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s0010
1 INTRODUCTION

p0010 Currentprocesses for the industrialproduction
of hydrogen are mainly based on the reforming
of natural gas/naphtha or coal gasification.
Such processes are highly energy demanding.
Hence, less energy-intensive and more sustain-
able technologies, exploiting renewable feed-
stocks (such as biomass, bio-alcohols, and water)
and renewable primary energy sources (e.g., sun-
light, wind, wave, or hydropower), appear to be
very attractive for both industrial and consumer
applications. A variety of new technologies offer-
ing a nonfossil based route for hydrogen produc-
tion are in a different stage of development, and
each offers unique opportunities, benefits, and
challenges [1–10].

p0015 Chemical-looping approach for hydrogen pro-
duction is one of the possible ways to produce
high-purity H2 starting from either conventional
or renewable sources. The main principle of
any looping technology is ingrained in the second
law of thermodynamics and applied to enhance
exergy efficiency of the process [11]. Initially,
the chemical-looping process for hydrogen gen-
eration was introduced as a “steam-iron” process
in 1913 by Lane et al. [11,12]. At present, any
process that aims to produce hydrogen via loop-
ing technology is referred to a “chemical-looping
hydrogen” (CLH), or “chemical-looping water
splitting” (CLWS) process, which usually con-
sists of two spatially or temporarily separated
steps: reduction and oxidation. Thus, different
from a classical steammethane reforming (SMR),
separation costs can be avoided by splitting the
process into two alternated steps in order to sepa-
rateH2 andCOx streams.Generally, the reduction
step is used to transfer oxygen from an oxygen
carrier material to a reducing fuel. The reduced
oxygen carrier is then regenerated with steam,
which enables the production of high-purity
hydrogen without an additional separation step.
The chemical-looping process can be performed
using a number of different reductants, such as

gas from coal [13] or biomass [14–16] gasification,
light hydrocarbons reforming [17], methane
[18–20], a CH4/CO2 and CH4/H2mixture [20,21],
pyrolysis oil [22,23], methanol [24], and pure
H2 (as a method for H2 storage) [25,26]. Further-
more, the nature of the oxide, used as the ionic
oxygen and electron carrier, and the reaction con-
ditions are important parameters because they
determine the potential for low costs and high
efficiency of this process in order to have a
commercial impact.

s0015
2 HYDROGEN APPLICATIONS

p0020Hydrogen is one of the key starting materials
used in the chemical industry with an annual
worldwide production of about 50 million tons,
Currently, the largest amount (�95%) of the total
manufactured hydrogen is consumedmainly by
two industrial segments: the chemical sector,
accounting for 65%of themarket share (ammonia
and methanol synthesis �63%; liquid hydrocar-
bons and higher alcohols synthesis �2%), and
the refining sector, which accounts for 30% of
the market share (hydrotreating and hydrocrack-
ing processes for obtaining high-grade petro-
chemical products). The other present uses, with
�5% of the total consumption, include the food
industry (sorbitol and fat processing), the metal-
lurgical industry (direct reduction of iron ore),
the semiconductor industry, etc. (Fig. 14.1).

p0025In the near future, the possibility to produce
hydrogen in a sustainable manner on the larger
scale will boost research landmarks to search for
new technological platforms for direct transfor-
mation of captured CO2 to its hydrogenated
C1-counterparts: formic acid (HCOOH), formal-
dehyde (H2CO), methanol (CH3OH), and meth-
ane (CH4) [27]. Highly reduced methanol is
indeed the key molecule for the methanol econ-
omy and remains obviously a target molecule
of choice in terms of its further use in MTH-
processes, as well as H2-storage and carriers in
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fuel cells. It is already produced, albeit mainly
fromnaturalgasandcoal, atayearly>50Mt-scale,
with a forecasted annual growth of 4% [28].Meth-
ane, the totally reduced product from CO2, is still
considered as a potentmolecule in a power-to-gas
concept [29], in which superfluously produced
energybynuclear sourcesor irregularlyproduced
wind, water, and wolar (WWS) electricity may be
converted and stored in the chemical bonds of the
methanemolecule. The advantage of this concept
is thatmethane can be fed in the already available
natural gas infrastructure [27,30].

p0030 In conclusion, there is a fast-growing need for
increased hydrogen production, because H2

itself may become an important “energy vector”
with key applications as a carbon-free fuel and
as a fuel for hydrogen-driven fuel cells for auto-
motive uses. However, there are still several
major problems to be overcome before it can
be used in this way, including its manufacture,
storage, and distribution.

s00202.1 Fuel Cells

p0035Fuel cells are devices that generate electricity
based on a chemical reaction and are often
referred to as continuously operating batteries.
They exploit electrolysis reactions in a similar
manner to traditional batteries, however, the
reagents are constantly supplied to the cell. This
is determining the difference compared to the
traditional dis-chargeable batteries. There are
several kinds of fuel cells, though themain oper-
ating principle remains the same: hydrogen
atoms (or other fuels) at the anode break down
to form electrons and H+ ions; the latter ones
migrate through the electrolyte/membrane to
the cathode, where two H+ ions combine with
oxygen to form water (also emitting heat), while
the electrons run through the electrical circuit,
producing a current (Fig. 14.2).

p0040Nevertheless, its applications can vary
depending on the type of hydrogen fed to the
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FIG. 14.1f0010Q13 Main segments of hydrogen consumption.
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anode (they can be chemical elements contain-
ing hydrogen) and the nature of the electrolytes
(Fig. 14.3).

s0025
3 HYDROGEN PRODUCTION

s0030 3.1 Common Feedstocks

p0045 Hydrogen can be produced from different
resources, including conventional and well-
known fossil fuels, such as natural gas, naphtha
and coal, or from renewable feedstocks or energy
sources like biomass, wind, solar, and geothermal
energy, etc. Currently, many new technologies,
which offer sustainable and nonfossil-based itin-
eraries for hydrogen production, are at a different
stage of development, and each one brings its
own benefits, opportunities, and challenges.
A list of the various feedstocks and process tech-
nologies is presented in Fig. 14.4.

s0035 3.2 Common Processes for H2 Production

p0050 Hydrogen can be produced using many dif-
ferent processes (as illustrated in Fig. 14.5). Ther-
mochemical processes use heat and chemical

reactions to release hydrogen from organic
materials such as fossil fuels and biomass.Water
(H2O) can be split into hydrogen (H2) and
oxygen (O2) using electrolysis or solar energy.
Microorganisms such as bacteria and algae can
produce hydrogen through biological processes.
This section encompasses the most relevant
information about the existing processes to
manufacture hydrogen.

s00403.3 Hydrogen Via Reforming Processes

p0055Reforming processes are based on the endo-
thermic or exothermic conversion of the feed-
stock materials with H2O/CO2/O2 converting
into a synthetic gas mixture (CO+H2). The most
commonly used feedstocks for the reforming
processes are methane or other light hydrocar-
bons obtained from oil. Several chemical pro-
cesses have been developed to produce
hydrogen via the reforming route:

o0010(1) Steam reforming (SMR)
o0015(2) Auto thermal reforming (ATR)
o0020(3) Partial oxidation (POX)
o0025(4) Dry reforming of methane (DMR)

Comp. by: S.Rajaram Stage: Proof Chapter No.: 14 Title Name: SSC
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FIG. 14.2f0015Q14 General scheme of the fuel cell technology.

B978-0-444-64127-4.00014-8, 00014

SSC, B978-0-444-64127-4.00014-8

3. ADVANCED SUSTAINABLE CHEMICAL PROCESSES AND CATALYSTS FOR ENVIRONMENT PROTECTION

6 14. SPINEL MIXED OXIDES FOR CHEMICAL-LOOP REFORMING

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and
typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour
figures will appear in colour in all electronic versions of this book.


80M100TSIX
Allegato File
Fig. 14-2 bis.png



Comp. by: S.Rajaram Stage: Proof Chapter No.: 14 Title Name: SSC
Date:18/9/18 Time:12:23:13 Page Number: 7

FIG. 14.3f0020Q15 Lower segment: main application of the fuel cell technology; Upper segment: fuel and fuel cell types. AFC, alka-
line (especially in the space sector);DMFC, direct membrane;MCFC, molten carbonate; PAFC, phosphoric acid; PEMFC, poly-
mer exchange membrane; SOFC, solid oxide. From https://ec.europa.eu.

FIG. 14.4f0025

Q16

Summary of the various feedstocks and process alternatives for H2 production. Inspired by TQ1 . Riis, E.F. Hagen, J.S.

Vie, P.J.S. Vie, Ø. Ulleberg, G. Sandrock, Hydrogen Production and Storage; R&D Priorities and Gaps, OECD/IEA, 2006.
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o0030 (5) Combined reforming of methane (CMR)
o0035 (6) Reforming with membrane
o0040 (7) Tri-reforming of methane (TMR) [31]

p0095 The first three are widely used industrial pro-
cesses, whereas the last four are more recent
innovative processes developed with the aim
to minimize environmental impact and energy
consumption together with the improvements
of already existing methods.

s0045 3.3.1 Steam Methane Reforming (SMR)
and Water Gas Shift (WGS) Reaction

CH4 +H2O! 3H2 +CO ΔH° ¼ + 225:4kJ=mol

p0105 Steam methane reforming (SMR) is the most
common way to produce a hydrogen-rich syn-
gas mixture (H2+CO). A conventional steam
reformer unit consists of several hundred
fixed-bed reactor tubes filled with a catalyst,
which can vary in size and geometry. High tem-
peratures (>600°C) and low pressures favor the
formation of H2 and COproducts (Le Chatelier’s

principle). However, in practice, the natural
gas steam reformer is operated under the pres-
sure of about 20–30atm (for kinetic reasons),
with an exit temperature of 800–870°C (but
the tube wall temperature can range from
700°C up to a maximum hot spot of 920°C),
where methane and steam are converted into
synthesis gas (mixture of CO and H2). Steam
methane reforming is a catalytic process and
catalyst properties are dictated by the severe
operating conditions, that is, temperatures of
450–950°C and steam partial pressures up to
30bar. Conventional steam reforming catalysts
are Ni-based catalysts with 10–20wt.% Ni sup-
ported on α-Al2O3, calcium or magnesium
aluminate with a typical lifetime of 3–5years.
Cobalt and noble metals (Ru, Rh, Pt, and Pd)
are also known to be active, however they have
not found many applications as SMR catalysts
due to their elevated costs. On the other hand,
attempts to use cheaper and abundant nonme-
tallic catalysts have not had commercial success
because of the low activity.
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FIG. 14.5f0030

Q17

An overview of existing hydrogen production processes from different sources. Inspired byQ2 D. Yamaguchi,

L. Tang, N. Burke, K. Chiang, L. Rye, T. Hadley, S. Lim, Small Scale Hydrogen Production From Metal-Metal Oxide Redox Cycles,
INTECH, 2012.
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p0110 Normally, the subsequent stage of the SMR
process includes WGS reactions which further
convert carbon monoxide to carbon dioxide,
while generating more hydrogenQ6 .

CO+H2O!H2 +CO2 ΔH° ¼�42kJ=mol

p0115 In the first stage, where a high temperature shift
reaction is taking place, the gas is mixed with
steam and passed over an Fe/Cr or Fe/Cr/Mg
mixed oxide catalyst at T¼300–450°C in a fixed
bed reactor, which decreases the carbon monox-
ide concentration down to 2%–3%. In the second
stage, the low temperature shift reaction, themix-
tureofgases ispassedoveraCu/Znoxidecatalyst
at T¼190–220°C, where the carbon monoxide
concentration is reduced to 0.1%–0.2%. Further
hydrogen purification can be achieved using:

u0010 – Methanation
u0015 – Pressure swing adsorption (PSA)
u0020 – Membrane reactors

s0050 3.3.2 Steam Naphtha Reforming

p0135 If naphtha is used as the feedstock, an extra
reforming stage is needed. The naphtha is first
heated to form a vapor, which is then mixed
with steam and passed through tubes, heated
at T¼450–500°C and packed with a catalyst,
nickel supported on a mixture of aluminum
and magnesium oxides. The main product is
methane together with carbon oxides (COx),
which is then processed by SMR, as if it were
natural gas, followed by the shift reaction.

s0055 3.3.3 Dry Methane Reforming (DMR)

CH4 +CO2 ! 2H2 + 2CO ΔH°¼ +260:5kJ=mol

p0145 The DMR process is characterized by a very low
intrinsic activity, in addition to the simultaneous
occurrence of the reversewater gas shift (RWGS)
reaction resulting in a syngas ratio less than a
unity. Dry reforming of methane has been inves-
tigated with noble (Rh, Ru, Pd, and Pt) and non-
noble metal- (Ni, Co, and Fe) -based catalysts.
Noble metal catalysts (Pt/support) [32] have

drawn attention for their superior coking resis-
tance, higher stability, and activity, especially
for higher temperature applications. However,
for large scale industrial applications, develop-
ment of the active catalyst is still under
investigation.

s00603.3.4 Autothermal Reforming (ATR)

p0150Autothermal reforming (ATR) is an important
industrial process used to produce syngas with a
lowH2/COratio (from1.5 to3)desiredforsynthe-
sis of methanol and higher molecular-weight
hydrocarbons (via The Fischer-Tropsch process).
Themainconcept is thecombinationofnoncataly-
tic partial oxidation and adiabatic catalytic steam
reforming,where thereactor temperature ismain-
tained using the heat emitted from the partial oxi-
dation of the hydrocarbon feedstock, typically
methane, with a sub-stoichiometric amount of
oxygen.

CH4 +H2O! 3H2 +CO ΔH°¼ + 225:4kJ=mol

CH4 +
3

2
O2 !CO+2H2O ΔH°¼�520:0kJ=mol

p0155This process was developed by Haldor Topsøe
A/S, with the aim to perform the POX (partial
oxidation) and the SR (steam reforming) in a sin-
gle ATR reactor. The very high temperatures in
the ATR unit require a high thermal stability of
the catalyst, which is typically a nickel-based
catalyst on a stabilized Al or Mg-Al support.

s00653.3.5 Partial Oxidation (POX)

CH4 +
1

2
O2 !CO+2H2 ΔH°¼ 36:0kJ=mol

p0165An alternative way to produce hydrogen is
based on the partial oxidation of a sub-
stoichiometric fuel-air mixture which results in
a formation of H2-rich syngas. Partial oxidation
is an exothermic reaction and, thus, is consid-
ered to be more economically feasible than the
processes of steam or dry reforming. The exo-
thermic nature of the reaction has certain
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drawbacks because it induces hot spots on
catalysts, arising from a poor heat removal rate,
which causes difficulties in operation control.
Adifference ismadebetween thermal partial oxida-
tion (TPOX) and catalytic partial oxidation (CPOX).

s0070 3.3.6 Thermal (Noncatalytic) Partial
Oxidation

p0170 TPOX is a noncatalytic process in which the
feed is partially combusted with a sub-
stoichiometric amount of air, oxygen, or enriched
air to obtain a CO+H2 mixture, where the pro-
duction of syngas depends on the oxygen-to-fuel
ratio at an operating temperature range of
1200–1500°C. Feedstocks used for the TPOX can
be almost any carbonaceous material, from natu-
ral gas through liquid feeds such as fuel oils,
gas oils, and coal. A noncatalytic partial oxidation
process was developed by Texaco and Shell
which results in high syngas yields at high tem-
perature and pressures [33].

s0075 3.3.7 Catalytic Partial Oxidation

p0175 CPOX is a catalytic process in which the feed
with sub-stoichiometric amount of oxygen (or
air) is catalytically converted into a CO+H2mix-
ture. The use of a catalyst lowers the required
reaction temperature down to 800–900°C. Com-
monly used catalysts are noble (Pt, Rh, Ir, Pd) or
nonnoble (Ni, Co) metal-based catalysts. Cata-
lytic partial oxidation can be performed only if
the sulfur content of the feed is below 50ppm,
because higher sulfur contents would poison
the catalyst (in such cases, noncatalytic partial
oxidation is more suitable for the use).

s0080 4 HYDROGEN VIA ALTERNATIVE
PROCESSES

s0085 4.1 Water Splitting

p0180 Water splitting is a process that enables the
production of hydrogen by direct water decom-
position in its elements. The energy required to
cleave HdOdH bonds can be supplied by

different power sources: electrical (current),
thermal (heat), or light (electromagnetic radia-
tion). Generally, the difference in water splitting
processes is madewhenever one or another type
of energy source is applied to conduct the reac-
tion, referred to as electrolysis, thermolysis, or
photolysis. Electrolytic water splitting is driven
by passing the electrical current through the
water, where conversion of the electrical energy
to chemical energy takes place at the electrode-
solution interface through charge transfer reac-
tions in a unit called an electrolyser [34]. Water
reacts at the anode to form oxygen and protons,
whereas a hydrogen evolution reaction takes
place at the cathode. Only 3.9% of the world’s
hydrogen demand is satisfied by electrolysis.
Although, compared with the conventional
SMR, the electrolytic water splitting is described
as a less environmentally harmful processwith a
“zero” CO2 emission (because O2 is the only
by-product), electrolysers generally powered
by the electricity, which is predominately pro-
duced by the combustion of coal or natural
gas, resulting in the release of CO2 as a bypro-
duct. Therefore, today’s research is increasingly
oriented on utilizing renewable harvesting tech-
nologies (wind turbines or photovoltaics) to
drive the electrochemical/catalyticwater-splitting
reaction. Photochemical [35,36]/photocatalytic
[37,38] water splitting is a promising option for
hydrogen production, which is oriented on the
reduction of CO2-emission and applications of
renewable resources such as water and sunlight.
The most important criteria for solar-driven
water splitting reactions is the electronic bandgap
alignment of the photosensitive material with
the redox potential of water [37]. In general,
the presence of transition metal cations with
a d0 electronic configuration (Ta5+, Ti4+, Zr4+,
Nb5+, Ta5+, W6+, and Mo6+), or metal cations
with a d10 electronic configuration (In3+, Sn4+,
Ga3+, and Ge4+) is considered to be important
for the efficient photocatalytic materials, the
empty d or sp orbitals of which form the bottom
of the respective conduction bands [36]. Over
the last decades, significant progress in this field
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has been made by an increasing number of
research groups where the topic was thoroughly
reviewed [39–41].

p0185 Thermal or thermochemical water splitting is
another alternative technology to produce hydro-
gen fromwater with potentially low or no green-
house gas emissions [42,43]. This technology
has been extensively studied by many research
groups, and more than 300 water-splitting cycles
with different operating parameters, engineering
challenges, and hydrogen production oppor-
tunities are described in the literature. Thermo-
chemical water splitting processes require high
temperatures (500–2000°C) to drive a series of
chemical reactions,which leadtohydrogenevolu-
tion. The chemicals used in the process are reused
within each cycle, creating a closed loop that con-
sumes only water and produces hydrogen and
oxygen. This technology is an appealing pathway
to produce hydrogen-utilizing waste heat from
existing nuclear power stations or concentrated
(using a field of mirror “heliostats”) solar power.
However, a realization of renewable-energy solu-
tions for the water splitting reactions on a
larger scale remains a challenge,which is dictated
by the overall economy of the process and
heavily depends on further developments of
cost-effectiveness and environmentally benign
technologies. Thermochemical water splitting
has stimulated the development and growth of a
series of new looping technologies that will be
described in the next section.

s0090 4.2 Hydrogen Via Chemical-Looping
(CL) Processes

p0190 Chemical-looping processes are alternative
processes aimed at generating heat and power
(chemical-looping combustion, CLC) or to pro-
duce a CO+H2 mixture (chemical-looping
reforming, CLR) or high-purity H2 (chemical-
looping hydrogen/chemical-looping water split-
ting, CLH/CLWS) via looping technology that
usually consists of two temporarily or spatially
separated steps: reduction and oxidation. During
the reduction step, a transfer of oxygen to fuel is

mediated by a metal oxide as an oxygen carrier
(OC) material (MexOy), which is put in contact
with a reducing stream. The OC is thus reduced
and at the same time converts fuel into products,
mainly COx, H2O, and H2 (products distribution
strongly depends on nature of the reducing
agent as well as the nature of the oxygen carrier).
Subsequent oxidation steps are performed over
the previously reduced material utilizing air/
pure oxygen (I):

IT
� �

xM+ y Oð Þ!MxOy

IP
� �

MxOy�1 + Oð Þ!MxOy

or water steam, referred to water splitting tech-
nology (II):

IIT
� �

xM+ yH2O!MxOy + yH2

IIP
� �

MxOy�1 +H2O!MxOy +H2

u0025(IT, IIT), where (T) index refers to a total
reduction of OC,

u0030(IP, IIP), where (P) index refers to a partial
reduction of OC.

p0205An oxidation step is needed to restore the oxy-
gen carrier material to its original oxidation state
(MexOy) and to produce H2 (when the oxidation
step is carried out with steam). A difference is
made whenever steam from air or water is used
to regenerate the oxygen carriermaterial. The oxi-
dation step performed with air is varied between
steam reforming coupled with the chemical-
looping combustion process (SR-CLC), where
CLC is used to supply energy, which is needed
for the conventional catalytic steam reforming,
and the chemical-looping reforming process
(CLR), where main products from the chemical-
looping system are an H2 and COmixture. Other
processes use some oxygen-depletedmaterials to
react with water steam to generate pure H2, also
known as “water splitting.” In this category, it can
be found in chemical-looping hydrogen (CLH),
or one step decarbonization (OSD) processes,
and the so-called chemical-looping gasification
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technologies: syngas chemical-looping process
(SCL) and coal direct chemical-looping process
(CDCL), etc. Usually the later processes need sev-
eral oxidation steps, like an air treatment, which
sometimes is required for the final regeneration
of the oxygen carrier material [44]. Several in-
depth reviews [45–47] summarize information on
the existing chemical-looping processes aligned
to produce high purity hydrogen, and offer
both the use of renewable and CO2-neutral feed-
stocks, as well as efficient CO2 sequestration
capabilities [46].

s0095 5 CHEMICAL-LOOP REFORMING
(CLR) FOR HYDROGEN

GENERATION

p0210 CLR for hydrogen generation is developed as
an alternative way to produce H2 starting from
either conventional or renewable sources. The
chemical-looping process can be performed
using a number of different reductants, such

as gas resulting from coal [13] or biomass
[14–16] gasification, light hydrocarbons reforming
[17], methane [18–20], CH4/CO2 and CH4/H2

mixture [20,21], pyrolysis oil [22,23], light alcohols
[48–56], and pure H2 (as a method for H2 storage)
[25,26]. Different from a classical reforming,
separation costs can be avoided by splitting the
process into two/three alternated steps in order to
separate H2/COx streams and fully re-oxidize the
oxygen carrier materials (Fig. 14.6). Generally, the
reducing fuel (CnH2m) is fed to the feed reactor
(FR), where it reacts with the oxygen carrier mate-
rial (MxOy) according to the following equation:

FRð Þ n+m=2ð ÞMxOy +CnH2m

! n+m=2ð ÞMxOy�2 +mH2O+nCO2

p0215After the first step, previously reduced oxygen
carrier material is transferred to the steam reac-
tor (SR), where it is oxidized by a water steam to
restore its original oxidation state:

SRð Þ n+m=2ð ÞMxOy�2 +mH2O
! n+m=2ð ÞMxOy�1 +mH2
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FIG. 14.6f0035Q18 Schematic representation of CLR for hydrogen generation over Fe-based oxygen carrier material.
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p0220 A general statement can be made on the basis of
the results obtained independently by several
research groups: as the oxygen ratio in the
system decreases, there is a higher tendency
toward carbon formation, which in its turn leads
to the lowering of the purity of the produced
hydrogen. According to Cho et al. [57], the rate
of carbon formation increased rapidly when
more than 80% of the available oxygen in the
Ni-based oxygen carrier was consumed. Galvita
and Sundmacher reported that a maximum Fe
reduction of 60% largely minimized carbon
formation and a high purity hydrogen stream
(<20ppm CO) could be obtained [58].

p0225 Usually, the difficulty to restore the original
oxidation state of the oxygen carrier material
by means of only water steam can lead to the
necessity of an additional oxidation step, like
an air treatment:

ARð Þ n+m=2ð ÞMxOy�1 +½O2

! n+m=2ð ÞMxOy

p0230 Oxygen carrier material (MxOy), in its fully oxi-
dized form, is further re-circulated to the fuel
reactor (FR) for subsequent cycles.

p0235 Important aspects for the overall effectiveness
of the process lie in the choice of operation con-
ditions, appropriate reactor designs (fluidized
bed [59–61]/moving bed [62]/fixed bed [63–66]
reactors), and identification of suitable candi-
dates to be used as corresponding oxygen carrier
materials.

s0100 5.1 Oxygen Carrier Materials

p0240 One of the key parameters that determines
the overall efficiency of many chemical-looping
processes for hydrogen production, lies in the
selection of a suitable oxygen carrier material,
taking into account several properties: reaction
kinetics, thermodynamic feasibility of oxygen
transfer, redox properties, oxygen content, stabil-
ity and recyclability, high resistance to attrition,

heat capacity, melting points, tendency to form
coke, resistance to coke formation and accumula-
tion, low cost, toxicity, etc. [44]. Thus, many
research groups focus their attention on the
improvements of the activity and stability of
the oxygen carrier material through opti-
mization of its composition, screening of the
supports along with the particle structure opti-
mization. Ideally, appropriate oxygen carriers
should have fairly high conversion rates in
both reduction and re-oxidation reactions, high
agglomeration/sintering resistance, maximum
fuel conversion with minor carbon deposition,
and be economically and environmentally
friendly [67].

p0245Reduction and oxidation reactions, which are
the main prerequisite to any chemical-looping
process, require additional information on the
thermodynamic aspect of a suitable redox
couple—MxOy/Mx, which determines the final
effectiveness of the process with a choice of
operating conditions. In the review, published
by Fan et al. [11], a comparative thermo-
dynamic assessment of different oxygen carrier
materials was made based on modified Elling-
ham diagram, where metal oxide materials
can be grouped into several zones, depending
on their applications. For example, materials
like V2O5/V, CeO2/Ce2O3,WO3/W, or ZnO/Zn
are capable to only partially oxidize the fuel,
whereas NiO/Ni, Fe2O3/FeO, CuO/Cu, or
Co3O4/Co have strong oxidizing properties
and foster total oxidation reactions. Thus, Ni,
Fe, Co, and Cu metal oxides are often used
as the main constituents of oxygen carrier
materials for chemical-looping applications.
A review published by Voitic et al. [46] covers
data on the development of different oxygen
carrier materials, and comprises studies on
the naturally occurring and synthetically de-
rived bulky or supported materials. In addition,
a summary on the different oxygen carrier
materials for the hydrogen production via
chemical-looping processes was published by
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Protasova et al. [67]. The review encompasses
information on the different perovskites and
Ni/Fe/Cu/Ce-based oxygen carrier materials.
Perovskites showed good results for the partial
oxidation of methane. With Fe-based materials,
promising results have also been obtained (they
are considered replacements for Ni-based oxy-
gen carriers because of their lower price and tox-
icity). Many studies were performed by testing
different active metal component, namely, Fe,
W, Sn, Ni, Cu, Mn, and Ce. However, more
recent works were almost exceptionally focused
on iron-based oxygen carriers combined with
several inert components aimed to improve
their mechanical and chemical properties. Sev-
eral research groups have been exploring mod-
ifications of simple iron oxide (Fe3O4 and
Fe2O3) in order to prevent deactivation [68], low-
ering of the operating temperature [69] and
increase of the structural stability and reducibil-
ity [70,71], the reaction rate for oxidation, and
the total efficiency of the process [72,73]. Several
studies were dedicated to different metal addi-
tives to iron oxide [74,75]. In addition, ternary
metal systems have also been considered in
the search for a better synergetic effect [76,77].
Several research groups have investigated the
effect of various M-additives on the stability
and redox behavior of iron oxide for chemical
hydrogen storage using Pd, Pt, Rh, Ru, Al, Ce,
Ti, Zr [78] and Al, Cr, Zr, Ga, V, Mo [79]. And
it was found out that Pd, Pt, Rh, and Ru additives
have an effect on promoting the reduction and
lowering the re-oxidation temperature of iron
oxide. At the same time, Al, Ce, Ti, Zr, Cr,
Ga, andV additives prevent deactivation and sin-
tering of iron oxide during repeated redox cycles.
Some recent studies on developing novel and
efficient oxygen carrier materials for chemical-
loop applications highlight the special interest
of spinel oxides [18,26,68,69,72,73,80–90], which
can be explained by their thermodynamic stabil-
ity, which allows them to re-obtain the initial
oxidized spinel phase upon redox cycling and
increase the stability of the looping material.

s01055.2 Spinel Oxides as Oxygen Carrier
Materials

p0250Spinel oxides with a generic formula of AB2O4

are chemically and thermally stable materials
suitable for various applications including catal-
ysis. From a chemical aspect, spinels exhibit acid-
base and redox properties, which play a key role
in several catalytic reactions involving oxygen
species [49]. Moreover, according to the nature
of incorporated cations, they can host a variety
of redox couples (e.g., Fe(II)/Fe(III), Mn(II)/
Mn(III), or Co(II)/Co(III)), which make them
suitable materials for Chemical-Looping applica-
tions [91]. As a confirmation, several studies of
different M-modified (M¼Ni, Co, Cu, Mn) iron
oxides of the spinel family have shown that the
redox properties of these materials render them
effective electrons and O2� vectors for the pro-
duction of hydrogen via chemical-loop reforming
(CLR) of alcohols (mainly C1–C2 light alcohols)
[48–56] (see Table 14.1, Scheme 14.1).

s01105.3 Spinel Oxides for Methanol
Chemical-Loop Reforming

p0255CoFe2O4 spinel oxide was applied as an oxy-
gen carrier material in a two-step chemical-loop
reforming process using methanol as a reduc-
tant [48,50]. The study performed by Crocellà
et al. [48] revealed an evident correlation
between physicochemical and catalytic proper-
ties of the loopingmaterial. Particularly, CoFe2O4

spinel was calcined at 450°C and 750°C (CF450
and CF750, respectively) in order to evaluate
an effect of different morphological features as
crystallite-particle sizes on the methanol decom-
position and a stepwise reduction of the solid.
It was shown that surface octahedral sites
(Co2+/Fe3+) are the most reactive species, and
are present in a higher amount on the CoFe2O4

sample calcined at a lower temperature (namely,
450°C). However, it was demonstrated that
two spinel oxides, initially rather different from
one another, exhibited similar features after just
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one reduction/re-oxidation cycle, where the sur-
face properties of CF450 and CF750 were irre-
versibly modified. Reduction of the solids was
performed at 300°C and 420°C and, based on

the product’s distribution, different reaction
zones (I–IV) were distinguished. Thus, during
the early stage of the reduction, methanol
conversion reached 19% and CO, CO2, and H2
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TABLE 14.1t0010 Summarized Data on Spinel Oxides as Oxygen Carriers for Chemical-Looping ApplicationsQ3

Reductant Oxidant Tred (°C) Tox (°C) Oxygen Carrier Reduction Degree (%) Ref.

CH3OH H2O 300 420 (a) CoFe2O4 (CF450) (a) 100T(300) Crocella [48]

420 (b) CoFe2O4 (CF750) (b) 82T(300)

CH3OH H2O (a,b) 300 420H2O (a) CoFe2O4 (CF450) (a) 100T(300) Cocchi [50]

Air (a) 420 450AIR (a) 100T(420)

(b) CoFe2O4 (CF750) (b) 82T(300)

C2H5OH H2O – – (a) CoFe2O4 (CF450) – Velasquez Ochoa [56]

(b) Fe3O4 (FF450)

(c) NiFe2O4 (NF450)

C2H5OH H2O 450 450 (a) Fe3O4 (FF450) (a) 57 Trevisanut [53]

(b) NiFe2O4 (NF450) (b) 69

C2H5OH H2O 450 450 Fe3O4 – Trevisanut [55]

C2H5OH H2O 450 450 (a) CoFe2O4 (a) 78 Trevisanut [52]

(b) Fe3O4 (b) 29

(c) NiFe2O4 (c) 52

(d) CuFe2O4 (d) 53

C2H5OH H2O 450 450 (a) Co0.6Fe2.4Oy (a) 98 Vozniuk [54]

(b) Co0.54Mn0.06Fe2.4Oy (b) 100

(c) Co0.3Mn0.3Fe2.4Oy (c) 32

(d) Mn0.6Fe2.4Oy (d) 19

C2H5OH H2O 450 450 (a) CoFe2O4 (a) 82 Vozniuk [51]

(b) Cu0.5Co0.5Fe2O4 (b) 100

(c) CuFe2O4 (c) 82

(d) Cu0.5Mn0.5Fe2O4 (d) 73

(e) Co0.5Mn0.5Fe2O4 (e) 10

(f ) MnFe2O4 (f ) 8

C2H5OH H2O 450 450 (a) CoFe2O4 – Carraro and Vozniuk
[49]

350 (b) FeCo2O4
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(with small amount of CH4, H2O and other
oxygenates) were detected as initially formed
products. With increasing the reduction time
(specifically, solid exposure to the reactants
stream), coke and CO2 were produced in a higher
amount, whereas methanol conversion and the
solid reduction reached their maximum (Χ ¼88%
and α¼100CF450/82CF750%, where Χ ¼conversion
and α¼degree of reduction). Further research on
the CoFe2O4 as a looping material was performed
by Cocchi et al. [50]. It was confirmed that the
reduction degree of the solid, together with the
temperature at which reduction was carried out,
significantly affected themethanol conversion and
product’sdistribution.Ahigher reduction temper-
ature (420°C) led to an increase of the solid reduc-
tion rate, despite all occurred phenomena were
similar to those observed at 300°C. Moreover, it
was found that a complete recovery of the initial
oxidation state of Co-ferrites was not possible
using onlyH2Oas an oxidant and a third stepwith
air was added. The material obtained after the
three-step CLR process showed quite similar reac-
tivity results to that of the freshly calcinedCoFe2O4

samples. This indicates that a complete restoration
of the spinel phase was possible even after the
formation of both metallic species and Fe carbide
compounds during the first reduction step.

s0115 5.4 Spinel Oxides for Ethanol
Chemical-Loop Reforming

p0260 Based on the two steps discussed, the
chemical-looping reforming process, in which
different M-modified spinel oxides were used

as oxygen carrier materials, Trevisanut et al.
[52,53,55] investigated ethanol as a reducing
agent. The choice of ethanol as a reducing
agent has several advantages, including its
renewable origin, and the possibility to decom-
pose at a relatively lower temperature with the
formation of a hydrogen-rich mixture [54].
A study performed on a bare Fe3O4 sample
[55] showed that magnetite during the reduc-
tion step tends to form Fe0 which is then con-
verted to Fe3C (cementite). However, the formed
carbide can decompose to metallic iron and
carbon (Fe3C!3Fe0 +C) and, similarly, catalyze
growth of graphitic filaments and increase the
rate of coke deposition. In order to reduce for-
mation and accumulation of coke during several
consecutive redox cycles, it was proposed to
apply a short time on-stream approach (with
reduction time of 5min), because the formation
of cementite was slightly delayed at the begin-
ning of the reduction step. Reducibility of
magnetite was improved by incorporation of
several transition metals like Co, Cu, and Ni
into the spinel structure [52,53]. Eventually, coke
formation remained an issue for M-modified
ferrospinels, which means that to avoid a
completely carbon deposition and its further
accumulation is not possible. Nevertheless, the
best-performing material amongst tested oxygen
carriers was CoFe2O4, which underwent the
greatest extent of reduction andwas able tomain-
tain it throughout several repeated cycles [52].

p0265Velasquez Ochoa et al. [56] studied the reduc-
tion mechanism of M-modified (Ni, Co, and Fe)
spinel oxides, where ethanol was the reductant.
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It was concluded that the first step in ethanol
anaerobic decomposition appears to be the same
for all samples and corresponds to acetaldehyde
formation via dehydrogenation of ethanol. Fur-
ther reduction of the solid was strongly depen-
dent on the nature of incorporated M (Ni, Co,
or Fe), specifically, acetaldehyde can be either
oxidized to acetates (NiFe2O4), decomposed to
CO and CH4 (CoFe2O4), or completely oxidized
(Fe3O4). Vozniuk et al. investigated binary and
ternary mixed-spinel oxides (Mx

1M0.6�x
2 Fe2.4Oy

and Mx
1M1�x

2 Fe2O4, where M¼Co, Mn, Cu) as
oxygen carrier materials in two-step CLR of eth-
anol. It was observed that the incorporation of
Mn/Co metal cations into Fe3O4 crystal struc-
ture affects the reducibility of the resulting spi-
nels (Fe-rich ferrospinel: Mx

1M0.6�x
2 Fe2.4Oy). Co

incorporation was found to enhance reactivity
in the anaerobic decomposition/oxidation of
ethanol, whereas Mn incorporation significantly
reduced the coke formation during the first
reduction step [54]. Consecutive studies on the
Mx

1M1�x
2 Fe2O4 as oxygen carriers revealed that

Co/Cu-incorporation facilitates total/partial
oxidation of ethanol giving rise to high yields of
H2, COx, and H2O, whereas Mn-incorporation
predominantly favored dehydrogenation and
condensation reactions leading to the formation
of acetaldehyde and acetone. Besides, the incor-
poration of Mn contributed to significantly
reduce the amount of coke that was attributed
to the formation of a thermodynamically stable
and hardly reducible layer of MnxFeyO solid
solution [51]. A study on CoFe2O4 and FeCo2O4

as oxygen carrier materials was performed by
Carraro et al. [49]. During the reduction stepwith
ethanol, FeCo2O4 was reduced faster compared
with CoFe2O4. However, its performance during
the re-oxidation step is quite poor due to an
inefficient oxidation by water steam, which is
able to oxidize only the outer shell of the nano-
particles, resulting in small H2 yield [49].
On the other hand, the CoFe2O4 sample was a
more efficient oxygen carrier, which enables it
to produce larger amounts of H2 due to the

residual presence of a reducible w€ustite, which
can be consecutively re-oxidized/reduced in
further looping cycles.

s01205.5 Summary on Spinel Oxides as Oxygen
Carrier Materials

p0270A variety of studies have been performed on
ferrospinels of different compositions (MFe2O4

and M0.6Fe2.4Oy, where M¼Fe, Ni, Cu, Co,
and Mn), whereby the following general state-
ments can be made:

o00451. The incorporation of transition metals, such
as Ni, Cu, Co, and Mn (or their combinations
Cu/Co, Co/Mn, Cu/Mn), strongly affects
final redox properties of the resulting
materials. Overall, the reducibility of
magnetite (Fe3O4) is enhanced with the
introduction of secondarymetals (Co, Ni, and
Cu) into the spinel structure. Besides, its
presence in a smaller amount (as in
M0.6Fe2.4Oy type materials, with Fe:M ratio of
4:1) is already sufficient to observe positive
results on the production of H2 via a two-step
chemical-looping reforming process
compared with nonmodified Fe3O4.

o00502. The incorporation of Mn contributed to
significantly reducing the amount of coke
formed, however, it caused a lower intrinsic
reducibility which was explained by the
formation of a thermodynamically stable and
hardly reducible layer of MnxFeyO solid
solution. It is important to note that the final
purity of hydrogen is limited by the coke
which is formed during the reduction step. As
mentioned earlier, this problem can be
partially overcome by changing the spinel
composition, or shortening the overall time of
the redox cycles to 5 or 20min (time accounts
to the total time of reduction/re-oxidation
step) (note Q7: the problem of an impure stream
can also be overcome by the utilization of a
three-step CLR process with the third step
being carried out with air [92].
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p0285 Nonetheless, another challenge needs to be
tackled in the future; with each performed cycle
the material tends to deactivate as the result of:

o0055 1. Deep modification of the starting material via
sintering and segregation phenomena,

o0060 2. Continuous or sequential “coking” of the
material with each performed cycle due to the
impossibility to achieve a total removal in the
conventional CLR process,

o0065 3. Incomplete re-oxidation of the metallic
component (M0) using just H2O as an oxidant.

p0305 On the other hand, modifying the conven-
tional two-step process by adding the third
step with air helped to overcome these prob-
lems, and is a first approach to overcome the
above-described limitations [92]. As a general
conclusion, it needs to be underlined that
the chemical-looping reforming (CLR) process
remains a very attractive target for researchers
and industry in particular, and the future global
energy economy in general. Many efforts to reach
this goal have been undertaken and are reviewed
herein. From the discovery the CLR process went
to pilot plant stage but never managed to truly
become economically viable. The future focus
of researchers needs to be steered toward the
current shortcomings of the process. Despite
that several improved looping materials have
been proposed, nonsintering and noncoking cata-
lysts need to be conceived. Moreover, complete
appraisals of their performance and further
optimization studies are required in order to give
information on the overall conversion efficiencies,
process design, and economics.

s0125
6 CONCLUSIONS

p0310 Interest in hydrogen, as an energy carrier, has
been extensively growing in recent decades,
which is powered by its environmental advan-
tages over classical energy sources such as
natural gas and coal. At this point, the future per-
spective of a hydrogen economy has triggered

many researchers to develop and optimize a
series of new technologies which differ from con-
ventional industrial processes (like SMR, ATR,
POX, and H2O-electrolysis) in their orientation
toward minimization of emission of green-
house gases (on-site CO2 capture), utilization of
renewable feedstock (bio-alcohols, bio-gases,
wood, and algae), or renewable energy sources
(wind, sunlight, or tides).

p0315One of the new technologies, which is aimed
to produce hydrogen in amore sustainableman-
ner, is chemical-looping hydrogen or chemical-
looping water splitting process. Initially, the
chemical-looping concept was oriented on the
combustion of different fuel feedstocks to gener-
ate heat and power, called the chemical-loop
combustion process; only later it was applied
to the generation of hydrogen. Over the last
decades, this approach has been extensively
investigated by many research groups, and more
than 100 chemical-looping cycles with different
operating parameters, engineering challenges,
and hydrogen production opportunities are
described in the literature. Ideally, the chemical-
looping process is aimed to produce high purity
hydrogen without any additional separation
steps that are the issues of today’s industrial
processes. Eventually, this technology may offer
several other opportunities for process intensi-
fication through selection of the oxygen carrier
materials and design of the reaction paths which
can be either partial or total oxidation of the
fuel, generating a variety of products ranging
from syngas and hydrogen to olefins and liquid
fuels (Schemes 14.2–14.4). Summary schemes
indicates that hydrogen remains to be a target
product, however, overall efficiency of the
chemical-loop processes can be maximized by
converting reducing fuels into valuable products
(Schemes 14.3 and 14.4).

p0320Several chemical-looping pilot and sub-pilot
plants [93–95] went on stream but have not
been successfully demonstrated commercially
to the date. The main reason deals with oxygen
carrier materials, namely, their insufficiency in
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reactivity, stability and recyclability, physical
strength and attrition resistance, tendency to
form and accumulate coke, and oxygen-carrying
capacity. Another reason is linked to the reactors
design and solid circulatory systems, specifically
the lack of design know-how on high-solid
loading flows, nonmechanical devices, and gas-
solid reactors for achieving high oxygen-carrier
conversions [11]. Despite the remaining chal-
lenges, ongoing research in this field brings new
solutions to the existing limitations, which gives
a potential to the chemical-looping technology.
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Non-Print Items

Abstract

Interest in hydrogen as a possible energy vector is powered by the depletion of fossil fuel feedstocks as well as concerns over
global warming, which brings new environmental legislations on the emission of greenhouse gases into the atmosphere. At
this point, the future perspective of a hydrogen economy has triggered many researchers to develop and optimize a series of
new technologies which differ from conventional industrial processes (like SMR, ATR, POX, and H2O-electrolysis) in their
orientation toward theminimization of emission of greenhouse gases (on-site CO2 capture), utilization of renewable feedstock
(bio-alcohols, bio-gases, wood, and algae), or renewable energy sources (wind, sunlight, or tides). This chapter gathers infor-
mation on the most relevant technologies for hydrogen production, including discussions on existing conventional reforming
processes, as well as developments in advanced and more environmentally benign methods, like chemical-looping.

Keywords: Hydrogen, Water splitting, Chemical looping, Alcohol reforming, Oxygen carriers, Spinel oxides, Ferrites
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