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THE FAMILY FORMULA FOR LEPTONS AND QUARKS 

NIKOLA PERKOVIC 

Institute of Physics and Mathematics, Faculty of Science, University of 

Novi Sad, Dositej Obradovic square 3, Novi Sad, 21000, Serbia 

The problem of Yukawa couplings being arbitrary parameters in the Standard Model Higgs mechanism is a long 

standing one due to their formulaic dependence on the Higgs Vacuum Expectation Value. We will attempt to solve this 

problem and provide a strong argument that the Yukawa couplings of charged leptons and down type quarks are not 

arbitrary parameters in the SM. A new methodology for predicting the Yukawa couplings will be presented by using 

Compton wavelengths, the Rydberg Constant and g-factors of charged leptons instead of relying on the Higgs VEV. 

We will then proceed to rewrite this new method in terms of an empirical formula that depends on the running of the 

fine-structure constant on the Q scale, charge and lepton quantum numbers and g-factors to predict the values of the 

Yukawa couplings for all three generations of charged leptons and d-type quarks. We will also touch on the subject of 

neutrinos both as Majorana and Dirac fermions respectively and make a prediction for the lightest possible Majorana 

neutrino and the differences between Dirac neutrinos and anti-neutrinos. We conclude that the Yukawa couplings are 

not arbitrary parameters in the SM and that this new formula provides very accurate results. 
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1. Introduction 

In the Standard Model of Particle Physics1-4, electroweak symmetry breaking5-8 is responsible for the 

mass generation of W and Z gauge bosons thus rendering the weak interactions short ranged. The 

Standard Model scalar potential is: 

 

 

V(Φ) = m2Φ†Φ + λ(Φ†Φ)2 

 

where the Higgs field Φ is a self-interacting SU(2)L complex doublet that has four real degrees 

of freedom, with weak hypercharge Y =1 and V(Φ) is the most general renormalizable scalar potential 

and if the quadratic term is negative the neutral component of the scalar doublet acquires a non-zero 

vacuum expectation value 𝑣 = (√2GF)
−1 2⁄

 which is approximately 246,22 GeV. We should also 

point out that 

 

(1) 



 

Φ =
1

√2
(

√2ф+

ф0 + 𝑖𝑎0
) 

 

where ф0 and 𝑎0 are the CP-even and CP-odd neutral components, and ф+ is the complex charged 

component of the Higgs doublet, respectively. The global minimum of the theory defines the ground 

state, and spontaneous symmetry breaking implies that there is a symmetry of the system that is not 

respected by the ground state. From the four generators of the SU(2)𝐿 × U(1)𝑌 gauge group, three are 

spontaneously broken, implying that they lead to non-trivial transformations of the ground state and 

indicate the existence of three massless Goldstone bosons identified with three of the four Higgs field 

degrees of freedom. The Higgs field couples to the Wμ and Bμ gauge fields associated with the 

SU(2)𝐿 × U(1)𝑌 local symmetry through the covariant derivative appearing in the kinetic term of the 

Higgs Lagrangian 

 

ℒHiggs = (DμΦ)
†

(DμΦ) − V(Φ) 

Where the covariant derivative equals 

 

Dμ = ∂μ +
𝑖gσ𝑎Wμ

𝑎

2
+

𝑖g′YBμ

2
 

g and g′ are the SU(2) and U(1) gauge couplings, respectively, and σ𝑎 where 𝑎 = 1, 2, 3are the typical 

Pauli matrices. As a result, the neutral and the two charged massless Goldstone degrees of freedom 

mix with the gauge fields corresponding to the broken generators of SU(2)𝐿 × U(1)𝑌 and become the 

longitudinal components of the Z and W gauge bosons, respectively.  The Z and W gauge bosons 

acquire masses MW = g𝑣 2⁄  and MZ = (g′ + g)𝑣 2⁄ . The fourth generator remains unbroken since it is 

the one associated to the conserved U(1)QED gauge symmetry therefore its corresponding gauge field 

remains massless or in other words, the photon is massless. Similarly the eight color gauge bosons, the 

gluons, corresponding to the conserved SU(3)𝐶  gauge symmetry with eight unbroken generators, also 

remain massless. Therefore, from the initial four degrees of freedom of the Higgs field, two are 

absorbed by the W± gauge bosons, one by the Z0 gauge boson, and there is one remaining degree of 

freedom H, that is the physical Higgs boson. The Higgs boson is neutral under the electromagnetic 

interactions and transforms as a singlet under SU(3)𝐶 and hence does not couple at tree level to the 

massless photons and gluons. The mass of the Higgs boson9 is given as mh = √2λ𝑣2, where λ is a 

free coupling parameter and therefore the mass of the Higgs boson is not predicted in the Standard 

Model. With the Higgs field in the unitary gauge, the SU(2)𝐿 × U(1)𝑌 invariant Yukawa Lagrangian 

For leptons takes the form: 

 

ℒ𝑓 = −λ𝑓(L̅ΦeR + Φ†e̅RL) = −
λ𝑓𝑣

√2
e̅e −

λ𝑓ℎ

√2
e̅e 

The respective masses of fermions are not predicted since the Yukawa coupling λ𝑓 is a free parameter 

provided in the formula: 

 

 

m𝑓 =
λ𝑓𝑣

√2
 

(2) 

(3) 

(4) 

(7) 

(6) 

(5) 



in that sense the Higgs mechanism does not predict any of the fermion masses. The results from eq. 

(6) are listed in the table below.  

Table 1: Flavors, masses and numerical values of charged lepton Yukawa couplings 

𝑓 mass [𝑀𝑒𝑉 ∙ 𝑐−2] λ𝑓 

𝑒 0.5109989461(31) 2.935(17) × 10−6 

𝜇 105.6583745(24) 6,07(10) × 10−4 

𝜏 1776.82(16) 1.02(04) × 10−2 

 

It is possible to estimate the strength of the fermion-fermion-Higgs interactions 

 

ℒ𝑓𝑓ℎ =
me

𝑣
e̅eℎ −

mu

𝑣
u̅uℎ + ⋯ 

where me is the mass of an electron and mu is the mass of an up quark. A very important consequence 

of the fermion-fermion-Higgs interaction is its direct dependence on fermion masses. The larger the 

mass the stronger this interaction becomes. In order to make sure that Yukawa couplings are no longer 

arbitrary parameters in the SM Higgs mechanism, we have to avoid using the Higgs VEV.  Therefore 

we rewrite the formula in eq. (6) as: 

 

λ𝑙 =
(λC,𝑙 ∙ R∞ ∙ ng

L𝑓 g𝑓)
ng

1− 
Q2

L2N

N2
 

Where λ𝑙  is the lepton Yukawa coupling, 𝑙 = 𝑒, 𝜇, 𝜏 are the flavors for electrons as the first generation, 

muons as second and tau leptons as third respectively, λC,𝑙 is the Compton wavelength of the lepton, 

g𝑓 is the g-factor of the charged lepton, L𝑓 = L𝑒 , L𝜇, L𝜏  is the lepton family number, ng ≡ 3 is the 

number of families/generations, R∞ is the Rydberg constant and N is a quantum number that equals 

N = 𝑖Q2 L2⁄  where 𝑖 = 1, 2, 3 represents the mass eigenstates, Q and L are the electromagnetic charge1 

quantum number and Lepton number, respectively. The charge quantum number equals  

 

Q = T3 +
1

2
Y 

where T3 is the third component of weak isospin and Y is the weak hypercharge. The lepton number 

equals L = n𝑙 − n𝑙 ̅ where n𝑙  represents the number of leptons and n𝑙 ̅ the number of anti-leptons. 

Compton wavelengths of electrons, muons and tau leptons are known to high accuracy however the 

Rydberg constant and the g-factors of electrons and muons are some of the best measured quantities in 

all of physics, along with the fine structure constant α which will be used in the more complex version 

of the formula from eq. (8), replacing the Rydberg constant and Compton wavelengths. Eq. (8) 

provides approximately the same values as does eq. (6), the values of which are provided in Table 1. 

The problem we are facing now is that we rely on Compton wavelengths that are proportional to a 

particle’s mass and the Rydberg constant meaning that we cannot predict the Yukawa couplings of 

either leptons or quarks until we remove λC,𝑙 and R∞ from the formula in eq. (8). 

                                                           
1 The electromagnetic charge quantum number can also be represented as Q/e where e denotes the elementary 

charge. 

(7) 

(8) 

(9) 



 

2. The Charged Lepton Family Formula 

Following the relationship the Rydberg constant has with the Compton wavelength  R∞ = α2/2λC,𝜏 

we can rewrite the formula from eq. (8), however this only applies for the Compton wavelength of 

electrons, not muons and tau leptons. The revised formula from eq. (8) takes the form in which we 

only rely on the fine structure constant, the g-factor and the respective quantum numbers. We rewrite 

the formula in integral form both to eliminate the Compton wavelengths and the Rydberg constant as 

previously mentioned as well as to describe the relationship between the Yukawa couplings, the fine 

structure constant and the Higgs field. The formula is: 

 

λ𝑙 = (
ng

Lf gf

(1 + ∆q)
∫ ΦN𝑑Φ

α(Q)

0

)

ng

1− 
Q2

L2N

N2⁄  

where α(Q) is the running value of the fine structure constant on the scale Q, Φ is the Higgs field and 

∆q encapsulates the higher order QED corrections and can be expressed as a power series expansion 

in the renormalized electromagnetic coupling constant α ∆q = ∑ ∆q𝑗∞
𝑖=0  in which the index 𝑗 gives the 

power of α that appears in ∆q𝑗. The formula can thus be further simplified to be: 

λ𝑙 = (
αN+1(Q) ∙ ng

L𝑓 g𝑓

(N + 1)(1 + ∆q)
)

ng

1− 
Q2

L2N

N2⁄  

When 𝑖 = 1 and therefore 𝑙 = 𝑒, Q = −1, L = 1, L𝑓 = L𝑒 = 1 we obtain the formula for the electron 

Yukawa coupling 

 

λ𝑒 =
α2 ∙ 3g𝑓

2
 

When 𝑖 = 2 and therefore 𝑙 = 𝜇, Q = −1, L = 1, L𝑓 = L𝜇 = 1  we obtain the formula for the muon 

Yukawa coupling 

 

λ𝜇 = (
α3(M𝜇) ∙ 3g𝑓

3𝑐3,𝜇
−1 )

1 3⁄

4⁄  

where α(M𝜇) is the value of the fine structure constant on the muonic scale, that is when Q = M𝜇. We 

will use the MS̅̅ ̅̅  renormalization scheme. The effective value of the fine structure constant is obtained 

by using the equation10: 

 

 

α(Q) =
α

1 − Π̂(Q)
 

where Π̂(Q) is the photon vacuum polarization function which can be written as Π̂(Q) = ∑ Π̂𝑖(Q)∞
𝑖=1  

where each term receives contributions from all fermion flavors. In the MS̅̅ ̅̅  renormalization scheme 

(12) 

(13) 

(11) 

(14) 

(10) 



the counter terms are chosen so that they only contain divergent pieces with the addition of certain 

constants. One-loop counter terms are proportional to ∆= 1 ε⁄ − 𝛾E + ln(4π) + 𝑂(ε) where 𝛾E is the 

Euler-Mascheroni constant. An appropriate choice for the ’t Hooft mass is 𝜇 = M𝜇 and therefore we 

write α(Q) = α(M𝜇). Ultimately we get the equation: 

 

α(M𝜇) =
α

1 −
α

3π
ln (

m𝜇
2

m𝑒
2)

+
α2

4π2
ln (

m𝜇
2

m𝑒
2

) 

The equation above provides a value that is listed in Table 2. The electroweak radiative corrections for 

muons  

 

(1 + ∆q) = 𝑐3,𝜇
−1 = {𝑓 (

m𝑒

m𝜇

) [1 +
α

4π
2 (

25

4
− π2)]}

−1

 

where f denotes the phase space factor for one massive particle in the final state. The phase space 

factor is almost negligible for the muon decay 𝑓(m𝑒 m𝜇⁄ ) = 0.999813. This provides a value of 

𝑐3,𝜇
−1 = 1.0044041434(36).  

When 𝑖 = 3 and therefore 𝑙 = 𝜏, Q = −1, L = 1, L𝑓 = L𝜏 = 1  we obtain the formula for the tau 

lepton Yukawa coupling: 

 

λ𝜏 = (
α4(M𝜏) ∙ 3g𝑓

4𝑐3,𝜏
−1 )

1 9⁄

9⁄  

Equation (17) also requires us to apply the MS̅̅ ̅̅  renormalization scheme. The first step is the same, as it 

always is, as for muons in eq. (14) thus we’ll skip it. The scale Q now equals the tau lepton mass Q =

M𝜏 and, as pointed out by A. A. Pivovarov in the paper: “Running electromagnetic coupling constant: 

low energy normalization and the value at MZ” in Ref. 11, the total finite renormalization between the 

fine structure constant and the MS̅̅ ̅̅  renormalization scheme is given by ∆4(M𝜏) = ∆𝑙(M𝜏) +

∆𝑢𝑑𝑠(M𝜏) + ∆𝑐(M𝜏) = 32.7889 where ∆𝑙(M𝜏) accounts for the lepton contribution, ∆𝑢𝑑𝑠(M𝜏) for the 

contribution of up, down and strange quarks and ∆𝑐(M𝜏) accounts for the charm quark contribution. 

This leads us to: 

 
3π

α(M𝜏)
=

3π

α
− ∆4(M𝜏) 

Where the result for α(M𝜏) is provided in Table 2. The electroweak corrections for tau leptons are 

slightly more complex to calculate than its muonic counterpart but we can simplify the calculations 

and obtain a value of (1 + ∆q) = 𝑐3,𝜏
−1 = 0.1778963(33) by using the formula: 

 

 

τ𝜏

τ𝜇

=
m𝜇

5

m𝜏
5

𝑐3,𝜏
−1 

(17) 

(15) 

(18) 

(16) 

(19) 



where τ𝜏 = 2.906(10) × 10−13𝑠 and τ𝜇 = 2.1969811(22) × 10−6𝑠 are the mean lifetimes of tau 

and muons respectively. There is an alternative way to calculate tau lepton electroweak corrections12, 

13 but it involves the use of CKM matrix parameters |𝑉𝑢𝑑| and |𝑉𝑢𝑠| which we will introduce in the 

following section for quarks. 

Table 2: Flavors, masses, g-factors, effective QED coupling values and Yukawa couplings of charged leptons obtained by the 

formula from eq. (10) and (11) with the predicted value of the tau lepton g-factor. 

𝑙 mass [𝑀𝑒𝑉c−2] g𝑓 α−1(Q) λ𝑙 

𝑒 0.5109989461(31) −2.00231930436182(52) 137.035999139(31) 2.951(19) × 10−6 

𝜇 105.6583745(24) −2.0023318418(13) 135.90(09) 6.12(08) × 10−4 

𝜏 1776.82(16) −2.002354(42) 133.557(43) 1.06(05) × 10−2 

 

The values of Yukawa couplings from Table 2 are in great agreement with the known values from 

Table 1, within the respective uncertainties. 

 

3. The Quark Formula 

3.1 The CKM Matrix 

In the Standard Model, the quark mass eigenstates (physical states) do not take part as pure states in 

weak interactions. The unitary transformation connecting the two bases of mass and weak eigenstates 

is represented by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. By convention, the charge Q =

2/3 quarks (u, c and t) are chosen to be pure states, and flavour mixing is described in terms of a 3×3 

matrix operating on the d, s and b quark states: 

 

(
𝑑′
𝑠′
𝑏′

) = V𝐶𝐾𝑀 (
𝑑
𝑠
𝑏

) = (

𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

) (
𝑑
𝑠
𝑏

) 

Thus 𝑑′, 𝑠′ and 𝑏′, instead of d, s and b, are partners of u, c and t respectively within the weak isospin 

doublets14 and they describe flavor whereas d, s and b describe mass. The values of CKM parameters 

are provided15 by the Particle Data Group (PDG).  

3.2 The Quark formulae 

 Do to the nature of the CKM matrix, the quark formula for Yukawa couplings can only account the d-

type quarks, that is the down, strange and bottom quarks. The lepton number L is replaced by the 

Baryon number B = 1/3 for all three flavors which also changes the quantum number N so that N =

𝑖Q2 B2⁄ . The lepton family numbers L𝑒, L𝜇 , L𝜏 are replaced with strangeness S = −1 for strange quarks 

and bottomness B′ = −1 for bottom quarks for the second and third generation respectively. Down 

quarks do not have a “downness” therefore in their formula the lepton family number is replaced with 

the value of zero. One shouldn’t make a mistake of using the third component of isospin 𝐼3 to replace 

L𝑒. The formula for quarks is: 

(20) 



 

λ𝑞 = (
αN+1(Q) ∙ ng

Q𝑓 g𝑓

(N + 1)(1 + ∆q)
)

ng

1− 
Q2

B2N

N2⁄  

When 𝑖 = 1 and therefore 𝑞 = 𝑑, Q = −1/3, B = 1/3, Q𝑓 = 0 the formula for down quarks is λ𝑑 =

α2 2⁄  where we used α(M𝑑) ≅ α for the sake of simplicity. Having in mind that the down quark is not 

much more massive than the electron, we can safely ignore the running of the fine structure constant 

without sacrificing any relevant accuracy. 

When 𝑖 = 2 and therefore 𝑞 = 𝑠, Q = −1/3, B = 1/3, Q𝑓 = S = −1 the formula for strange quarks 

is 

 

λ𝑠 = (
α3(M𝑠) ∙ 3S∙g𝑓

3( |𝑉𝑐𝑠|2𝑐3,𝑠)−1
)

1 3⁄

4⁄  

Where the electroweak corrections correspond to a coefficient 𝑐3,𝑠 obtained from the strange quark 

mean lifetime and the |𝑉𝑐𝑠| CKM matrix parameter. 

When 𝑖 = 3 and therefore 𝑞 = 𝑏, Q = −1/3, B = 1/3, Q𝑓 = B′ = −1 The formula for bottom quarks 

is 

 

λ𝑏 = (
α4(M𝑏) ∙ 3B′∙g𝑓

4( |𝑉𝑐𝑏|2𝑐3,𝑏)−1
)

1 9⁄

9⁄  

 

The values for quarks are provided in Table 3. The values of CKM parameters and the coefficients are 

known from experimental results16, 17. 

Table 3: Flavors, masses, g-factors, effective QED coupling values and Yukawa couplings of d-type quarks obtained by the 

formula from eq. (10) and (11). The values of g-factors are approximated from the Dirac equation. 

𝑞 mass [𝑀𝑒𝑉c−2] g𝑓 α−1(Q) λ𝑙 

𝑑 4.64(24) −2 ~137 2.663(35)

× 10−5 

𝑠 94.61(38) −2 ~136 5.434(42)

× 10−4 

𝑏 4300.36(92) −2 ~132 2.47(44)

× 10−2 

 

 

 

4. Neutrino Conjectures 

(21) 

(22) 

(23) 



Since neutrinos are neutral particles, meaning they have a charge Q = 0, the quantum number N =

𝑖Q2 L2⁄  will always equal one. Neutrinos have three generations, corresponding to charged leptons: 

electron neutrino, muon neutrino and tau neutrino. However, unlike their charged counterparts 

neutrinos can oscillate between the flavors, which is known as “neutrino oscillation”18, 19. The formula 

explains that this phenomenon is caused by neutrinos having no electromagnetic charge which allows 

them to oscillate, this is known as “neutral particle oscillation”. The formula for neutrinos is: 

 

λ𝑣 = (
α2 ∙ 3L𝑓∙g𝑓

2(1 + ∆𝑞)
)

3

 

which means that the mass differences between neutrino flavors depend only on their electroweak 

corrections. There are two different conjectures on the nature of neutrino masses, the Dirac neutrino 

and the Majorana neutrino. In simplest terms, Dirac fermions are particles that have anti-particles 

while Majorana fermions20 are their own anti-particles. As of the time this paper is written, all known 

fermions are Dirac fermions by nature. 

Majorana fermions have no magnetic dipole moment21, this can be achieved in the formula by stating 

that g𝑓 = 0. In that case the lightest neutrino flavor, presumably the electron neutrino if neutrinos 

follow the “normal hierarchy”22, predicted by the formula is m𝑣 = 0.0033(21) 𝑒𝑉 from a Yukawa 

coupling λ𝑣 = 1.89(22) × 10−14. 

Dirac fermions have a magnetic dipole moment that is proportional to their mass. This means that the 

neutrino g-factor has to be larger than zero, however since neutrinos have no electromagnetic charge 

their g-factor has to be below two 0 < g𝑓 < 2. If neutrinos are indeed Dirac fermions, the formula 

does not predict their mass since it is a part of the Standard Model and the SM does not predict 

neutrino masses. However the formula does predict that if neutrinos have a positive g-factor then anti-

neutrinos must have a negative one, meaning that their magnetic dipole moment would be negative. 

This is caused by the lepton family number that has a positive value for neutrinos and a negative value 

for anti-neutrinos. 

 

5. Conclusions & Debate 

The formula from eq. (10) and (11) that rely on the fine structure constant provide very accurate 

values of charged lepton Yukawa couplings without relying on the use of the Higgs VEV. Therefore 

the Yukawa couplings are no longer arbitrary parameters within the SM Higgs mechanism with an 

added possibility to expand to possible new physics Beyond the Standard Model. This possibility can 

be seen in the neutrino formula from eq. (24) where the electroweak corrections are probably 

connected with the PMNS matrix. However the PMNS matrix is not a part of the SM since neutrino 

masses are not predicted by the SM Higgs mechanism. We have still managed to make some 

predictions both for Majorana and Dirac neutrinos, such as the ligthest possible mass of a Majorana 

neutrino being approximately 0.0033(21) 𝑒𝑉 and that Dirac neutrinos and anti-neutrinos should have 

opposite signs on g-factors that is their magnetic dipole moments, such as neutrinos having a positive 

magnetic dipole moments and anti-neutrinos having a negative one or vice-versa. Besides leptons we 

have also made some significant predictions when it comes to quarks, focusing on d-type quarks since 

they describe mass terms in the CKM matrix. The CKM matrix is a fundamental part of the SM unlike 

its leptonic counterpart, the PMNS matrix. Hopefully these new predictions regarding d-type quarks 

might help us to improve the accuracy of quark mass measurements. 

(24) 
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