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Abstract. The good properties of Plotkin’s call-by-value lambda-calculus
crucially rely on the restriction to weak evaluation and closed terms. Open
call-by-value is the more general setting where evaluation is weak but
terms may be open. Such an extension is delicate, and the literature
contains a number of proposals. Recently, Accattoli and Guerrieri pro-
vided detailed operational and implementative studies of these proposals,
showing that they are equivalent from the point of view of termination,
and also at the level of time cost models.
This paper explores the denotational semantics of open call-by-value,
adapting de Carvalho’s analysis of call-by-name via multi types (aka
non-idempotent intersection types). Our type system characterises nor-
malisation and thus provides an adequate relational semantics. Moreover,
type derivations carry quantitative information about the cost of evalua-
tion: their size bounds the number of evaluation steps and the size of the
normal form, and we also characterise derivations giving exact bounds.
The study crucially relies on a new, refined presentation of the fireball
calculus, the simplest proposal for open call-by-value, that is more apt to
denotational investigations.

1 Introduction

The core of functional programming languages and proof assistants is usually
modelled as a variation over the λ-calculus. Even when one forgets about type
systems, there are in fact many λ-calculi rather than a single λ-calculus, depending
on whether evaluation is weak or strong (that is, only outside or also inside
abstractions), call-by-name (CbN for short), call-by-value (CbV),3 or call-by-
need, whether terms are closed or may be open, not to speak of extensions with
continuations, pattern matching, fix-points, linearity constraints, and so on.

Benchmark for λ-calculi. A natural question is what is a good λ-calculus? It is
of course impossible to give an absolute answer, because different settings value
different properties. It is nonetheless possible to collect requirements that seem
desirable in order to have an abstract framework that is also useful in practice.
We can isolate at least six principles to be satisfied by a good λ-calculus:

3 In CbV, function’s arguments are evaluated before being passed to the function, so
β-redexes can fire only when their arguments are values, i.e. abstractions or variables.
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1. Rewriting : there should be a small-step operational semantics having nice
rewriting properties. Typically, the calculus should be non-deterministic but
confluent, and a deterministic evaluation strategy should emerge naturally
from some good rewriting property (factorisation / standardisation theorem,
or the diamond property). The strategy emerging from the calculus principle
guarantees that the chosen evaluation is not ad-hoc.

2. Logic: typed versions of the calculus should be in Curry-Howard correspon-
dences with some proof systems, providing logical intuitions and guiding
principles for the features of the calculus and the study of its properties.

3. Implementation: there should be a good understanding of how to decompose
evaluation in micro-steps, that is, at the level of abstract machines, in order
to guide the design of languages or proof assistants based on the calculus.

4. Cost model : the number of steps of the deterministic evaluation strategy
should be a reasonable time cost model,4 so that cost analyses of λ-terms
are possible, and independent of implementative choices.

5. Denotations: there should be denotational semantics, that is, syntax-free
mathematical interpretations of the calculus that are invariant by evaluation
and that reflect some of its properties. Well-behaved denotations guarantee
that the calculus is somewhat independent from its own syntax, which is a
further guarantee that it is not ad-hoc.

6. Equality : contextual equivalence can be characterised by some form of bisimi-
larity, showing that there is a robust notion of program equivalence. Program
equivalence is indeed essential for studying program transformations and
optimisations at work in compilers.

Finally, there is a sort of meta-principle: the more principles are connected,
the better. For instance, it is desirable that evaluation in the calculus corresponds
to cut-elimination in some logical interpretation of the calculus. Denotations
are usually at least required to be adequate with respect to the rewriting: the
denotation of a term is non-degenerated if and only if its evaluation terminates.
Additionally, denotations are fully abstract if they reflect contextual equivalence.
And implementations have to work within an overhead that respects the intended
cost semantics. Ideally, all principles are satisfied and perfectly interconnected.

Of course, some specific cases may drop some requirements—for instance, a
probabilistic λ-calculus would not be confluent—some properties may also be
strengthened—for instance, equality may be characterised via a separation theo-
rem akin to Bohm’s—and other principles may be added—categorical semantics,
graphical representations, etc.

What is usually considered the λ-calculus, is, in our terminology, the strong
CbN λ-calculus with open terms, and all points of the benchmark have been
studied for it. Plotkin’s original formulation of CbV [45], conceived for weak
evaluation and closed terms and here referred to as Closed CbV, also boldly passes
the benchmark. Unfortunately Plotkin’s setting fails the benchmark as soon as it
is extended to open terms, which is required when using CbV for implementing

4 Here reasonable is a technical word meaning that the cost model is polynomially
equivalent to the one of Turing machines.
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proof assistants, see Grégoire and Leroy’s [29]. Typically, denotations are no
longer adequate, as first noticed by Paolini and Ronchi della Rocca [48], and
there is a mismatch between evaluation in the calculus and cut-elimination in its
linear logic interpretation, as shown by Accattoli [1]. The failure can be observed
also at other levels not covered by our benchmark, e.g. the incompleteness of
CPS translations, already noticed by Plotkin himself [45].

Benchmarking open call-by-value. The problematic interaction of CbV and
open terms is well known, and the fault is usually given to the rewriting—the
operational semantics has to be changed somehow. The literature contains a
number of proposals for extensions of CbV out of the closed world, some of which
were introduced to solve the incompleteness of CPS translations. In [3], Accattoli
and Guerrieri provided a comparative study of four extensions of Closed CbV
(with weak evaluation on possibly open terms), showing that they have equivalent
rewriting theories, are all adequate with respect to denotations, and share the
same time cost models—these proposals have then to be considered as different
incarnations of a more abstract framework, that they call open call-by-value
(Open CbV). Accattoli, Sacerdoti Coen, and Guerrieri provided also a theory of
implementations respecting the cost semantics [7,4], and a precise linear logic
interpretation [1]. Thus, Open CbV passes the first five points of the benchmark.

This paper deepens the analysis of the fifth point, by refining the denotational
understanding of Open CbV with a quantitative relationship with the rewriting
and the cost model. We connect the size of type derivations for a term with its
evaluation via rewriting, and the size of elements in its denotation with the size
of its normal form, in a model coming from the linear logic interpretation of CbV
and presented as a type system: Ehrhard’s relational semantics for CbV [23].

The last point of the benchmark—contextual equivalence for Open CbV—was
shown by Lassen to be a difficult question [39], and it is left to future work.

Multi types. Intersection types are one of the standard tools to study λ-calculi,
mainly used to characterise termination properties—classical references are Coppo
and Dezani [19,20], Pottinger [46], and Krivine [38]. In contrast to other type
systems, they do not provide a logical interpretation, at least not as smoothly as
for simple or polymorphic types—see Ronchi della Rocca and Roversi’s [49] or
Bono, Venneri, and Bettini’s [9] for details. They are better understood, in fact,
as syntactic presentations of denotational semantics: they are invariant under
evaluation and type all and only terminating terms, thus naturally providing an
adequate denotational semantics.

They are a flexible tool that can be formulated in various ways. A flavour
that emerged in the last 10 years is that of non-idempotent intersection types,
where the intersection A ∩A is not equivalent to A. They were first considered
by Gardner [26], and then Kfoury [37], Neergaard and Mairson [41], and de
Carvalho [14,16] provided a first wave of works abut them—a survey can be
found in Bucciarelli, Kesner, and Ventura’s [12]. Non-idempotent intersections
can be seen as multisets, which is why, to ease the language, we prefer to call
them multi types rather than non-idempotent intersection types.
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Multi types retain the denotational character of intersection types, and they
actually refine it along two correlated lines. First, taking types with multiplicities
gives rise to a quantitative approach, that reflects resource consumption in the
evaluation of terms. Second, such a quantitative feature turns out to coincide
exactly with the one at work in linear logic. Some care is needed here: multi types
do not correspond to linear logic formulas, rather to the relational denotational se-
mantics of linear logic (two seminal references for such a semantic are Girard’s [28]
and Bucciarelli and Ehrhard’s [10]; see also [15,34])—similarly to intersection
types, they provide a denotational rather than a logical interpretation.

An insightful use of multi types is de Carvalho’s connection between the size
of types and the size of normal forms, and between the size of type derivations
and evaluation lengths for the CbN λ-calculus [16].

Types of fireballs. This paper develops a denotational analysis of Open CbV akin
to de Carvalho’s. There are two main translations of the λ-calculus into linear
logic, due to Girard [27], the CbN one, that underlies de Carvalho’s study, and the
CbV one, that is explored here. The literature contains denotational semantics of
CbV and also studies of multi types for CbV. The distinguishing feature of our
study is the use of multi types to provide bounds on the number of evaluation
steps and on the size of normal forms, which has never been done before for
CbV, and that moreover we do it for the open case—the result for the closed
case, refining Ehrhard’s study, follows as a special case. Moreover, we provide a
characterisation of types and type derivations that provide exact bounds, similarly
to de Carvalho [14,16], Bernadet and Lengrand [8], and de Carvalho, Pagani,
and Tortora de Falco [17], and along the lines of a very recent work by Accattoli,
Graham-Lengrand, and Kesner [2], but using a slightly different approach.

Extracting exact bounds from the multi types system is however only half
of the story. The other, subtler half is about tuning up the presentation of
Open CbV as to accommodate as many points of the benchmark as possible. Our
quantitative denotational inquire via multi types requires the following properties:

0. Compositionality : if two terms have the same type assignments, then the
terms obtained by plugging them in the same context do so.

1. Invariance under evaluation: type assignments have to be stable by evaluation.
2. Adequacy : a term is typable if and only if it terminates.
3. Elegant normal forms: normal forms have a simple structure, so that the

technical development is simple and intuitive.
4. Number of steps: type derivations have to provide the number of steps to

evaluate to normal forms, and this number must be a reasonable cost model.
5. Matching of sizes: the size of normal forms has to be bounded by the size of

their types.

While property 0 is not problematic (type systems/denotational models are
conceived to satisfy it), it turns out that none of the incarnations of Open CbV
studied by Accattoli and Guerrieri in [3] (namely, Paolini and Ronchi della Rocca’s
fireball calculus λfire [44,48,29,7], Accattoli and Paolini’s value substitution calculus
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λvsub [6,1], and Carraro and Guerrieri’s shuffling calculus λsh [13,32,30,33,31])5

satisfies all the properties 1–5 at the same time: λfire lacks property 1 (as shown
here in Sect. 2); λvsub lacks property 3 (the inelegant characterisation of normal
forms is in [6]); and λsh, which in [13] is shown to satisfy 1, 2, and partially 3,
lacks properties 4 (the number of steps does not seem to be a reasonable cost
model, see [3]) and 5 (see the end of Sect. 6 in this paper).

We then introduce the split fireball calculus, that is a minor variant of the
fireball calculus λfire, isomorphic to it but integrating some features of the value
substitution calculus λvsub, and satisfying all the requirements for our study.
Thus, the denotational study follows smooth and natural, fully validating the
design and the benchmark.

To sum up, our study adds new ingredients to the understanding of Open CbV,
by providing a simple and quantitative denotational analysis via an adaptation
of de Carvalho’s approach, whose main features are:

1. Split fireball calculus : a new incarnation of Open CbV more apt to denotational
studies, and conservative with respect to the other properties of the setting.

2. Quantitative characterisation of termination: proofs that typable terms are
exactly the normalising ones, and that types and type derivations provide
bounds on the size of normal forms and on evaluation lengths.

3. Tight derivations and exact bounds: a class of type derivations that provide
the exact length of evaluations, and such that the types in the final judgements
provide the exact size of normal forms.

Related work. Classical studies of the denotational semantics of Closed CbV are
due to Sieber [50], Fiore and Plotkin [25], Honda and Yoshida [35], and Pravato,
Ronchi della Rocca and Roversi [47]. A number of works rely on multi types or
relational semantics to study property of programs and proofs. Among them,
Ehrhard’s [23], Diaz-Caro, Manzonetto, and Pagani’s [22], Carraro and Guerrieri’s
[13], Ehrhard and Guerrieri’s [24], and Guerrieri’s [31] deal with CbV, while
de Carvalho’s [14,16], Bernadet and Lengrand’s [8], de Carvalho, Pagani, and
Tortora de Falco’s [17], Accattoli, Graham-Lengrand, and Kesner’s [2] provide
exact bounds. Further related work about multi types is by Bucciarelli, Ehrhard,
and Manzonetto [11], de Carvalho and Tortora de Falco [18], Kesner and Vial
[36], and Mazza, Pellissier, and Vial [40]—this list is not exhaustive.

(No) Proofs. All proofs are in the Appendix of [5], the long version of this paper.

2 The Rise of Fireballs

In this section we recall the fireball calculus λfire, the simplest presentation of
Open CbV. For the issues of Plotkin’s setting with respect to open terms and for
alternative presentations of Open CbV, see Accattoli and Guerrieri’s [3].

5 In [3] a fourth incarnation, the value sequent calculus (a fragment of Curien and Her-
belin’s λ̄µ̃ [21]), is proved isomorphic to a fragment of λvsub, which then subsumes it.
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Terms t, u, s, r ::= x | λx.t | tu
Values v, v′, v′′ ::= x | λx.t

Fireballs f, f ′, f ′′ ::= v | i
Inert terms i, i′, i′′ ::= xf1 . . . fn n > 0

Right evaluation contexts C ::= 〈·〉 | tC | Cf

Rule at top level Contextual closure
(λx.t)v 7→βv t{x�v} C〈t〉 →βv C〈u〉 if t 7→βv u
(λx.t)i 7→βi t{x�i} C〈t〉 →βi C〈u〉 if t 7→βi u

Reduction →βf := →βv ∪ →βi

Fig. 1. The fireball calculus λfire.

The fireball calculus was introduced without a name and studied first by
Paolini and Ronchi Della Rocca in [44,48]. It has then been rediscovered by
Grégoire and Leroy in [29] to improve the implementation of Coq, and later
by Accattoli and Sacerdoti Coen in [7] to study cost models, where it was also
named. We present it following [7], changing only inessential, cosmetic details.

The fireball calculus. The fireball calculus λfire is defined in Fig. 1. The idea is
that the values of the CbV λ-calculus — i.e. abstractions and variables — are
generalised to fireballs, by extending variables to more general inert terms.
Actually fireballs (noted f, f ′, . . . ) and inert terms (noted i, i′, . . . ) are defined
by mutual induction (in Fig. 1). For instance, x and λx.y are fireballs as values,
while y(λx.x), xy, and (z(λx.x))(zz)(λy.(zy)) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and that when
plugged in a context they cannot create a redex, hence the name. Essentially,
they are the neutral terms of Open CbV. In Grégoire and Leroy’s presentation
[29], inert terms are called accumulators and fireballs are simply called values.

Terms are always identified up to α-equivalence and the set of free variables
of a term t is denoted by fv(t). We use t{x�u} for the term obtained by the
capture-avoiding substitution of u for each free occurrence of x in t.

Variables are, morally, both values and inert terms. In [7] they were considered
as inert terms, while here, for minor technical reasons we prefer to consider them
as values and not as inert terms—the change is inessential.

Evaluation rules. Evaluation is given by call-by-fireball β-reduction →βf : the
β-rule can fire, lighting up the argument, only if the argument is a fireball (fireball
is a catchier version of fire-able term). We actually distinguish two sub-rules: one
that lights up values, noted →βv

, and one that lights up inert terms, noted →βi

(see Fig. 1). Note that evaluation is weak : it does not reduce under abstractions.
We endow the calculus with the (deterministic) right-to-left evaluation strat-

egy, defined via right evaluation contexts C—note the production Cf , forcing
the right-to-left order. A more general calculus is defined in [3], for which the
right-to-left strategy is shown to be complete. The left-to-right strategy, often
adopted in the literature on Closed CbV, is also complete, but in the open case
the right-to-left one has stronger invariants that lead to simpler abstract machines
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(see [4]), which is why we adopt it here. We omit details about the rewriting
theory of the fireball calculus because our focus here is on denotational semantics.

Properties. A famous key property of Closed CbV (whose evaluation is exactly
→βv ) is harmony : given a closed term t, either it diverges or it evaluates to an
abstraction, i.e. t is βv-normal if and only if t is an abstraction. The fireball
calculus λfire satisfies an analogous property in the (more general) open setting by
replacing abstractions with fireballs (Prop. 1.1). Moreover, the fireball calculus is
a conservative extension of Closed CbV: on closed terms it collapses on Closed
CbV (Prop. 1.2). No other presentation of Open CbV has these good properties.

Proposition 1 (Distinctive properties of λfire). Let t be a term.

1. Open harmony: t is βf -normal if and only if t is a fireball.
2. Conservative open extension: t→βf u if and only if t→βv

u, when t is closed.

Example 2. Let t := (λz.z(yz))λx.x. Then, t →βf (λx.x)(y λx.x) →βf y λx.x,
where the final term y λx.x is a fireball (and βf -normal).

The key property of inert terms is summarised by the following proposition:
substitution of inert terms does not create or erase βf -redexes, and hence can
always be avoided. It plays a role in Sect. 4.

Proposition 3 (Inert substitutions and evaluation commute). Let t, u
be terms, i be an inert term. Then, t→βf u if and only if t{x�i} →βf u{x�i}.

With general terms (or even fireballs) instead of inert ones, evaluation and
substitution do not commute, in the sense that both directions of Prop. 3 do
not hold. Direction ⇐ is false because substitution can create βf -redexes, as
in (xy){x�λz.z} = (λz.z)y; direction ⇒ is false because substitution can erase
βf -redexes, as in ((λx.z)(xx)){x�δ} = (λx.z)(δδ) where δ := λy.yy.6

3 The Fall of Fireballs

Here we introduce Ehrhard’s multi type system for CbV [23] and show that—with
respect to it—the fireball calculus λfire fails the denotational test of the benchmark
sketched in Sect. 1. This is an issue of λfire: to our knowledge, all denotational
models that are adequate for (some variant of) CbV are not invariant under the
evaluation rules of λfire, because of the rule →βi substituting inert terms7.

In the next sections we shall use this type system, while the failure is not
required for the main results of the paper, and may be skipped on a first reading.

6 As well-known, Prop. 3 with ordinary (i.e. CbN) β-reduction →β instead of →βf and
general terms instead of inert ones holds only in direction ⇒.

7 Clearly, any denotational model for the CbN λ-calculus is invariant under βf -reduction
(since →βf ⊆→β), but there is no hope that it could be adequate for the fireball
calculus. Indeed, such a model would identify the interpretations of (λx.y)Ω (where
Ω is a diverging term and x 6= y) and y, but in a CbV setting these two terms have
a completely different behaviour: y is normal, whereas (λx.y)Ω cannot normalise.
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Relational semantics. We analyse the failure considering a concrete and well-
known denotational model for CbV: relational semantics. For Plotkin’s original
CbV λ-calculus, it has been introduced by Ehrhard [23]. More generally, relational
semantics provides a sort of canonical model of linear logic [27,10,34,15], and
Ehrhard’s model is the one obtained by representing the CbV λ-calculus into
linear logic, and then interpreting it according to the relational semantics. It is
also strongly related to other denotational models for CbV based on linear logic
such as Scott domains and coherent semantics [23,47], and it has a well-studied
CbN counterpart [14,16,11,43,42,40,2].

Relational semantics for CbV admits a nice syntactic presentation as a multi
type system (aka non-idempotent intersection types), introduced right next. This
type system, first studied by Ehrhard in [23], is nothing but the CbV version of
de Carvalho’s System R for CbN λ-calculus [14,16].

Multi types. Multi types and linear types are defined by mutual induction:

Linear types L,L′ ::= M ( N
Multi types M,N ::= [L1, . . . , Ln] (with n ∈ N)

where [L1, . . . , Ln] is our notation for multisets. Note the absence of base types:
their role is played by the empty multiset [ ] (obtained for n = 0), that we rather
note 0 and refer to as the empty (multi) type. A multi type [L1, . . . , Ln] has
to be intended as a conjunction L1 ∧ · · · ∧ Ln of linear types L1, . . . , Ln, for a
commutative and associative conjunction connective ∧ that is not idempotent
(morally a tensor ⊗) and whose neutral element is 0.

The intuition is that a linear type corresponds to a single use of a term t, and
that t is typed with a multiset M of n linear types if it is going to be used (at most)
n times. The meaning of using a term is not easy to define precisely. Roughly, it
means that if t is part of a larger term u, then (at most) n copies of t shall end
up in evaluation position during the evaluation of u. More precisely, the n copies
shall end up in evaluation positions where they are applied to some terms.

The derivation rules for the multi types system are in Fig. 2—they are exactly
the same as in [23]. In this system, judgements have the shape Γ ` t :M where t
is a term, M is a multi type and Γ is a type context, that is, a total function from
variables to multi types such that the set dom(Γ ) := {x | Γ (x) 6= 0} is finite.
Note that terms are always assigned a multi type, and never a linear type—this
is dual to what happens in de Carvalho’s System R for CbN [14,16].

The application rule has a multiplicative formulation (in linear logic terminol-
ogy), as it collects the type contexts of the two premises. The involved operation
is the sum of type contexts Γ ]∆, that is defined as (Γ ]∆)(x) := Γ (x) ]∆(x),
where the ] in the RHS stands for the multiset sum. A type context Γ such that
dom(Γ ) ⊆ {x1, . . . , xn} with xi 6= xj and Γ (xi) = Mi for all 1 ≤ i 6= j ≤ n is
often written as Γ = x1 :M1, . . . , xn :Mn. Note that the sum of type contexts ]
is commutative and associative, and its neutral element is the type context Γ
such that dom(Γ ) = ∅, which is called the empty type context (all types in Γ are
0). The notation π B Γ ` t :M means that π is a type derivation π (i.e. a tree
constructed using the rules in Fig. 2) with conclusion the judgement Γ ` t :M .
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ax
x :M ` x :M

Γ ` t : [M ( N ] ∆ ` u :M
@

Γ ]∆ ` tu :N

Γ1, x :M1 ` t :N1
n∈N. . . Γn, x :Mn ` t :Nn

λ
Γ1 ] · · · ] Γn ` λx.t : [M1 ( N1, . . . ,Mn ( Nn]

Fig. 2. Multi types system for Plotkin’s CbV λ-calculus [23].

Intuitions: the empty type 0. Before digging into technical details let us provide
some intuitions. A key type specific to the CbV setting is the empty multiset 0,
also known as the empty (multi) type. The idea is that 0 is the type of terms
that can be erased. To understand its role in CbV, we first recall its role in CbN.

In the CbN multi type system [14,16,2] every term, even a diverging one, is
typable with 0. On the one hand, this is correct, because in CbN every term
can be erased, and erased terms can also be divergent, because they are never
evaluated. On the other hand, adequacy is formulated with respect to non-empty
types: a term terminates if and only if it is typable with a non-empty type.

In CbV, instead, terms have to be evaluated before being erased. And, of
course, their evaluation has to terminate. Therefore, terminating terms and
erasable terms coincide. Since the multi type system is meant to characterise
terminating terms, in CbV a term is typable if and only if it is typable with 0,
as we shall prove in Sect. 8. Then the empty type is not a degenerate type, as in
CbN, it rather is the type, characterising (adequate) typability altogether.

Note that, in particular, in a typing judgement Γ ` e :M the type context Γ
may give the empty type to a variable x occurring in e, as for instance in the
axiom x :0 ` x :0—this may seem very strange to people familiar with CbN multi
types. We hope that instead, according to the provided intuition that 0 is the
type of termination, it would rather seem natural.

The model. The idea to build the denotational model from the type system is
that the interpretation (or semantics) of a term is simply the set of its type
assignments, i.e. the set of its derivable types together with their type contexts.
More precisely, let t be a term and x1, . . . , xn (with n ≥ 0) be pairwise distinct
variables. If fv(t) ⊆ {x1, . . . , xn}, we say that the list ~x = (x1, . . . , xn) is suitable
for t. If ~x = (x1, . . . , xn) is suitable for t, the (relational) semantics of t for ~x is

JtK~x := {((M1, . . . ,Mn), N) | ∃π B x1 :M1, . . . , xn :Mn ` t :N} .

Ehrhard proved that this is a denotational model for Plotkin’s CbV λ-calculus [23,
p. 267], in the sense that the semantics of a term is invariant under βv-reduction.

Theorem 4 (Invariance for →βv , [23]). Let t and u be two terms and ~x =
(x1, . . . , xn) be a suitable list of variables for t and u. If t→βv u then JtK~x = JuK~x.

Note that terms are not assumed to be closed. Unfortunately, relational
semantics is not a denotational model of the fireball calculus λfire: Thm. 4 does
not hold if we replace →βv with →βi (and hence with →βf ), as we show in the
following example—the reader can skip it on a first reading.
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Example 5 (On a second reading: non-invariance of multi types in the fireball
calculus). Consider the fireball step (λz.y)(xx)→βf y, where the inert sub-term
xx is erased. Let us construct the interpretations of the terms (λz.y)(xx) and y.
All type derivations for xx are as follows (M and N are arbitrary multi types):

πM,N =
ax

x : [M ( N ] ` x : [M ( N ]
ax

x :M ` x :M
@

x : [M ( N ] ]M ` xx :N

Hence, all type derivations for (λz.y)(xx) and y have the following forms:

ax
y :N ` y :N

λ
y :N ` λz.y : [0 ( N ]

...πM,0

x : [M ( 0] ]M ` xx :0
@

x : [M ( 0] ]M,y :N ` (λz.y)(xx) :N

ax
x :0, y :N ` y :N

Therefore,

J(λz.y)(xx)Kx,y = {(([M ( 0] ]M,N), N) |M,N multi types}
JyKx,y = {((0, N), N) | N multi type}

To sum up, in the fireball calculus (λz.y)(xx)→βf y, but J(λz.y)(xx)Kx,y 6⊆
JyKx,y as (([0 ( 0],0),0) ∈ J(λz.y)(xx)Kx,yrJyKx,y, and JyKx,y 6⊆ J(λz.y)(xx)Kx,y
because ((0,0),0) ∈ JyKx,y r J(λz.y)(xx)Kx,y.

An analogous problem affects the reduction step (λz.zz)(xx)→βf (xx)(xx),
where the inert term xx is instead duplicated. In general, all counterexamples
to the invariance of the relational semantics under βf -reduction are due to βi-
reduction, when the argument of the fired βf -redex is an inert term that is erased
or duplicated. Intuitively, to fix this issue, we should modify the syntax and
operational semantics of λfire in such a way that the βi-step destroys the β-redex
without erasing nor duplicating its inert argument: Prop. 3 guarantees that this
modification is harmless. This new presentation of λfire is in the next section.

Remark 6 (On a second reading: additional remarks about relational semantics).

1. Relational semantics is invariant for Plotkin’s CbV even in presence of open
terms, but it no longer is an adequate model : the term (λy.δ)(xx)δ (where
δ := λz.zz) has an empty semantics (i.e. is not typable in the multi type
system of Fig. 2) but it is βv-normal. Note that, instead, it diverges in λfire

because a βi-step “unblocks” it: (λy.δ)(xx)δ →βi
δδ →βv

δδ →βv
. . .

2. Even though it is not a denotational model for the fireball calculus, relational
semantics is adequate for it, in the sense that a term is typable in the multi
types system of Fig. 2 if and only if it βf -normalises. This follows from two
results involving the shuffling calculus, an extension of Plotkin’s CbV that is
another presentation of Open CbV:

– the adequacy of the relational semantics for the shuffling calculus [13,31];
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Terms,Values,Fireballs,
as for the fireball calculus λfireInert terms, Right ev. contexts

Environments E ::= ε | [x�i] :E
Programs p ::= (t, E)

Rules
(C〈(λx.t) v〉, E) →βv (C〈t{x�v}〉, E)
(C〈(λx.t) i〉, E) →βi (C〈t)〉, [x�i] :E)

Reduction →βf := →βv ∪ →βi

Fig. 3. The split fireball calculus Splitλfire.

– the equivalence of the fireball calculus λfire and shuffling calculus λsh from
the termination point of view, i.e. a term normalises in one calculus if
and only if it normalises in the other one [3].

Unfortunately, the shuffling calculus λsh has issues with respect to the quantitative
aspects of the semantics (it is unknown whether its number of steps is a reasonable
cost model [3]; the size of λsh-normal forms is not bounded by the size of their
types, as we show in Ex. 16), which instead better fit the fireball calculus λfire. This
is why in the next section we slightly modify λfire, rather than switching to λsh.

4 Fireballs Reloaded: the Split Fireball Calculus Splitλfire

This section presents the split fireball calculus Splitλfire, that is the refinement of
the fireball calculus λfire correcting the issue explained in the previous section
(Ex. 5), namely the non-invariance of type assignments by evaluation.

The calculus Splitλfire is defined in Fig. 3. The underlying idea is simple:
the problem with the fireball calculus is the substitution of inert terms, as
discussed in Ex. 5; but some form of βi-step is needed to get the adequacy of
relational semantics in presence of open terms, as shown in Rmk. 6. Inspired by
Prop. 3, the solution is to keep trace of the inert terms involved in βi-steps in an
auxiliary environment, without substituting them in the body of the abstraction.
Therefore, we introduce the syntactic category of programs p, that are terms with
an environment E, which in turn is a list of explicit (i.e. delayed) substitutions
paring variables and inert terms. We use expressions e, e′, . . . to refer to the
union of terms and programs. Note the new form of the rewriting rule →βi

, that
does not substitute the inert term and rather adds an entry to the environment.
Apart from storing inert terms, the environment does not play any active role in
βf -reduction for Splitλfire. Even though →βf is a binary relation on programs, we
use ‘normal expression’ to refer to either a normal (with respect to→βf ) program
or a term t such that the program (t, E) is normal (for any environment E).

The good properties of the fireball calculus are retained. Harmony in Splitλfire

takes the following form (for arbitrary fireball f and environment E):

Proposition 7 (Harmony). A program p is normal if and only if p = (f,E).

So, an expression is normal iff it is a fireball f or a program of the form (f,E).
Conservativity with respect to the closed case is also immediate, because in

the closed case the rule →βi never fires and so the environment is always empty.
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On a second reading: no open size explosion. Let us mention that avoiding the
substitution of inert terms is also natural at the implementation / cost model
level, as substituting them causes open size explosion, an issue studied at length
in previous work on the fireball calculus [7,4]. Avoiding the substitution of inert
terms altogether is in fact what is done by the other incarnations of Open CbV,
as well as by abstract machines. The split fireball calculus Splitλfire can in fact be
seen as adding the environment of abstract machines but without having to deal
with the intricacies of decomposed evaluation rules. It can also be seen as the
(open fragment of) Accattoli and Paolini’s value substitution calculus [6], where
indeed inert terms are never substituted. In particular, it is possible to prove
that the normal forms of the split fireball calculus are isomorphic to those of the
value substitution up to its structural equivalence (see [3] for the definitions).

On a second reading: relationship with the fireball calculus. The split and the
(plain) fireball calculus are isomorphic at the rewriting level. To state the relation-
ship we need the concept of program unfolding (t, E)

→

, that is, the term obtained
by substituting the inert terms in the environment E into the main term t:

(t, ε)

→

:= t (t, [y�i] :E)

→

:= (t{x�i}, E)

→

From the commutation of evaluation and substitution of inert terms in the
fireball calculus (Prop. 3), it follows that normal programs (in Splitλfire) unfold
to normal terms (in λfire), that is, fireballs. Conversely, every fireball can be seen
as a normal program with respect to the empty environment.

For evaluation, the same commutation property easily gives the following
strong bisimulation between the split Splitλfire and the plain λfire fireball calculi.

Proposition 8 (Strong bisimulation). Let p be a program (in Splitλfire).

1. Split to plain: if p→βf q then p

→

→βf q

→

.
2. Plain to split: if p

→

→βf u then there exists q such that p→βf q and q

→

= u.

It is then immediate that termination in the two calculi coincide, as well as
the number of steps to reach a normal form. Said differently, the split fireball
calculus can be seen as an isomorphic refinement of the fireball calculus.

5 Multi Types for Splitλfire

The multi type system for the split fireball calculus Splitλfire is the natural
extension to terms with environments of the multi type system for Plotkin’s CbV
λ-calculus seen in Sect. 2. Multi and linear types are the same. The only novelty
is that now judgements type expressions, not only terms, hence we add two new
rules for the two cases of environment, esε and es@, see Fig. 4. Rule esε is trivial,
it is simply the coercion of a term to a program with an empty environment.
Rule es@ uses the append operation E@[x�i] that appends an entry [x�i] to the
end of an environment E, formally defined as follows:

ε@[x�i] := [x�i] ([y�i′] :E)@[x�i] := [y�i′] : (E@[x�i])

We keep all the notations already used for multi types in Sect. 3.
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ax
x :M ` x :M

Γ ` t : [M ( N ] ∆ ` u :M
@

Γ ]∆ ` tu :N

Γ1, x :M1 ` t :N1
n∈N. . . Γn, x :Mn ` t :Nn

λ
Γ1 ] · · · ] Γn ` λx.t : [M1 ( N1, . . . ,Mn ( Nn]

Γ ` t :M esε
Γ ` (t, ε) :M

Γ, x :M ` (t, E) :N ∆ ` i :M
es@

Γ ]∆ ` (t, E@[x�i]) :N

Fig. 4. Multi types system for the split fireball calculus.

Sizes, and basic properties of typing. For our quantitative analyses, we need the
notions of size for terms, programs and type derivations.

The size |t| of a term t is the number of its applications not under the scope
of an abstraction. The size |(t, E)| of a program (t, E) is the size of t plus the size
of the (inert) terms in the environment E. Formally, they are defined as follows:

|v| := 0 |tu| := |t|+ |u|+ 1 |(t, ε)| := |t| |(t, E@[x�i])| := |(t, E)|+ |i|

The size |π| of a type derivation π is the number of its @ rules.
The proofs of the next basic properties of type derivations are straightforward.

Lemma 9 (Free variables in typing). If π B Γ ` e :M then dom(Γ ) ⊆ fv(e).

The next lemma collects some basic properties of type derivations for values.

Lemma 10 (Typing of values). Let π B Γ ` v :M be a type derivation for a
value v. Then,

1. Empty multiset implies nul size: if M = 0 then dom(Γ ) = ∅ and |π| = 0 = |v|.
2. Multiset splitting: if M = N ] O, then there are two type contexts ∆ and

Π and two type derivations σ B ∆ ` v : N and ρ B Π ` v : O such that
Γ = ∆ ]Π and |π| = |σ|+ |ρ|.

3. Empty judgement: there is a type derivation σ B ` v :0.
4. Multiset merging: for any two type derivations π B Γ ` v :M and σ B ∆ ` v :

N there is a type derivation ρ B Γ ]∆ ` v :M ]N such that |ρ| = |π|+ |σ|.
The next two sections prove that the multi type system is correct (Sect. 6)

and complete (Sect. 7) for termination in the split fireball calculus Splitλfire,
also providing bounds for the length |d| of a normalising evaluation d and for
the size of normal forms. At the end of Sect. 7 we discuss the adequacy of the
relational model induced by this multi type system, with respect to Splitλfire.
Sect. 8 characterises types and type derivations that provide exact bounds.

6 Correctness

Here we prove correctness (Thm. 14) of multi types for Splitλfire, refined with
quantitative information: if a term is typable then it terminates, and the type
derivation provides bounds for both the number of steps to normal form and the
size of the normal form. After the correctness theorem we show that even types
by themselves—without the derivation—bound the size of normal forms.
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Correctness. The proof technique is standard. Correctness is obtained from
subject reduction (Prop. 13) plus a property of typings of normal forms (Prop. 11).

Proposition 11 (Type derivations bound the size of normal forms). Let
π B Γ ` e :M be a type derivation for a normal expression e. Then |e| ≤ |π|.

As it is standard in the study of type systems, subject reduction requires a
substitution lemma for typed terms, here refined with quantitative information.

Lemma 12 (Substitution). Let π B Γ, x :N ` t :M and σ B ∆ ` v :N (where
v is a value). Then there exists ρ B Γ ]∆ ` t{x�v} :M such that |ρ| = |π|+ |σ|.

The key point of the next quantitative subject reduction property is the fact
that the size of the derivation decreases by exactly 1 at each evaluation step.

Proposition 13 (Quantitative subject reduction). Let p and p′ be programs
and π B Γ ` p :M be a type derivation for p. If p→βf p

′ then |π| > 0 and there
exists a type derivation π′ B Γ ` p′ :M such that |π′| = |π| − 1.

Correctness now follows as an easy induction on the size of the type derivation,
which bounds both the length |d| of the—normalising—evaluation d (i.e. the
number of βf -steps in d) by Prop. 13, and the size of the normal form by Prop. 11.

Theorem 14 (Correctness). Let π B Γ ` p :M be a type derivation. Then
there exist a normal program q and an evaluation d : p→∗βf q with |d|+ |q| ≤ |π|.

Types bound the size of normal forms. In our multi type system, not only type
derivations but also multi types provide quantitative information, in this case on
the size of normal forms.

First, we need to define the size for multi types and type contexts, which is
simply given by the number of occurrences of (. Formally, the size of linear and
multi types are defined by mutual induction by |M ( N | := 1 + |M |+ |N | and
|[L1, . . . , Ln]| :=

∑n
i=1|Li|. Clearly, |M | ≥ 0 and |M | = 0 if and only if M = 0.

Given a type context Γ = x1 :M1, . . . , xn :Mn we often consider the list of
its types, noted Γ := (M1, . . . ,Mn). Since any list of multi types (M1, . . . ,Mn)
can be seen as extracted from a type context Γ , we use the notation Γ for lists
of multi types. The size of a list of multi types is given by |(M1, . . . ,Mn)| :=∑n
i=1|Mi|. Clearly, dom(Γ ) = ∅ if and only if |Γ | = 0.
The quantitative information is that the size of types bounds the size of

normal forms. In the case of inert terms a stronger bound actually holds.

Proposition 15 (Types bound the size of normal forms). Let e be a
normal expression. For any type derivation π B Γ ` e :M , one has |e| ≤ |(Γ ,M)|.
If moreover e is an inert term, then |e|+ |M | ≤ |Γ |.

Example 16 (On a second reading: types, normal forms, and λsh). The fact that
multi types bound the size of normal forms is a quite delicate result that holds in
the split fireball calculus Splitλfire but does not hold in other presentations of Open
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CbV, like the shuffling calculus λsh [13,31], as we now show—this is one of the
reasons motivating the introduction of Splitλfire. Without going into the details of
λsh, consider t := (λz.z)(xx): it is normal for λsh but it — or, more precisely, the
program p := (t, ε) — is not normal for Splitλfire, indeed p →∗βf (z, [y�xx]) =: q

and q is normal in Splitλfire. Concerning sizes, |t| = |p| = 2 and |q| = 1. Consider
the following type derivation for t (the type derivation π0,0 is defined in Ex. 5):

ax
z :0 ` z :0

λ` λz.z : [0 ( 0]

...π0,0

x : [0 ( 0] ` xx :0
@

x : [0 ( 0] ` (λz.z)(xx) :0

So, |t| = 2 > 1 = |([0 ( 0],0)|, which gives a counterexample to Prop. 15 in λsh.

7 Completeness

Here we prove completeness (Thm. 20) of multi types for Splitλfire, refined
with quantitative information: if a term terminates then it is typable, and the
quantitative information is the same as in the correctness theorem (Thm. 14
above). After that, we discuss the adequacy of the relational semantics induced
by the multi type system, with respect to termination in Splitλfire.

Completeness. The proof technique, again, is standard. Completeness is obtained
by a subject expansion property plus the fact that all normal forms are typable.

Proposition 17 (Normal forms are typable).

1. Normal expression: for any normal expression e, there exists a type derivation
π B Γ ` e :M for some type context Γ and some multi type M .

2. Inert term: for any multi type N and any inert term i, there exists a type
derivation σ B ∆ ` i :N for some type context ∆.

In the proof of Prop. 17, the stronger statement for inert terms is required,
to type a normal expression that is a program with non-empty environment.

For quantitative subject expansion (Prop. 19), which is dual to subject
reduction (Prop. 13 above), we need an anti-substitution lemma that is the dual
of the substitution one (Lemma 12 above).

Lemma 18 (Anti-substitution). Let t be a term, v be a value, and π B
Γ ` t{x�v} : M be a type derivation. Then there exist two type derivations
σ B ∆,x :N ` t :M and ρ B Π ` v :N such that Γ = ∆ ]Π and |π| = |σ|+ |ρ|.

Subject expansion follows. Dually to subject reduction, the size of the type
derivation grows by exactly 1 along every expansion (i.e. along every anti-βf -step).

Proposition 19 (Quantitative subject expansion). Let p and p′ be pro-
grams and π′ B Γ ` p′ :M be a type derivation for p′. If p →βf p

′ then there
exists a type derivation π B Γ ` p :M for p such that |π′| = |π|+ 1.

Theorem 20 (Completeness). Let d : p →∗βf q be a normalising evaluation.

Then there is a type derivation π B Γ ` p :M , and it satisfies |d|+ |q| ≤ |π|.
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Relational semantics. Subject reduction (Prop. 13) and expansion (Prop. 19)
imply that the set of typing judgements of a term is invariant by evaluation, and
so they provide a denotational model of the split fireball calculus (Cor. 21 below).

The definitions seen in Sect. 2 of the interpretation JtK~x of a term with respect
to a list ~x of suitable variables for t extends to the split fireball calculus by simply
replacing terms with programs, with no surprises.

Corollary 21 (Invariance). Let p and q be two programs and ~x = (x1, . . . , xn)
be a suitable list of variables for p and q. If p→βf q then JpK~x = JqK~x.

From correctness (Thm. 14) and completeness (Thm. 20) it follows that the
relational semantics is adequate for the split fireball calculus Splitλfire.

Corollary 22 (Adequacy). Let p be a program and ~x = (x1, . . . , xn) be a
suitable list of variables for p. The following are equivalent:

1. Termination: the evaluation of p terminates;
2. Typability: there is a type derivation π B Γ ` p :M for some Γ and M ;
3. Non-empty denotation: JpK~x 6= ∅.

Careful about the third point: it requires the interpretation to be non-empty—
a program typable with the empty multiset 0 has a non-empty interpretation.
Actually, a term is typable if and only if it is typable with 0, as we show next.

Remark 23. By Prop. 1.2 and 8, (weak) evaluations in Plotkin’s original CbV
λ-calculus λv, in the fireball calculus λfire and in its split variant Splitλfire coincide
on closed terms. So, Cor. 22 says that relational semantics is adequate also for λv
restricted to closed terms (but adequacy for λv fails on open terms, see Rmk. 6).

8 Tight Types and Exact Bounds

In this section we study a class of minimal type derivations, called tight, providing
exact bounds for evaluation lengths and sizes of normal forms.

Typing values and inert terms. Values can always be typed with 0 in an empty
type context (Lemma 10.3), by means of an axiom for variables or of a λ-rule with
zero premises for abstractions. We are going to show that inert terms can also
always be typed with 0. There are differences, however. First, the type context in
general is not empty. Second, the derivations typing with 0 have a more complex
structure, having sub-derivations for inert terms whose right-hand type might
not be 0. It is then necessary, for inert terms, to consider a more general class of
type derivations, that, as a special case, include derivations typing with 0.

First of all, we define two class of types:

Inert linear types Li ::= 0 ( N i

Inert multi types M i, N i ::= [Li1, . . . , L
i
n] (with n ∈ N).

A type context Γ is inert if it assigns only inert multi types to variables.
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In particular, the empty multi type 0 is inert (take n = 0), and hence the
empty type context is inert. Note that inert multi types and inert multi contexts
are closed under summation ].

We also introduce two notions of type derivations, inert and tight. The tight
ones are those we are actually interested in, but, as explained, for inert terms we
need to consider a more general class of type derivations, the inert ones. Formally,
given an expression e, a type derivation π B Γ ` e :M is

– inert if Γ is a inert type context and M is a inert multi type;
– tight if π is inert and M = 0;
– nonempty (resp. empty) if Γ is a non-empty (resp. empty) type context.

Note that tightness and inertness of type derivations depend only on the
judgement in their conclusions. The general property is that inert terms admit a
inert type derivation for every inert multi type M i.

Lemma 24 (Inert typing of inert terms). Let i be a inert term. For any
inert multi type M i there exists a nonempty inert type derivation π B Γ ` i :M i.

Lemma 24 holds with respect to all inert multi types, in particular 0, so inert
terms can be always typed with a nonempty tight derivation. Since values can be
always typed with an empty tight derivation (Lemma 10.3), we can conclude:

Corollary 25 (Fireballs are tightly typable). For any fireball f there exists
a tight type derivation π B Γ ` f :0. Moreover, if f is a inert term then π is
nonempty, otherwise f is a value and π is empty.

By harmony (Prop. 7), it follows that any normal expression is tightly typable
(Prop. 26 below). Terminology : a coerced value is a program of the form (v, ε).

Proposition 26 (Normal expressions are tightly typable). Let e be a
normal expression. Then there exists a tight derivation π B Γ ` e :0. Moreover,
e is a value or a coerced value if and only if π is empty.

Tight derivations and exact bounds. The next step is to show that tight derivations
are minimal and provide exact bounds. Again, we have to detour through inert
derivations for inert terms. And we need a further property of inert terms: if the
type context is inert then the right-hand type is also inert.

Lemma 27 (Inert spreading on inert terms). Let π B Γ ` i :M be a type
derivation for a inert term i. If Γ is a inert type context then M and π are inert.

Next, we prove that inert derivations provide exact bounds for inert terms.

Lemma 28 (Inert derivations are minimal and provide the exact size
of inert terms). Let π B Γ ` i :M i be a inert type derivation for a inert term
i. Then |i| = |π| and |π| is minimal among the type derivations of i.

We can now extend the characterisation of sizes to all normal expressions,
via tight derivations, refining Prop. 11.
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Lemma 29 (Tight derivations are minimal and provide the exact size
of normal forms). Let π B Γ ` e :0 be a tight derivation and e be a normal
expression. Then |e| = |π| and |π| is minimal among the type derivations of e.

The bound on the size of normal forms using types rather than type derivations
(Prop. 15) can also be refined: tight derivations end with judgements whose (inert)
type contexts provide the exact size of normal forms.

Proposition 30 (Inert types and the exact size of normal forms). Let
e be a normal expression and π B Γ ` e :0 be a tight derivation. Then |e| = |Γ |.

Tightness and general programs. Via subject reduction and expansion, exact
bounds can be extended to all normalisable programs. Tight derivations indeed
induce refined correctness and completeness theorems replacing inequalities with
equalities (see Thm. 31 and 32 below and compare them with Thm. 14 and 20
above, respectively): an exact quantitative information relates the length |d| of
evaluations, the size of normal forms and the size of tight type derivations.

Theorem 31 (Tight correctness). Let π B Γ ` p :0 be a tight type derivation.
Then there is a normalising evaluation d : p→∗βf q with |π| = |d|+ |q| = |d|+ |Γ |.
In particular, if dom(Γ ) = ∅, then |π| = |d| and q is a coerced value.

Theorem 32 (Tight completeness). Let d : p→∗βf q be a normalising evalu-

ation. Then there is a tight type derivation π B Γ ` p :0 with |π| = |d|+ |q| =
|d|+ |Γ |. In particular, if q is a coerced value, then |π| = |d| and dom(Γ ) = ∅.
Both theorems are proved analogously to their corresponding non-tight version
(Thm. 14 and 20), the only difference is in the base case: here Lemma 29 provides
an equality on sizes for normal forms, instead of the inequality given by Prop. 11
and used in the non-tight versions. The proof of tight completeness (Thm. 32)
uses also that normal programs are tightly typable (Prop. 26).

9 Conclusions

This paper studies multi types for CbV weak evaluation. It recasts in CbV
de Carvalho’s work for CbN [14,16], building on a type system introduced by
Ehrhard [23] for Plotkin’s original CbV λ-calculus λv [45]. Multi types provide a
denotational model that we show to be adequate for λv, but only when evaluating
closed terms; and for Open CbV [3], an extension of λv where weak evaluation is
on possibly open terms. More precisely, our main contributions are:

1. The formalism itself: we point out the issues with respect to subject reduction
and expansion of the simplest presentation of Open CbV, the fireball calculus
λfire, and introduce a refined calculus (isomorphic to λfire) that satisfies them.

2. The characterisation of termination both in a qualitative and quantitative way.
Qualitatively, typable terms and normalisable terms coincide. Quantitatively,
types provide bounds on the size of normal forms, and type derivations bound
the number of evaluation steps to normal form.

3. The identification of a class of type derivations that provide exact bounds on
evaluation lengths.
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