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Nobody’s Perfect; Matched Layers for Heterogeneous Media

Laurence Halpern ∗ Ludovic Métivier † Jeffrey Rauch ‡ Juliette Ryan §

Abstract

We present an example of Bérenger’s method for a problem with variable coeffi-
cients at the interface showing that the method is not perfectly matched. The reflec-
tions are revealed by constructing an infinitely accurate geometric optics approxima-
tion. They are also revealed in numerical simulations that confirm the dependence on
wavelength from the asymptotic expansions.

1 Introduction

This paper analyses reflections at artificial absorbing layers used at the external part of
computational domains. They are used to truncate to finite size computations aimed at
computing solutions on infinite or very large domains. Particular attention is paid to
Bérenger’s layers [8, 9, 10] that under a variety of situations are perfectly matched, that
is give rise to no reflections at all. We give a natural example where this method is not
perfectly matched when coefficients are not constant on a neighborhood of the interface.

Computing reflections for variable coefficient problems requires care. The standard
method freezes coefficients, drops lower order terms and reasons with plane waves. It is
a good way to compute the leading reflection term. For intelligent absorbing boundaries
including Bérenger’s method the leading term is equal to zero. The plane wave compu-
tation does not suffice to evaluate the small reflections that are produced. We compute
infinitely accurate high frequency asymptotic solutions. The imperfection is revealed by
the presence of non zero reflected waves in the high order correctors. The order at which
these waves appear in the expansion is a measure of the effectiveness of the absorbing
layer.

We analyse a wave equation that is a close cousin to the acoustic equations of geo-
science. In addition to the accurate high frequency solutions, we perform numerical sim-
ulations. The size of the reflections as a function of frequency matches the prediction of
geometric optics.

The asymptotic expansions give a tool to compare imperfect strategies. Indeed we
begin by computing reflections for methods simpler than Bérenger’s. In order to avoid
amplifying layers that sometimes are created by Bérenger’s layers [6], [16], smart layers
were introduced in the latter article. They are dissipative by elementary energy identities.
Even with variable coefficients. In this article we introduce a refinement called tuned layers
that are tuned to a presumably known wave number. They are dissipative and reflect at
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the same order as Bérenger’s method. On our test problem the imperfect Bérenger problem
outperforms the other two methods tested. Had we tested a problem where the Bérenger
layers were amplifying, the performances would have been reversed as in [23], [15]. The
tuned layers are never amplifying.

There is very little analysis in the literature for time dependent Bérenger methods
when there are variable coefficients at the transition to the layer. Variable coefficients
also arise when analysing constant coefficient problems in polar coordinates using circular
computational domains and annular absorbing layers [27], [12]. Relying on the analyticity
of the coefficients, these authors show that the method of complex coordinate deformation
yields perfection in the time harmonic case. For truly time dependent problems it is not
clear what conclusion to draw as different temporal components would require distinct
deformations.

Collino and Tsogka [13] find reflections in numerical simulations using Bérenger’s
method in heterogeneous media. They see large reflections from the external bound-
ary of the computational domain. Their computations may also show the small reflections
from the imperfection at the transition to the layer.

Bérenger’s strategy is one of many approaches to the construction of weakly reflecting
absorbing layers. Our main result reveals a limit to its effectiveness. We neither summa-
rize, evaluate, nor criticize other strategies. The interested reader can consult [21], [14],
[5], [18], [25], [19], [17], [1], [2], [7], [4], [3], [22], [24], [20], listed here in chronological order,
to appreciate the variety of interesting ideas and methods.

Consider the hyperbolic operator

L1(∂t, ∂x) := ∂t +
d∑
j=1

Aj(x)∂j , ∂j :=
∂

∂xj
, 1 ≤ j ≤ d .

The coefficientsAj areN×N matrix valued. The computational domainD :=
∏d
j=1]− `j , `j [

contains a not too much smaller rectangle R that includes the domain of interest and the
support of the data. The 2d hyperplanes defining the faces of the boundary of R form a
network in D denoted N . The goal is to modify the equation in the layer D \ R so that
solutions are both weakly reflected at the interfaces comprising N and are damped in the
layers comprising D \R.

In one situation it is easy to construct perfectly matched absorbing layers. If the
coefficient matrices Aj are real diagonal and invertible, then the system consists of N
uncoupled scalar transport equations with nonvanishing velocity in the xj direction. It is
then easy to place perfectly absorbing boundaries and also perfectly nonreflective layers
at an artificial boundary xj = ±`j .

The original problem is
L(∂t, ∂x)U = F, (1.1)

with F compactly supported in R ⊂ D.
Bérenger’s method introduces split dependent variables Ũ := (U1, . . . , Ud) with U j

defined on D \ R and taking values in CN for 1 ≤ j ≤ d. Then Ũ with values in CNd is
required to satisfy in the layers D \ (R∪N ),

(L̃(∂t, ∂x) Ũ)j := ∂tU
j + Aj(x)∂j

( d∑
`=1

U `
)

+ σj(xj)U
j = 0, 1 ≤ j ≤ d. (1.2)
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Each absorption coefficient σj(xj) ≥ 0 depends on only one variable and vanishes in R.
There is in addition a Ck valued UB defined on R and satisfying

L(∂t, ∂x)UB = F on R . (1.3)

The partial differential equations (1.2) and (1.3) are supplemented by transmission condi-
tions requiring that for each k the function that is equal to Ak

∑
j Ũj in D \ (R∪N ) and

equal to AkUB on R is continuous across the hyperplanes in N parallel to {xk = 0}. The
exact form of the continuity depends on the existence proof. It is not made explicit here
since it changes from case to case while the idea of the proof is not modified. In addition
Ũ must satisfy boundary conditions on ∂D that are constructed to be weakly reflective.
It is only very recently that existence and uniqueness theorems have been proved for this
transmission/boundary value problem with many corners. The corners are multihedral
when d ≥ 3.

The goal of Bérenger’s strategy is that UB should be a good approximation to U on
R.

Definition 1.1. The method is perfectly matched when Bérenger’s transmission bound-
ary value problem is at least weakly well posed and for F supported in t ≥ 0, the unique
solution, also supported in t ≥ 0, satisfies the perfection condition

UB = U
∣∣
R×R . (1.4)

If the coefficients Aj are constant on a neighborhood of the external layer D \R, then the
method is perfectly matched as soon as it is weakly well posed [16].

We give examples with variable coefficients at the layer that are not perfectly matched.
The examples are from important applications where the Bérenger split system is well
posed. This is the typical behavior to be expected when the coefficients are variable on a
neighborhood of the interfaces.

Section 2 recalls the rigorous proof of perfection that works when the coefficients are
constant on a neighborhood of the layer. The proof clearly fails when there are variable
coefficients. This does not prove imperfection.

In Sections 3 and 4 infinitely accurate asymptotic expansions of reflected waves are con-
structed for variable coefficient problems. The phases satisfy variable coefficient nonlinear
eikonal equations. Examples are constructed so that the phases are explicit. Since all the
methods considered are cleverly designed, there are no reflections in the leading terms.
Equivalently, a naive plane wave analysis would not reveal reflections. For Bérenger’s
method and the tuned layers the reflections are smaller by two powers of ε. This is a
computation in perturbation theory beyond orders normally calculated.

The predictions from the asymptotic expansions are confirmed by numerical experi-
ments in Section 5. Given the failure of perfection of Bérenger’s method we compare the
performance of that method and the so-called smart and tuned layers. In part this is done
because the computation of the reflections for those methods is simpler than for Bérenger’s
method so is an excellent way to introduce the analysis. Numerical simulations reveal the
reflections proved to exist by the asymptotic expansion.

Acknowledgment. Excellent suggestions from both referees, in particular T. Hagström,
resulted in substantial improvements in this article.
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2 Perfection and the change of variables method

The proof of perfection in the case of constant coefficients from [16] is not bothered by
variable coefficients so long as the coefficients are constant throughout the layer. We
demonstrate in this article that variable coefficients in a neighborhood of the interface at
the boundary of the layer can destroy perfection.

Recall the constant coefficient proof to see its failure when the coefficients vary at the
interface.

Theorem 2.1. If D = Rd and the Bérenger layer with absorptions vanishing in R defines
an transmission problem that is at least weakly well posed, then the layer is perfectly
matched provided the coefficients Aj(x) are independent of x on Rd \ R.

Proof. Consider the Laplace transform in time of the split variables Ũ . The transform is
indicated with a .̂ It is holomorphic in Re τ > τ0. Introduce the function V̂ that is equal
to F

(∑
j Ũj

)
on D \R and equal to ÛB in R.

The transform satisfies

Û j + (τ + σj(xj))
−1Aj(x)∂j V̂ = 0 on Rd \ (R∪N ) . (2.1)

Multiply by τ and sum on j to obtain the important equation that arises from the
Laplace transform of the unsplit equation

τ V̂ +
∑
j

τ

τ + σj(xj)
Aj(x)

∂V̂

∂xj
= 0 on Rd \ (R∪N ) . (2.2)

The Laplace transform of the equation satisfied by UB implies that this equation is
also satisfied on R. The transmission conditions across N imply that

τ V̂ (x) +
∑
j

τ

τ + σj(xj)
Aj(x)

∂V̂

∂xj
(x) = F̂ (x) on Rd . (2.3)

The Laplace transform Û satisfies

τ Û(x) +
∑
j

Aj(x)
∂Û

∂xj
(x) = F̂ (x) on Rd . (2.4)

The key observation is that, at least when τ is real, (2.3) and (2.4) are conjugated one to
the other by a change of variable leaving R and N fixed.

For fixed real τ > 0 define d bilipschitzian homeomorphisms Xj(xj) of R to itself by

dXj(xj)

dxj
=

τ + σj(xj)

τ
, Xj(0) = 0 .

Then,

∂

∂xj
=

dXj

dxj

∂

∂Xj
=

τ + σj(xj)

τ

∂

∂Xj
,

τ

τ + σj(xj)

∂

∂xj
=

∂

∂Xj
.

Define W (X) by W (X) = V̂ (x(X)). Then

τ W (X) +
∑
j

Aj(x(X))
∂W

∂Xj
(X) = F̂ (x(X)) . (2.5)
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Since x(X) = X on the support of F ,

τ W (X) +
∑
j

Aj(x(X))
∂W

∂Xj
(X) = F̂ (X) . (2.6)

The coefficents Aj are constant on Rd \ R and X 7→ x(X) takes Rd \ R to itself. In
addition, x(X) = X on R. It follows that

τ W (X) +
∑
j

Aj(X)
∂W

∂Xj
(X) = F̂ (X) . (2.7)

The bilischizian map preserves N so W satisfies the transmission conditions across N .
The function X 7→W (X) solves exactly the same transmission problem (2.4) that defines
the function x 7→ Û(x).

The well posedness assumption implies that the transmission problem is uniquely solv-
able. It follows that

X 7→W (X) := V̂ (x(X)) and x 7→ Û(x)

define the same functions on Rd.
On R the bilipschitzian map is equal to the identity and V̂ = ÛB. Thus the identity

just proved shows that on R, ÛB = Û . Summarizing, for x ∈ R and for τ large and real,

ÛB(τ, x) = Û(τ, x) on R . (2.8)

The well posedness of the Bérenger problem and the hyperbolic problem imply that
there is a λ1 so that both sides of (2.8) are holomorphic in Re τ > λ1. Since they are equal
for large real τ , unique continuation of holomorphic functions implies that they are equal
in Re τ > λ1. Uniqueness of the Laplace transform implies that

UB = U on R .

This completes the proof of perfection. �

Remark 2.1. T. Hagström,acting as a referee, observed that the above argument also
proves perfection when D = Rd and there is an absorbing layer only in xj (that is σk = 0
for k 6= j) provided that in the layer, the coefficients are independent of xj.

There are problems, for example with an isolated antenna for Maxwell’s equations or
radar in the exterior of an airplane where it is reasonable that the coefficients are constant
outside R. For others, notably geophysical computations, the heterogeneity of the earth
extends beyond R.

The failure of a proof of perfection does not prove imperfection. The following sections
prove that Bérenger’s method yield non trivial reflections.

3 Analysis of reflection for a wave equation system

To demonstrate imperfection we compute infinitely accurate high frequency asymptotic
solutions of the transmission problem with variable coefficients at the interface between
the unsplit region x1 < 0 and the layer in x1 > 0. The computation is performed on a
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2× 2 system that is as simple as possible. See [16] for similar computations for Maxwell’s
equations in R3 with constant coefficients.

The analysis of smart layers, which add a damping to the equation, is done in Section
3. The Bérenger’s method splitting the equations as in (1.2) is analysed in Section 4. The
interest of the smart layer is that it is dissipative for the natural L2 norm. Bérenger’s
method often destroys strong hyperbolicity, for example in case of Maxwell’s equations.

3.1 Preliminaries

Consider the wave equation with 0 < c(·) ∈ C∞(R),

L1(x, ∂)u := ∂tu+A1∂1u+A2∂2u = 0 in R1+2,

A1 = c(x1)

(
0 1
1 0

)
, A2 = c(x1)

(
1 0
0 −1

)
.

(3.1)

Define

L(x, ∂)u := L1(x, ∂)u + σBu = 0, x1 > 0. (3.2)

0 < σ ∈ R. The matrix B is a symmetric non negative matrix, for example the identity,
or the projection on the positive eigenspace E+ = CΦ+ = C(1, 1) of A1, that is

B+ =
1

2

(
1 1
1 1

)
. (3.3)

This choice is called the smart layer in [16].

3.2 Incident asymptotic solution in x1 < 0.

The following computations are justified by the analysis in Chapter 5 of [26]. The ansatz
for solutions of Lu ∼ 0 is

uε ∼ eiS/ε
+∞∑
j=0

εjaj(t, x), with the phase S(t, x) = t+ ϕ(x1) + kx2. (3.4)

The candidate uε oscillates in time with the frequency 1/2πε >> 1. The real number k is
fixed. The differential of the phase is then given by dS = (1, ϕ′, k).

Theorem 3.1. (i) If the real valued function ϕ ∈ C∞ with ϕ′ 6= 0 satisfies the eikonal
equation

c2(x1)(ϕ′
2
(x1) + k2) = 1,

(ii) and the coefficients aj ∈ C∞ satisfy the recursion relation

a0(t, x) ∈ Ker L1(x, dS), (3.5a)

∀j ≥ 0, iL1(x, dS) aj+1(t, x) + L(x, ∂) aj(t, x) = 0, (3.5b)

then (3.4) is an infinitely accurate approximate solution of Lu = 0. We write Luε =
O(ε∞). This means that for all N and compact K, ‖L(∂t, ∂x)uε‖L∞(K) = O(εN ).
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(iii) If gj = Πgj ∈ C∞0 (R2) ( Π is the projection operator on KerL1(x, dS)) are supported
in a fixed compact K, then there is one and only one family of aj satisfying (3.5)
together with the initial conditions, Πaj(0, ·) = gj and the polarization Πa0 = a0.
They have support in the tube of rays with feet in K and speed of propagation given
by the group velocity

v = − c2
(
ϕ′ , k

)
. (3.6)

(iv) Let Φ be the generator of KerL1(x, dS) defined in (3.13). The principal term a0(t, x) =
α0Φ is a solution of the transport equation

∂tα0 + v · ∇α0 + (d+ γσ)α0 = 0. (3.7)

γ and d are defined by

ΠBΦ = γΦ, ΠA1Φ′ = dΦ, d =
kc′(2ck − 1)

2ϕ′
. (3.8)

Proof. The computation is not simple to carry out, so we present the main details. Inject
the ansatz in Luε = (L1 + σB)uε ∼ 0 to find

L
(
eiS/ε

∑
εj aj

)
∼ eiS/ε

( i
ε
L1(x, dS)

∑
j≥0

εj aj +
∑
j≥0

εjL(x, ∂)aj

)
= 0,

with

L1(x, dS) = I + ϕ′A1 + kA2 =

(
1 + kc cϕ′

cϕ′ 1− kc

)
. (3.9)

The term of order −1 of the expansion above gives

L1(x, dS)a0 = 0. (3.10)

In order to have a nontrivial solution a0 this requires the eikonal equation,

detL1(x, dS) = 0, equivalently, c2(ϕ′
2

+ k2) = 1 . (3.11)

We suppose that k is such that kc(x1) < 1. Define ϕ+ by

ϕ′+(x1) =

√
1

c2(x1)
− k2, ϕ+(0) = 0. (3.12)

There are two solutions to the eikonal equation, according to the sign of ϕ′. The group
velocity shows that solution with positive (resp. negative) ϕ′ is a leftward propagating
wave (resp. rightward). The kernel of L1(x, dS) is one-dimensional, spanned by

Φ =
(
− cϕ′ , 1 + kc

)
. (3.13)

Thanks to the eikonal equation, its norm is given by ‖Φ‖2 = 2(1 + kc). The image,
Im L1(x, dS), is one dimensional, with basis Ψ := (1 + kc, cϕ′). (Φ,Ψ) are an orthogonal
basis for R2. The orthogonal projection on the kernel is denoted by Π(x, dS):

Π :=
ΦΦ∗

Φ∗Φ
, equivalently , Πw =

(Φ , w)

‖Φ‖2
Φ. (3.14)
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By (3.10), a0 is polarized, i.e. takes values in the kernel of L1(x, dS),

a0 = Πa0. (3.15)

These choices of the phase and a0 guarantee that the leading term in the first sum of (3.2)
vanishes so the first sum is for j ≥ 1 while the second is for j ≥ 0. Setting the term of
order εj equal to zero for all j ≥ 0 requires that the next terms in the expansion satisfy

∀j ≥ 0, iL1(x, dS)aj+1(t, x) + L(x, ∂)aj(t, x) = 0. (3.16)

Denote by Q(x, dS) the partial inverse of L1(x, dS) defined by

Q(x, dS)Π(x, dS) = 0 , Q(x, dS)L1(x, dS) = I −Π(x, dS) .

Multiplying (3.16) on the left, first by the orthogonal projection Π(x, dS), and second
by Q(x, dS), yield the pair of equations equivalent to the j-equation,

Π(x, dS)L(x, ∂)aj = 0, (3.17a)

i(I −Π(x, dS))aj+1 +Q(x, dS)L(x, ∂)aj = 0. (3.17b)

These equations are the starting point for the recursive computation of the aj . Equation
(3.17a) for j = 0 gives a transport equation on a0 = Πa0:

Π(x, dS)L(x, ∂)a0(t, x) := Π(x, dS)(∂ta0 +A1∂1a0 +A2∂2a0 + σBa0) = 0 .

Define α0 by a0 = α0Φ. Since Φ only depends on x1 one has

∂1(α0Φ) = ∂1α0Φ + α0Φ′ , ∂2(α0Φ) = ∂2α0Φ, and ∂t(α0Φ) = ∂tα0Φ , so

(∂tα0 + ∂1α0ΠA1 + ∂2α0ΠA2)Φ + α0(σΠBΦ + ΠA1Φ′) = 0 .

The ΠAjΠ are related to the group velocity by (see [26])

ΠAjΠ = vjΠ, vj =
(AjΦ,Φ)

‖Φ‖2
. (3.18)

This gives the formula for the group velocity in (3.6). Defining d and γ by (3.8) yields
(3.7). In x1 < 0, the transport equation together with initial value g0, determines Πa0.
The process iterates until all coefficients are determined as follows. Given aj−1, (I −Π)aj
is explicitly given by

(I −Π)aj = iQ(x, dS)L(x, ∂)aj−1. (3.19)

Then (3.17a) is split as

Π(x, dS)L(x, ∂)Πaj = −Π(x, dS)L(x, ∂)(I −Π)aj , (3.20)

and gives a transport equation on αj defined by Πaj = αjΦ as before. This transport
equation, with initial data given by gj , uniquely determines aj . For the precise formulas,
note that Π(x, dS) is given by

Π =
1

2

(
1− kc −cϕ′
−cϕ′ 1 + kc

)
. (3.21)
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Therefore

I −Π =
1

2
L1(x, dS) , L1(x, dS) = 2(I −Π) + 0 Π . (3.22)

To calculate d, we must calculate Φ′ = (−(cϕ′)′, kc′). Differentiate the eikonal equation
written as (cϕ′)2 + k2c2 = 1 to find

2(cϕ′)(cϕ′)′ + 2k2cc′ = 0, which gives − ϕ′Φ′1 + kΦ′2 = 0.

Therefore

Φ′ =
Φ′2
ϕ′

(
k
ϕ′

)
=
kc′

ϕ′

(
k
ϕ′

)
, A1Φ′ =

kcc′

ϕ′

(
ϕ′

k

)
, ΠA1Φ′ =

kcc′

2ϕ′(1 + kc)

(
ϕ′

k

)
·
(
−cϕ′

1 + kc

)
Φ.

that yield the second part of formula (3.8), and (3.7). The transport at step j follows the
same dynamics, with a right-hand side:

(∂tαj + v · ∇αj + (d+ γσ)αj) Φ = −Π(x, dS)L(x, ∂)(I −Π)aj . (3.23)

For future use computeQ(x, dS). By the Cayley-Hamilton theorem, we have (L1(x, dS))2 =
2L1(x, dS), therefore using (3.22), we see that Q is given by

Q(x, dS) =
1

2
(I −Π(x, dS)) =

1

4
L1(x, dS) . (3.24)

�

3.3 Reflection for the wave equation with layer

The analysis is made in R2. The velocity c is assumed to be smooth. The coefficient σ
in contrast may be discontinuous at x1 = 0. Solving the Cauchy problem in R2 with a
discontinuous coefficient σ is equivalent to solving the problem in each half-space, with
transmission condition [A1u]Γ = 0. Since A1 is invertible, this is equivalent to [u]Γ = 0.

Next analyse the reflection and transmission of a high frequency wave in x1 ≤ 0
when it arrives at the boundary x1 = 0. The input is a solution with phase SI(t, x) :=
t− ϕ+(x1) + kx2,

uε := eiS
I(t,x)/ε aI(t, x, ε) , aI(t, x, ε) ∼

∞∑
j=0

εj aI
j(t, x), L1(∂t, ∂x)uε = O(ε∞) . (3.25)

Suppose that the amplitudes aI
j are supported in a tube T ⊂ R1+2 of rays with temporal

cross sections T ∩ {t = 0} compact in {x1 < 0}.
Using Theorem 3.1, we construct a transmitted wave with the same phase and a

reflected wave, supported in x1 ≤ 0, with phase SR(t, x) := t + ϕ+(x1) + kx2. The
reflected wave vε is

vε = eiS
R(t,x)/ε aR(t, x, ε), aR(t, x, ε) ∼

∞∑
j=0

εj aR
j (t, x), L1(∂t, ∂x)vε = O(ε∞) . (3.26)

The transmitted wave, supported in x1 ≥ 0, is

wε := eiS
I(t,x)/ε aT(t, x, ε), aT(t, x, ε) ∼

∞∑
j=0

εj aT
j (t, x), L(∂t, ∂x)wε = O(ε∞) . (3.27)

They both have vanishing initial values. We first show that there are uniquely determined
reflected and transmitted waves. Then we compute exactly the leading terms in their
asymptotic expansions.
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Theorem 3.2.

(i) Given the incoming amplitudes aI
j there are uniquely determined amplitudes aT

j and
aR
j so that uε, vε and wε are infinitely accurate solutions of the differential equations

and the transmission condition is also satisfied to infinite order,

∀(t, x2) ∈ R× R, A1(uε + vε)(t, 0−, x2) = A1w
ε(t, 0+, x2) +O(ε∞) . (3.28)

(ii) If σ(x1) = σ1x1>0 , the coefficient aR
0 vanishes identically, and the reflection coeffi-

cient is

R1(k) = iσ
(1 + kc(0))b22 − (1− kc(0))b11

4c2(0)ϕ′2+ (0)
. (3.29)

That is, noting aI
0(t, x) = αI

0(t, x)ΦI ∈ KerL1(0, dSI), then

∀(t, x2) ∈ R× R, aR
1 (t, 0−, x2) = R1(k)αI

0(t, 0−, x2)ΦR . (3.30)

(iii) For a matrix B, the reflection coefficient R1(k) vanishes if and only if the diagonal
part of B is a scalar multiple of the matrix

B(k) =

(
1 + kc 0

0 1− kc

)
. (3.31)

In that case the first nonzero reflection coefficient then occurs at least at order 2, so

∀(t, x2) ∈ R× R, aR
2 (t, 0−, x2) = R2(k, ∂2)αI

0(t, 0−, x2)ΦR . (3.32)

These are called tuned layers. For the tuned layer, the reflection operator is

R2(k, ∂2) =
σ

4c2(0)ϕ′3+ (0)
(kc′(0) + 2c(0)ϕ′+(0) ∂2). (3.33)

Remark 3.1.

1. The reflection coefficient does not depend on the off-diagonal entries of B.

2. The reflection coefficient vanishes at normal incidence if and only if b11 = b22.

3. The most common matrices B are B ≡ I and B ≡ Π+ defined in (3.3). In these
cases

R1(k) =
iδσk

4(cϕ′2)(0)
, δ =

{
1 if B ≡ Π+ (a)
2 if B ≡ I (b)

.

Proof. (i) The formulas in Theorem 3.1 and its proof apply to the incident and reflected
waves in x1 ≤ 0 with B ≡ 0, and to the transmitted wave in x1 ≥ 0. The phases are
ϕI,T = −ϕ+ = −ϕR. The corresponding kernel, projector, and partial inverse of L1(x, dS)
are indexed by I,R, or T . They are the same for the incident and transmitted waves. To
determine the coefficients aI,R,T

j requires the transmission condition A1(uε + vε) = A1w
ε

on x1 = 0. This is equivalent to

aI
j + aR

j = aT
j on x1 = 0, j = 0, 1, . . . (3.34)
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The polarized parts are written with obvious notations ΠI,I,RaI,T,R

j = αI,T,R

j ΦI,I,R. The coef-

ficients αI,T,R

j are solutions of transport equations in the half spaces. They are determined
by the transmission condition. Details follow for j = 0, 1. For the tuned layer, we treat
also j = 2.

(ii) By (3.15) the coefficients at order 0 are polarized, ΠI,R,TaI,R,T

0 = aI,R,T

0 . The trans-
mission condition at order 0 becomes

ΠIaI
0 + ΠRaR

0 = ΠTaT
0 on x1 = 0,

equivalently,
αR

0 ΦR = [α0] ΦI on x1 = 0,

where [α] denotes the jump between the transmitted and incident part at x1 = 0, that is
[α](t, x2) = αT(t, 0+, x2)−αI(t, 0−, x2). Since ΦI = (−c(ϕI)′, 1+kc) and ΦR = (−c(ϕR)′, 1+
kc) = (c(ϕI)′, 1 + kc), these two vectors are transverse, so

αR
0 = 0 and αI

0 = αT
0 on x1 = 0.

The transport equation (3.7) for the incident, reflected, and transmitted waves becomes
with vI

1 = vT
1 = −c2ϕI′ = c2ϕ′+ = −vR

1 , v2 = −kc2,

∂tα
I
0 + vI

1∂1α
I
0 + v2∂2α

I
0 + d IαI

0 = 0, x1 < 0, (3.35a)

∂tα
T
0 + vI

1∂1α
T
0 + v2∂2α

T
0 + (d I + γσ)αT

0 = 0, x1 > 0, (3.35b)

∂tα
R
0 + vR

1 ∂1α
R
0 + v2∂2α

R
0 + dRαR

0 = 0, x1 < 0. (3.35c)

Since aR
0 has zero initial value and boundary data at x1 = 0, it vanishes identically in R2

−.
The reflection is at least first order. Next determine inductively the correctors. By (3.19),
(I −ΠR)aR

1 ≡ 0 in R2
− and aR

1 is polarized. Therefore, splitting the transmission condition
(3.34) for j = 1, one finds on the interface

ΠIaI
1 −ΠTaT

1 + ΠRaR
1 = −(I −Π)aI

1 + (I −Π)aT
1 , so

− [α1]ΦI + αR
1 ΦR = [(I −Π)a1] on x1 = 0. (3.36)

For the incident and transmitted phases and amplitudes, the superscripts, I, T , are omitted
when no confusion is to be feared. Next identify the righthand side of (3.36). From (3.19)

(I −Π)a1 = iQ(∂t +A1∂1 +A2∂2 + σB)a0,

with σ ≡ 0 for the incident wave. Insert a0 = Πa0 = α0(t, x)Φ. By definition of Q,
Qa0 = 0, and therefore Q∂ta0 = (∂tα0)QΦ = 0. Furthermore, Φ depends only on x1. So,

(I −Π)a1 = iQ
(
(∂1α0A1 + ∂2α0A2 + α0σB)Φ + α0A1Φ′

)
. (3.37)

Introduce the transverse part of the transport operator

T := ∂t + v2∂2 + d, (3.38)

to rewrite the transport equations for the incident and transmitted waves in (3.35) as

v1∂1α0 + T α0 + γσα0 = 0, σ = 0 for x1 < 0. (3.39)
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Replace ∂1α0 in (3.37) to obtain

(I −Π)a1 = iQ
(
(− 1

vI
1

(T + γσ)α0A1 + ∂2α0A2 + α0σB)Φ + α0A1Φ′
)
,

or, reordering the terms,

(I −Π)a1 = iQ
(
(∂2α0A2 −

1

v1
T α0A1)Φ + α0A1Φ′ + α0σ(B − γ

v1
A1)Φ

)
. (3.40)

The evaluation of the important term with σ is the object of the following lemma.

Lemma 3.3. For any symmetric matrix B, define the matrix B1 = B − γ
v1
A1, with γ

defined by ΠBΦ = γΦ. Then

ΠB1Φ = 0, QB1Φ =
b22(1 + kc)− b11(1− kc)

4cϕ′
Ψ. (3.41)

Proof of Lemma. First it is easy to see that

Π(B − γ

v1
A1)Φ = γΦ− γ

v1
ΠA1Φ = 0.

Therefore (B − γ
v1
A1)Φ is parallel to Ψ = L1 e1, and since Q = 1

2(I −Π),

Q(B − γ

v1
A1)Φ =

1

2
(B − γ

v1
A1)Φ. (3.42)

Suppose now that (using the orthogonal basis (Φ,Ψ) with ‖Φ‖2 = ‖Ψ‖2)

BΦ = γΦ + ηΨ, γ =
(BΦ,Φ)

‖Φ‖2
, η =

(BΦ,Ψ)

‖Φ‖2
,

compute A1Φ = v1Φ− v2Ψ, and therefore

(B − γ

v1
A1)Φ = (η + γ

v2

v1
)Ψ. (3.43)

Then

η + γ
v2

v1
= η + γ

k

ϕ′
=

1

‖Φ‖2
(BΦ,Ψ +

k

ϕ′
Φ).

Compute

Ψ +
k

ϕ′
Φ =

1

cϕ′

(
cϕ′

1 + kc

)
, therefore η + γ

v2

v1
=
b22(1 + kc)− b11(1− kc)

2cϕ′
.

Use this in (3.43) to get (B − γ
v1
A1)Φ, and then into (3.43) to get the third equality in

(3.41). �

End of Proof of Theorem. Since c, and hence v1, is smooth across the interface x1 = 0,
the righthand side of (I − Π)a1 is composed of two parts: one is continuous across the
interface, the other one having σ as a factor, jumps. For the jump, we find

[(I −Π)a1] = iσα0QB1Φ at x1 = 0. (3.44)
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Insert (3.41) in (3.44) to find

[(I −ΠI)a1] = iσαI
0

b22(1 + kc)− b11(1− kc)
4cϕI′ ΨI.

Replace in the transmission condition (3.36), to find

− [α1]ΦI + αR
1 ΦR = iσαI

0

b22(1 + kc)− b11(1− kc)
4cϕI′ ΨI. (3.45)

Take the scalar product with ΨI in (3.45) to obtain, since ΦI and ΨI are orthogonal,

αR
1 = iσαI

0

b22(1 + kc)− b11(1− kc)
4cϕI′

(ΨI,ΨI)

(ΨI,ΦR)
.

Compute
(ΨI,ΨI)

(ΨI,ΦR)
=

1

cϕI′

to obtain formula (3.29) in Theorem 3.2.

(iii) Furthermore, no reflection occurs at this order if and only if b22(1 + kc)− b11(1−
kc) = 0, that is [(I − Π)a1] = 0 and [α1] = αR

1 = 0. This proves the first part of (iii) in
Theorem 3.2.

Computation of the order two reflection. Since the extra diagonal coefficients do
not intervene, we suppose from now on that B = B(k) from (3.31). Then

γ = c2ϕ′
2
, B1 := B − γ

v1
A1 = L1(x, dSI). (3.46)

Next compute the transport equation for αR
1 . Since (I −ΠR)αR

1 ≡ 0 in Rd−, (3.35c) is valid
for αR

1 ,
∂tα

R
1 + vR·∇αR

1 + dRαR
1 = 0.

Again, αR
1 being solution of the leftward transport equation with zero boundary and initial

data, vanishes identically in R2
−. The information obtained so far is

aR
1 = ΠRaR

1 ≡ 0 in R2
− , [a1] = 0 on x1 = 0 . (3.47)

To calculate the next term in the expansion of the reflected wave, start with the transmis-
sion condition aI

2 + aR
2 = aT

2 on x1 = 0. Splitting the amplitudes into Π and I − Π parts
yields

ΠIaI
2 + ΠRaR

2 + (I −ΠI)aI
2 + (I −ΠR)aR

2 = ΠIaT
2 + (I −ΠI)aT

2 on x1 = 0,

rewritten as ΠRaR
2 − [ΠIa2] = [(I −ΠI)a2]. Equivalently

− [α2]ΦI + αR
2 ΦR = [(I −ΠI)a2]. (3.48)

To compute the jump in the righthand side, use (3.17b) for the incident and transmitted
a1 (with the index I omitted as long as only incident and transmitted waves are involved),

(I −Π)a2 = iQ(A1∂1 + ∂t +A2∂2 + σB)a1 .
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Since a1 is continuous on the interface, we obtain

[(I −Π)a2] = iQ(A1[∂1a1] + σBa1) on x1 = 0 . (3.49)

Split a1 to compute the jump of derivatives,

[∂1a1] = [∂1Πa1] + [∂1(I −Π)a1] = [∂1α1]Φ + [∂1(I −Π)a1] .

The jump of ∂1α1 is obtained from the transport equation. Start with the jump of ∂1(I −
Π)a1. From B1ΦI = 0, and from (3.40), for both the incident and transmitted wave, we
have

(I −Π)a1 = iQ
(
(A2∂2 −

1

v1
A1T )α0Φ + α0A1Φ′

)
. (3.50)

Differentiate (3.50) in x1 and take the jump on the interface. Since the coefficients are
smooth, only the jump of derivatives of α0 in x1 intervene,

[∂1(I −Π)a1] = iQ
(
(A2∂2 −

1

vI
1

A1T )[∂1α0]Φ + [∂1α0]A1Φ′
)
.

By (3.35), [∂1α0] = −σγ
v1
α0, and since neither σ nor ϕ depend on the transverse variables,

we obtain
[∂1(I −Π)a1] = −σγ

v1
(I −Π)a1 on x1 = 0. (3.51)

Next compute the transport equation for the incident and transmitted a1. Begin with

Π(∂t +A1∂1 +A2∂2 + σB)(α1Φ + (I −Π)a1) = 0 .

The polarized part leads to the transport equation computed before, and we put the rest
on the right hand side,

(v1∂1α1 + T α1 + σγα1)Φ = −Π(∂t +A2∂2 +A1∂1 + σB)((I −Π)a1) .

Next take the jump on the interface. Since (I −Π)a1 is continuous, we find

(v1[∂1α1] + σγα1)Φ = −Π(A1[∂1(I −Π)a1] + σB(I −Π)a1 on x1 = 0.

Replace the first term after the equal sign from (3.51) to find

(v1[∂1α1] + σγα1)Φ = −σΠ(− γ
v1
A1 +B)(I −Π)a1 = −σΠB1(I −Π)a1.

Since B1 = L1(x, dSI) = 2(I −Π), ΠB1(I −Π) = 0, and therefore[
∂1Πα1

]
= −σγ

v1
Πa1 on x1 = 0. (3.52)

Adding (3.51) and (3.52) gives

[∂1a1] = −σγ
v1
a1 on x1 = 0 .

Inserting in (3.49) gives, with a little algebra[
(I −Π)a2

]
= iσQB1a1 = i

σ

2
L1a1 = i

σ

2
L1(I −Π)a1 . (3.53)
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Insert now (I −Π)a1 from (3.50):[
(I −Π)a2

]
= −σ

2
L1Q

(
(A2∂2 −

1

v1
A1T )α0Φ + α0A1Φ′) := −σ

4
L1V .

The righthand side is rearranged as

V = (A2 −
v2

v1
A1)∂2α0Φ + α0A1(Φ′ − d

v1
Φ) .

It is not difficult to see that

A1(Φ′ − d

v1
Φ) =

kc′

2cϕ′2
Ψ, (A2 −

v2

v1
A1)Φ = − 1

ϕ′
Ψ . (3.54)

Therefore

V =
( kc′

2cϕ′2
α0 −

1

ϕ′
∂2α0

)
Ψ.

Since L1Ψ = L1
2e1 = 2L1e1 = 2Ψ, we get

[
(I −Π)a2

]
= −σ

2

( kc′

2cϕ′2
α0 −

1

ϕ′
∂2α0

)
Ψ.

Insert into (3.48) to obtain with the superscripts inserted

−
[
α2

]
ΦI + αR

2 ΦR = −σ
2

( kc′

2cϕ′2
αI

0 −
1

ϕI′∂2α
I
0

)
ΨI.

The usual ΨI· argument yields

αR
2 =

σ

2cϕ′2

( kc′

2cϕ′+
αI

0 + ∂2α
I
0

)
.

This completes the proof of Theorem 3.2. �

4 Reflection analysis for Bérenger’s doubled system

Bérenger’s model is defined by doubling the equations as in (1.2), with σ2 ≡ 0 and σ1(x1) ≡
σ, positive constant.

L̃1 = ∂t + Ã1∂1 + Ã2∂2 and L̃ = L̃1 + σB̃, (4.1a)

with Ã1 =

(
A1 A1

0 0

)
, Ã2 =

(
0 0
A2 A2

)
, B̃ =

(
I 0
0 0

)
. (4.1b)

When σ = 0, the system is equivalent to the wave equation (3.1) (see [16] ).
In this section we perform a WKB analysis for the Cauchy problem with σ > 0, with

tools as in Section 3.2. Then we study the reflection and transmission in a medium with
σ = 0 for x1 < 0, and σ > 0 for x1 > 0.
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4.1 Asymptotic solutions for Bérenger’s doubled system

The ansatz for the free space solution of L̃u = 0 is

ũε ∼ eiS̃/ε
+∞∑
j=0

εj ãj(t, x), with the phase S̃(t, x) = t+ ϕ̃(x1) + kx2.

Compute

L̃1(x, dS̃) = I + ϕ̃′Ã1 + kÃ2 =

(
I + ϕ̃′A1 ϕ̃′A1

kA2 I + kA2

)
.

It follows that

L̃1(x, dS̃)

(
Φ1

Φ2

)
= L1(x, dS̃)(Φ1 + Φ2) . (4.2)

Therefore the phases are the same as for the original system. The ansatz is

ũε ∼ eiS/ε
+∞∑
j=0

εj ãj(t, x), with the phase S(t, x) = t+ ϕ(x1) + kx2. (4.3)

The following algebraic results were established in [16]. By (4.2), the kernel of L̃1 is of
dimension 1, spanned by

Φ̃ =
(
ϕ′A1Φ , kA2Φ

)
. (4.4)

The matrix Π̃ of the projector on Ker L̃1(x, dS), and Q̃ the partial inverse of L̃1(x, dS)
defined by Q̃ Π̃ = 0 and Q̃L̃1(x, dS) = I − Π̃, are obtained through the projector Π on
KerL1(x, dS) and the partial inverse Q of L1(x, dS) in (3.24):

Π̃ = −
(
ϕ′A1Π ϕ′A1Π
kA2Π kA2Π

)
, Q̃ =

(
I − ϕ′A1Q −ϕ′A1Q
−kA2Q I − kA2Q

)
. (4.5)

Theorem 4.1. With the same assumptions as in Theorem 3.1, the same results hold for
the Bérenger’s operator, and the principal term ã0(t, x) = α̃0Φ̃ is a solution of the transport
equation

∂tα̃0 + v · ∇α̃0 + (d+ γ̃σ) α̃0 = 0, (4.6)

with v the group velocity defined in (3.6), d the zero order coefficients defined in (3.8),
and γ̃ = c2ϕ′2.

Remark 4.1. The absorption coefficient γ̃ is the same as for the tuned layer.

Proof. The recursion relations are the same as in (3.17), adding a tilde when necessary.
The coefficient ã0 is polarized, and ã0 = Π̃ã0 = α̃0Φ̃. Next calculate the transport equation
for α̃0. Write

Π̃(∂t + Ã1∂1 + Ã2∂2 + σB̃)(α̃0Φ̃) = 0

as
∂tα̃0Φ̃ + ∂1α̃0Π̃Ã1Φ̃ + ∂2α̃0Π̃Ã2Φ̃ + (Π̃Ã1Φ̃′ + σΠ̃B̃Φ̃)α̃0 = 0 .

Compute

Ã1Φ̃ =

(
−A1Φ

0

)
, Π̃Ã1Φ̃ =

(
ϕ′A1ΠA1Φ
kA2ΠA1Φ

)
=

(
v1A1Φ
v1A2Φ

)
= v1Φ̃,
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by (3.18). Π̃Ã2Φ̃ is computed in the same way, and we find

Π̃Ã1Φ̃ = v1Φ̃, Π̃Ã2Φ̃ = v2Φ̃. (4.7)

Next compute the term containing Φ̃′:

Π̃Ã1Φ̃′ = Π̃

(
A1((ϕ′A1 + kA2)Φ)′

0

)
(4.4)
= Π̃

(
A1(−Φ′)

0

)
(4.5)
=

(
ϕ′A1ΠA1Φ′

kA2ΠA1Φ′

)
.

By (3.8), ΠA1Φ′ = dΦ , and so
Π̃Ã1Φ̃′ = dΦ̃.

The last term Π̃B̃Φ̃ is computed using that ΠA1Φ = v1Φ, and v1 = −c2ϕ′,

Π̃B̃Φ̃ = Π̃

(
ϕ′A1Φ

0

)
= −ϕ′

(
ϕ′A1ΠA1Φ
kA2ΠA1Φ

)
= −ϕ′v1

(
ϕ′A1Φ
kA2Φ

)
= −ϕ′v1Φ̃ = c2ϕ′

2
Φ̃.

Summarizing, we get the assertion in the theorem. �

4.2 Reflection coefficients for Bérenger’s layer

The input is an incident wave in {x1 ≤ 0} with phase SI(t, x) := t− ϕ+(x1) + kx2,

ũε := eiS
I(t,x)/ε ãI(t, x, ε) , ãI(t, x, ε) ∼

∞∑
j=0

εj ãI
j(t, x), L̃1(∂t, ∂x) ũε = O(ε∞) . (4.8)

Suppose that the amplitudes ãI
j are supported in a tube T of rays with compact temporal

cross sections T ∩ {t = 0} ⊂⊂ {x1 < 0}.
By Theorem 4.1, we construct a transmitted wave with the same phase, and a reflected

wave with phase SR(t, x) := t+ϕ+(x1)+kx2. The reflected wave ṽε is supported in x1 ≤ 0:

ṽε = eiS
R(t,x)/ε ãR(t, x, ε), ãR(t, x, ε) ∼

∞∑
j=0

εj ãR
j (t, x), L̃1(∂t, ∂x)vε = O(ε∞) . (4.9)

The transmitted wave is supported in x1 ≥ 0,

w̃ε := eiS
I(t,x)/ε ãT(t, x, ε), ãT(t, x, ε) ∼

∞∑
j=0

εj ãT
j (t, x), L(∂t, ∂x)w̃ε = O(ε∞) . (4.10)

Theorem 4.2.

(i) Given the incoming amplitudes ãI
j there are uniquely determined amplitudes ãT

j and
ãR
j so that ũε, ṽε, and w̃ε are infinitely accurate solutions of the differential equations

and the transmission condition is also satisfied to infinite order,

∀(t, x2) ∈ R× R, Ã1(ũε + ṽε)(t, 0−, x2) = Ã1w̃
ε(t, 0+, x2) +O(ε∞) . (4.11)

(ii) If σ(x1) = σ 1x1>0, the coefficients ãR
0 and ãR

1 vanishes identically. The reflection
coefficient of the layer is equal to

R(k) = − σkc′(0)

4c2(0)ϕ′3+ (0)
.

That is, noting ãI
0(t, x) = α̃I

0(t, x)Φ̃I ∈ Ker L̃1(0, dSI), then

ãR
2 (t, 0−, x2) = R(k)α̃I

0(t, 0−, x2)Φ̃R .
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Remark 4.2. Bérenger’s layer with σ(x1) satisfying σ(0) = · · · = σ(p−1)(0) = 0, σ(p)(0) 6=
0 is nonreflecting at order p+ 1. There exists Rp(k) 6= 0 such that

aR
p+2(t, 0−, x2) = σ(p)(0)Rp(k) α̃I

0(t, 0−, x2) Φ̃R .

The proof of this case follows the proof of Theorem 6.1.(iv) in [16].

Proof of Theorem. Follows that of the preceding section. We will show that the
zero and first order terms in the expansion of the reflected wave vanish in x1 < 0, that
ãR

2 (t, x) = α̃R
2 (t, x)Φ̃R, and express α̃R

2 in terms of the incident wave. Define, for every j,
α̃j by

Π̃IãI,T

j = α̃I,T

j Φ̃I, Π̃RãR
j = α̃R

j Φ̃R.

Compute the transmission at the interface. Since the coefficients of order 0 are all polar-
ized, one has α̃I

0Φ̃I + α̃R
0 Φ̃R = α̃T

0 Φ̃I on x1 = 0. Since the vectors Φ̃I and Φ̃R are transverse,
this yields

α̃R
0 = 0 and α̃T

0 = α̃I
0 on x1 = 0 .

Using the group velocity vI(x1) = c2(ϕ′+,−k), the transport equation for the incident,
reflected and transmitted waves, with the transverse part (3.38) are

vI
1∂1α̃

I
0 + T Iα̃I

0 = 0 (4.12a)

vI
1∂1α̃

T
0 + T Iα̃T

0 + σγ̃α̃T
0 = 0, x1 > 0, (4.12b)

− vI
1∂1α̃

R
0 + T Rα̃R

0 = 0, x1 < 0. (4.12c)

Since the reflected wave vanishes at time 0, the transport equation (4.12c) propagating
to the left implies that α̃R

0 is identically equal to zero in R2
−×R. Since α̃T

0 = α̃I
0 on x1 = 0,

T α̃T
0 = T α̃I

0. Subtracting (4.12a) from (4.12b), it follows that

vI
1[∂1α̃0] + σγ̃α̃I

0 = 0 on x1 = 0. (4.13)

Next compute the terms of order 1 with tildized (3.19) at order 1,

(I − Π̃)ãI,R,T

1 = i Q̃ (Ã1∂1 + L̃T + σB̃) α̃I,R,T

0 Φ̃I,R,I, L̃T := ∂t + Ã2∂2 .

Since α̃R
0 ≡ 0 in R2

−×R, (I− Π̃)ãR
1 ≡ 0 in R2

−×R. For the incident and transmitted waves
(indices I,T omitted), replace ∂1α̃0 from (4.12), with σ = 0 for the incident wave,

(I − Π̃)ã1 = i Q̃
((
− 1

vI
1

Ã1(T α̃0 + σγ̃α̃0) + (L̃T + σB̃)α̃0

)
Φ̃ + α̃0Ã1Φ̃′

)
= i Q̃

((
(L̃T −

1

vI
1

Ã1T )α̃0 + (σB̃ − σγ̃

vI
1

Ã1)α̃0

)
Φ̃ + α̃0Ã1Φ̃′

)
= i Q̃

(
((L̃T −

1

vI
1

Ã1T )α̃0 + σB̃1α̃0)Φ̃ + α̃0Ã1Φ̃′
)
,

with

B̃1 = B̃ − γ̃

vI
1

Ã1 = B̃ + ϕI′Ã1. (4.14)

We first claim that the term in σ vanishes, since (omitting the I’s)

B̃1Φ̃ =

(
ϕ′A1Φ + ϕ′A1(ϕ′A1 + kA2)Φ

0

)
=

(
ϕ′A1Φ− ϕ′A1Φ

0

)
= 0,
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and therefore for both the incident and transmitted waves,

(I − Π̃)ã1 = iQ̃
(
(L̃T −

1

vI
1

Ã1T )α̃0Φ̃ + α̃0Ã1Φ̃′
)
. (4.15)

Since the previous equation does not contain σ, it shows that on the interface [(I−Π̃)ã1] =
0. Summarizing, for the reflected wave in R2

−, (I − Π̃R)ãR
1 ≡ 0, for the incoming wave in

R2
− and the transmitted wave in R2

+, [(I − Π̃)ã1] = 0. The transmission condition for a1 is

α̃R
1 Φ̃R + [α̃1]Φ̃I = [(I − Π̃I)ã1] = 0 on x1 = 0,

and shows that
α̃R

1 = 0 and α̃T
1 = α̃I

1 on x1 = 0.

Next compute the transport equation for α̃R
1 . Since (I − Π̃R)α̃R

1 ≡ 0 in Rd−, (4.12c) is valid
for α̃R

1 :
∂tα̃

R
1 + vR·∇α̃R

1 + dRα̃R
1 = 0.

Again, α̃R
1 being solution of the leftward transport equation with zero boundary and initial

data, vanishes identically in R2
−. Summarizing the information obtained so far,

ãR
1 = Π̃RãR

1 ≡ 0 in R2
−, [ã1] = 0 on x1 = 0. (4.16)

To calculate the next term in the expansion of the reflected wave, start with the trans-
mission condition ãI

2 + ãR
2 = ãT

2 on x1 = 0. Split into polarized and not polarized parts,

Π̃IãI
2 + Π̃RãR

2 + (I − Π̃I)ãI
2 + (I − Π̃R)ãR

2 = Π̃IãT
2 + (I − Π̃I)ãT

2 on x1 = 0.

By (4.16) and tildized (3.17b), (I − Π̃R)ãR
2 ≡ 0 in R2

−, and the previous equation can be
written as

Π̃RãR
2 − [Π̃Iã2] = [(I − Π̃I)ã2] on x1 = 0,

or equivalently
[α̃2]Φ̃I + α̃R

2 Φ̃R = [(I − Π̃I)ã2] on x1 = 0.

The vectors Φ̃I and Φ̃R are transverse, hence giving a unique solution ([α̃2], α̃R
2 ). Take the

scalar product with Ψ̃ = (ΨI,ΨI). Since (ΦI,ΨI) = 0, then (Φ̃I, Ψ̃I) = 0, and we find

α̃R
2 =

([(I − Π̃I)ã2], Ψ̃)

(Φ̃R, Ψ̃)
=

([(I − Π̃I)ã2], Ψ̃)

(ΦR,ΨI)
. (4.17)

To compute the jump in the righthand side, use (3.17b), omitting the indices I,

(I − Π̃)ã2 = iQ̃
(
Ã1∂1 + L̃T + σB̃

)
ã1.

Since ã1 is continuous on the interface, we obtain

[(I − Π̃)ã2] = iQ̃
(
Ã1[∂1ã1] + σB̃ã1

)
. (4.18)

Split again ã1 to compute the jump of derivatives:

[∂1ã1] = [∂1Π̃ã1] + [∂1(I − Π̃)ã1] = [∂1α̃1]Φ̃ + [∂1(I − Π̃)ã1].
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The jump of ∂1α̃1 will be obtained from the transport equation, the jump of ∂1(I − Π̃)ã1

by differentiating (4.15) in x1 and taking the jump on the interface. Start with the latter.

∂1(I − Π̃)ã1 = ∂1

(
i Q̃
(
(L̃T −

1

v1
Ã1T )α̃0Φ̃ +

kc′

2cϕ′2
α̃0

(
Ψ
0

) ))
.

Since the coefficients are smooth, only the jump of derivatives of α̃0 intervenes:

[∂1(I − Π̃)ã1] = i Q̃
(
(L̃T −

1

vI
1

Ã1T )[∂1α̃0]Φ̃ +
kc′

2cϕ′2
[∂1α̃0]

(
Ψ
0

) )
.

By (4.13), [∂1α̃0] = −σγ̃
vI1
α̃I

0 = σϕ′+α̃
I
0, and since neither σ nor ϕ depend on the transverse

variables, we obtain

[∂1(I − Π̃)ã1] = σϕ′+(I − Π̃)ã1 on x1 = 0. (4.19)

Next compute the transport equation for the incident and transmitted α̃1. Begin with

Π̃(∂t + Ã1∂1 + Ã2∂2 + σB̃)(α̃1Φ̃ + (I − Π̃)ã1) = 0 .

The polarized part leads to the transport equation computed before, and we put the rest
in the righthand side:

(v1∂1α̃1 + T α̃1 + σγ̃α̃1)Φ̃ = −Π̃(L̃T + Ã1∂1 + σB̃)((I − Π̃)ã1) .

Next take the jump on the interface. Since (I − Π̃)ã1 is continuous, we find

(v1[∂1α̃1] + σγ̃α̃1)Φ̃ = −Π̃(Ã1[∂1(I − Π̃)ã1] + σB̃(I − Π̃)ã1).

Replace the first term after the equal sign from (4.19) with the help of (4.14), to find

(v1[∂1α̃1] + σγ̃α̃1)Φ̃ = −σΠ̃(− γ̃
v1
Ã1 + B̃)(I − Π̃)ã1 = −σΠ̃B̃1(I − Π̃)ã1.

We have already met the matrix B̃1 = ϕ′Ã1 + B̃ and shown that it vanishes on the kernel
of L̃1(x, dS). Therefore [

∂1α̃1

]
Φ̃ = = −σ

( 1

v1
Π̃B̃1 + ϕ′Π̃

)
ã1. (4.20)

Defering (4.20) and (4.19) in (4.18) gives, with a little algebra,[
(I − Π̃)ã2

]
= iσQ̃(I − 1

v1
Ã1Π̃)B̃1ã1 = iσQ̃(I − 1

v1
Ã1Π̃)B̃1(I − Π̃)ã1.

(I − Π̃)ã1 was computed in (4.15) as

(I − Π̃)ã1 = iQ̃(Ṽ + W̃ ), Ṽ :=
(
L̃T −

1

v1
Ã1T

)
α̃0Φ̃, W̃ :=

kc′

2cϕ′2
α̃0

(
Ψ
0

)
.

and therefore [
(I − Π̃)ã2

]
= −σQ̃(I − 1

v1
Ã1Π̃)B̃1Q̃(Ṽ + W̃ ).

Plugging into (4.17), reintroducing the exponents I, we find
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α̃R
2 =

(−σQ̃I(I − 1
vI1
Ã1Π̃I)B̃1Q̃

I(Ṽ + W̃ ), Ψ̃)

(ΦR,ΨI)
. (4.21)

We know from perfect matching that for constant coefficients (c′ ≡ 0, W̃ = 0), the PML
is perfectly matched. In particular on the interface α̃R

2 is zero. Therefore the contribution

of Ṽ vanishes, and only the term containing W̃ remains. To compute the coefficient, we
need an intermediate technical computation.

Claim. For any vector Ṽ = (V1, V2),

(I − 1

v1
Ã1Π̃)(B̃ − γ

v1
Ã1)Q̃Ṽ =

(
(I − 1

v1
A1Π)V1

0

)
Proof of Claim. First the equality

(B̃ − γ

v1
Ã1)Q̃Ṽ =

(
V1 + ϕ′A1Π(V1 + V2)

0

)
is obtained by explicit calculations, using that ϕ′A1 + kA2 = L1 − I, Q = 1

4L1 and
Π = I − 2L1. Then some manipulations show that

Ã1Π̃

(
V1 + ϕ′A1Π(V1 + V2)

0

)
=

(
A1Π(V1 + ϕ′A1Π(V1 + V2))

0

)
=

(
A1ΠV1 + ϕ′v1A1Π(V1 + V2)

0

)
Subtracting these two expressions proves the claim.

The claim implies that

(
I − 1

vI
1

Ã1Π̃I

)
B̃1Q̃

I

(
ΨI

0

)
=

(
(I − 1

vI1
A1Π)ΨI

0

)
=

(
ΨI

0

)
.

Therefore

α̃R
2 = −σ kc′

2cϕ′2

(
Q̃I

(
ΨI

0

)
, Ψ̃
)

(ΦR,ΨI)
α̃I

0 .

Compute the right hand side(
Q̃I

(
ΨI

0

)
, Ψ̃
)

=

(
(I − ϕI′A1Q

I)ΨI

−kA2Q
IΨI

)
·
(

ΨI

ΨI

)
= ((I − (ϕI′A1 + kA2)QI)ΨI,ΨI)
= ((I − (LI − I)QI)ΨI,ΨI)
= ((I −QI)ΨI,ΨI) = 1

2‖Ψ
I‖2

since QIΨI = 1
2ΨI. Therefore

α̃R
2 = −σ kc′

4cϕ′2
‖ΨI‖2

(ΨI,ΦR)
α̃I

0 = −σ kc′

4c2ϕ′3
α̃I

0 . (4.22)

�
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5 Numerical experiments

Numerical simulations in this section exhibit the reflections proved to exist in the asymp-
totic expansions. Their amplitudes as a function of frequency correspond to the leading
order predictions of the theory. Since the theorems are rigorous and the accuracy of the
numerics is checked, what this shows is that the asymptotic regime is attained for the fre-
quencies tested. Figure 2 shows the interesting fact that with comparable wave numbers
much smaller meshes are needed to resolve Bérenger’s layer in the asymptotic regime.

The computational domain (see Figure 5) is the rectangle D :=] − 1, 1.6[× ] − 2, 2[
(black box). The smaller rectangle of interest is R :=]− 1, r [× ]− 1, 1[ with r = 0.6 (blue
box). The magenta box is the support of the data. The absorbing layer is ]r , 1.6[× ]−2, 2[
in green. The domain D is wide in the x1 and x2 directions so that waves reflected from
the external boundaries during the time of computation T = 2 do not interfere with the
reflections from the interface.

x1
<latexit sha1_base64="l0bVqcEFD5NfuQGNxzE3nKtEndM="></latexit><latexit sha1_base64="l0bVqcEFD5NfuQGNxzE3nKtEndM="></latexit><latexit sha1_base64="l0bVqcEFD5NfuQGNxzE3nKtEndM="></latexit>
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x2

r
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Figure 1: Data in the x plane

A very precise numerical solution inR is computed using a large computational domain
and small discretization size with an excessively large computation cost. The error in R is
the difference between the solutions computed with absorbing layers and the nearly exact
solution from the brute force computation.

The reflections depend on the frequency. The asymptotic expansion shows that with
aI

0 := αI
0ΦI, one has aR = αRΦR, and αR ∼ RαI

0, with

R =



Smart :
RS
2πω

, RS =
iσk

4(cϕ′2)(r)
,

Bérenger :
RB

(2πω)2
, RB = − σkc′(r)

4c2(r)ϕ′3+ (r)
,

Tuned :
RT

(2πω)2
, RT =

σ(kc′(r) + 2c(r)ϕ′+(r) ∂2)

4c2(r)ϕ′3+ (r)
.
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We choose the velocity c(x1) = 1/cosh(x1 + 1), for which the eikonal equation for k = 1,
ϕ′2(x1) + 1 = 1/c2, has the explicit form ϕI′(x1) = −ϕ′+(x1) = − sinh(x1 + 1). This
gives the formulas

RS = iσ
cosh(1 + r)

4 sinh2(1 + r)
, RB = −σ 1

4 sinh2(1 + r)
, RT = σ

1

4 sinh2(1 + r)
(1 + 2 cosh(1 + r)∂2).

Define

χρ,p(x) := cosp
(π|x|2

2ρ2

)
1|x|≤ρ

a Cp−1 function, compactly supported in the disk of radius ρ. The initial data is chosen
equal to a polarized wave packet

u(x, 0) = χr1,4(x1)χr2,2(x2) cos
(
2π ω (−ϕ+(x1) + kx2)

)
ΦI, ΦI :=

(
cϕ′+ , 1+kc

)
, r2 := 1.

The asymptotic solution has a wave moving to the right with phase t+ (−ϕ+(x1) + kx2)
and also a wave with amplitude smaller by a factor 1/ω moving to the left with phase
t− (−ϕ+(x1) + kx2). When the rightward wave reaches the layer there are reflections. It
is the size of those reflections, given by the difference of the computed and nearly exact
solutions in R that we measure.

Equations are solved with a simplified parallel Navier-Stokes solver designed in [11],
based on a 4th order discontinuous Galerkin technique in space and a 3rd order TVD
(total variation diminishing) Runge-Kutta scheme in time. Fluxes are computed using a
characteristic decomposition. The square domain D is discretized with ∆xj = 4/N , N =
(400, 800, 1600, 2800). The discrete L2 norm in space and time in the domain of interest
R is used to measure the error. Figure 2 shows, for various frequencies, the convergence
of the numerical error with mesh refinement. The reflection is almost independent of the
mesh size for small mesh. This shows that there is a reflection due to the interface and
that the reflection is not the result of discretization error.
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Figure 2: Reflection by a layer as a function of the number of points for 3 values of ω

Figure 3 shows the reflection for small mesh in loglog scale for Bérenger, smart, and
tuned layer as a function of the frequency, together with the theoretical expectations. The
expected behavior is confirmed. So is the linear dependence on σ that we do not display in a
figure. For ω = 10, the ratio |RS/RB| predicted by the theory is 2πω cosh(1 + r) ∼ 161.95.
The numerics yield 162.22. The ratio RT (u(·, 0)/RB(u(·, 0)| is about 25 and is independent
of the frequency.
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Figure 3: Reflection by smart, tuned and Bérenger layers as a function of the frequency,
numerical results and theoretical bounds.

6 Conclusion

It is proved by high frequency asymptotics that Bérenger’s layer is not perfectly matched
for variable coefficients. However the reflection is of order 2 while most smart layers
are of order 1. If the wave number k is known, we have introduced a tuned layer with
reflections of order 2. The smart and tuned layers are both dissipative in the layer by
straightforward energy estimates while Bérenger’s layers can be amplifying even in cases
where they are perfectly matched. In numerical experiments, Bérenger’s layer outperforms
the tuned layer by a factor of 20. The relative error for tuned is already quite small, and
the computational cost is half as large.
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