions. Moreover the hdG discretisation has an important advantage over Taylor-Hood as
the RAS preconditioner already performs far better.

We observed, as expected, that the Schwarz preconditioners are not scalable with respect to the
number of subdomains. However, this can be fixed by using an appropriate coarse spaces [DJNT5|
Chapter 4]. A suitable choice of a coarse space will be a subject of future research.
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