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DC CALCULUS

LUIGI AMBROSIO AND JÉRÔME BERTRAND

Abstract. In this paper, we extend the DC Calculus introduced by Perelman on finite dimen-
sional Alexandrov spaces with curvature bounded below. Among other things, our results allow
us to define the Hessian and the Laplacian of DC functions (including distance functions as a
particular instance) as a measure-valued tensor and a Radon measure respectively. We show that
these objects share various properties with their analogues on smooth Riemannian manifolds.
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1. Introduction

In this paper, we investigate the DC Calculus introduced by Perelman in [16] on the manifold
part of a finite dimensional Alexandrov space X with curvature bounded below. The term “DC”
stands for difference of concave functions. The main point is that, contrary to the set of (semi-
)concave functions, the set of DC functions on Euclidean space is an algebra. Perelman showed
the existence of an atlas on X∗ compatible with the distance whose transition maps are Euclidean
DC functions. Moreover, he also showed that DC functions on Alexandrov spaces (defined in
geometric terms involving geodesics) are standard Euclidean DC functions when read in a chart.
This notion is also natural if one considers the particular case of closed convex hypersurfaces in
Euclidean space where the standard charts are inverse of convex mappings. The DC structure is
also considered in [13] in connection with properties of the heat kernel on Alexandrov space.
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2 LUIGI AMBROSIO AND JÉRÔME BERTRAND

Besides providing a complete proof of the results related to this calculus discussed in [16], we
also generalize them in some aspects. Note that we choose to present our results in the case of ten-
sors (mainly covariant ones) instead of differential forms as it is in the case in the aforementioned
papers. However, it is then a standard algebraic matter to infer from our results the corresponding
statements on differential forms (up to considering the orientable double cover of X∗ if necessary).
More precisely, the calculus we develop allows us to consider general bounded BV functions (com-
pared to standard BV functions, the BV functions satisfy an additional weak continuity property,
see (3)), thus removing the restriction to bounded BV functions with no jump part in their de-
rivative (these functions are called BV0 functions in Perelman’s paper)1 as in [16, 13]. The main
result on tensors can be summarized as the existence of a covariant derivative operator on tensors
S with BV components (thus DS is a measure-valued tensor) that satisfies the same properties
as on a smooth Riemannian manifold. We are also able to define the norm of a measure-valued
tensor that coincides with the standard norm in the case of function-valued tensor and gives us,
for example, an intrinsic notion of total variation |df | for a function of bounded variation f on X∗.

Our particular interest in covariant tensors stems from our will to define the Hessian of a distance
function dp as a measure-valued tensor. Indeed, even in the case of a smooth Riemannian manifold,
the distributional Hessian Hess dp of dp is not, in general, absolutely continuous with respect to
the volume measure, see for instance [14] for a nice and comprehensive discussion of this fact. The
extra term in Hess dp is of jump type, namely it is concentrated on the Cut Locus of p which is
(N − 1)-dimensional in general, N being the dimension of the Riemannian manifold. For example,
this phenomenon arises on the real projective space, details can be found in [10]. Consequently,
even on a smooth Riemannian manifold, the Riemannian gradient ∇dp does not belong to the class
BV0 defined by Perelman in general. Our results allow us to define the Hessian of any distance
function dp as a particular instance of a result for arbitrary DC functions. This generalization
requires fine properties of BV functions and a thorough study of the jump part of the Hessian.
Technically speaking, the primary issue is that, given two BV functions f, h defined on an open
set of Euclidean space, the standard Leibniz rule

∂(fh)

∂xi
= f

∂h

∂xi
+ h

∂f

∂xi

does not hold true when f, h have non-trivial jump parts in their derivatives (see however
Lemma 4.12). However, even when jump parts in the derivatives are present, it may happen that
cancellation properties occur, so that some standard formulas and definitions of tensor calculus
retain their validity (see Proposition 5.3 and Proposition 6.2 as a particular instances of this
phenomenon).

As a consequence of this extended DC Calculus, we also prove that the DC Laplacian (namely
the trace of Hessian with respect to the Riemannian metric) of DC functions coincides with the
weak Laplacian defined through integration by parts (see Proposition 5.9). This fact has been used
in [19] without an explicit proof.

We are also able to prove that for a DC function f and BV vector fields X, Y , the Hessian of
f is related to the covariant derivative in the same way as in the smooth case in the sense that

Hessf(X,Y ) = D(df(Y ))(X)− df(DXY )

(where D stands either for the differential of function or the (measure-valued) covariant derivative
of vector field, depending on the context). We also prove that the classical formula

D∇ψ∇ψ =
1

2
∇(|∇ψ|2g)

remains valid in this setting.
The formula above is then used to prove that the Hessian we define satisfies an integration by

parts formula in the same spirit as in the Γ2 calculus [5], see Proposition 6.2. This consistency

1We invite the reader to compare our Section 3.2.1 with lemma p5 in Perelman’s paper [16], and our Section 3.8
with Section 4.3 in the same paper
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result is particularly relevant in connection with the coordinate-free approach to calculus in metric
measure spaces, which works particularly well under Ricci lower bounds on curvature, still expressed
in terms of the Γ2 tensor, see [11]. We know after [19] and [4] that spaces with sectional curvature
bounded from below satisfy Ricci lower bounds in this sense, see also [21] for a very nice application
of these calculus tools to Alexandrov spaces. Nevertheless the connection between this viewpoint
and the one developed in this paper is not yet completely clear, since the calculus developed in
[11, 4] allows to handle, so to speak, only sections of the tangent bundle defined up to N -negligible
sets, while the calculus in coordinates allows to handle sections of the tangent bundle defined up
to (N − 1)-dimensional sets.

The DC Calculus allows Perelman to improve an important result of Otsu and Shioya in [15]
where the authors prove that the distance on Alexandrov space X derives from a continuous (in a
weak sense, see Theorem B in [15]) Riemannian metric defined almost everywhere onX∗. Perelman
proves that the Riemannian metric components, when read in a chart, are actually functions of
local bounded variation. In [2], we improve these results in the case of surfaces.

This paper is organized as follows. In the first part, we introduce the function spaces related
to the DC Calculus. We then introduce the notion of DC0 Riemannian manifold, which provides
a natural setting where the DC Calculus can be defined. In the subsequent part, we study the
covariant tensors and their covariant derivatives on a DC0 Riemannian manifold. Due to the low
regularity, we use the old-fashioned approach consisting in defining tensors in charts and imposing
a compatibility condition (see [20] for more on this point of view). The antepenultimate section is
devoted to the Laplacian and Hessian of a DC function. The penultimate one is devoted to the
integration by parts formula involving Hessian. In the last part, we establish that the subset X∗
of a finite dimensional Alexandrov space X is indeed a DC0 Riemannian manifold.

2. Function spaces for DC Calculus

2.1. DC, BV and Cw functions.

Definition 2.1 (DC functions). Let Ω ⊂ RN be an open set. A function f : Ω→ R is said to be
a DC function on Ω if it is locally representable in Ω as a difference of two semiconcave functions.

A similar definition will be used for vector-valued maps, arguing componentwise. Since SC
functions are defined by a local property, a simple partition of unity shows that DC functions in
an open set can also be globally represented by the difference of two SC functions. It is also easy
to check that the class of DC functions is a vector space. In the note [12], Hartman proved that
the space of DC functions is indeed an algebra, i.e. stable under multiplication. A more general
statement, that encompasses also this property, is given below.

Theorem 2.2 (Stability of DC). Given f : U ⊂ RM −→ V ⊂ RN and g : V −→ R with U and
V two open sets, the function g ◦ f is DC on U if f and g are DC on U and V respectively. As a
consequence, the set of real-valued DC functions on U is an algebra.

It is a classical result that the second distributional derivative of a SC function in an open
set V ⊂ RN is a symmetric matrix-valued Radon measure in V whose positive part is absolutely
continuous with respect to the Lebesgue measure L N , and that SC functions admit at almost
every point a second order Taylor expansion [1]. In particular, by linearity, the first derivatives of
a DC function are functions of locally bounded variation. For later use, let us quickly review some
basic definitions and results on BV functions on Euclidean spaces.

Definition 2.3 (BV functions). Let V be an open set of RN . A function f : V −→ R belongs
to BV (V ) if f ∈ L1(V ) and the derivative in the sense of distributions of f is representable by a
vector-valued measure

Df =
(
D1f, . . . ,DNf)

with finite total variation in V . Equivalently, |Df |(V ) <∞ and

∀i = 1, . . . , N, φ ∈ Lipc(V )

ˆ
V

f
∂φ

∂xi
dx = −

ˆ
V

φdDif.
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Here Lipc(V ) stands for the set of Lipschitz functions with compact support on V .
The function f is said to be in BVloc(V ) if it is a BV function on every open set V ′ b V .

Again, a similar definition can be given componentwise for maps f : V −→ RM and in this
case Df will be viewed as a (M × N)-matrix of measures Dif

(j). Denoting by H k, k > 0, the
k-dimensional Hausdorff measure (the ambient space is irrelevant and it will not appear in the
notation), we recall that a set E ⊂ RN is said to be σ-finite w.r.t. H k if E is the union of
an increasing sequence of sets with finite H k measure. If k ≥ 1 is an integer, we say that a
set E ⊂ RN is countably H k-rectifiable if there exist countably many closed sets Ci ⊂ Rk and
Lipschitz functions fi : Ci −→ RN such that

H k(E \
∞⋃
i=0

fi(Ci)) = 0.

Remark 2.4. Throughout this paper, 〈·, ·〉 stands for the standard Euclidean inner product and
‖ · ‖2 for its induced norm.

Given a locally integrable function f we say that x is an approximate continuity point of f if
there exists f̃(x) ∈ R satisfying

(1) lim
ρ↓0

 
Bρ(x)

|f(y)− f̃(x)| dL N (y) = 0,

where, here and in the sequel, Bρ(x) denotes the open ball with radius ρ and center x and
ffl
B
f dµ

denotes the averaged integral, i.e.
´
B
f dµ/µ(B). The complement of the set of approximate

continuity points will be denoted by Sf . We shall also use the same notation and concept for
vector-valued functions, arguing componentwise.

Theorem 2.5 (Decomposition of Df). Let V ⊂ RN be an open set. For all f ∈ BVloc(V ) the
following properties hold:

(a) |Df | vanishes on H N−1-negligible sets.
(b) Df admits the mutually singular decomposition

(2) Df = Dacf +Dsif = Dacf +Djuf +Dcaf,

where Dacf is the absolutely continuous part w.r.t. Lebesgue measure L N , Dsif is the
singular part, which can be further split in jump part Djuf and Cantor part Dcaf , the
former concentrated on a set σ-finite w.r.t. H N−1 and the latter vanishing on all sets
with finite H N−1 measure.

(c) Djuf is concentrated on the set of approximate jump points Jf and the set Jf is a count-
ably H N−1-rectifiable set. Moreover up to a H N−1-negligible set, Jf coincides with the
approximate discontinuity set Sf of f .

(d) By the very definition of Jf , all points x ∈ Jf one can identify two values f±(x), the
so-called one-sided approximate limits, such that an approximate continuity property holds
by averaging along an halfspace passing through x. More precisely, there exists a Borel
function ν(x) ∈ SN−1, such that

lim
ρ↓0

 
B±ρ (x,ν(x))

|f(y)− f±(x)| dL N (y) = 0,

where

B+
ρ (x, ν(x)) = {y ∈ Bρ(x); 〈y − x, ν(x)〉 > 0}, B−ρ (x, ν(x)) = {y ∈ Bρ(x); 〈y − x, ν(x)〉 < 0}.

The triple (ν(x), f+(x), f−(x)) is uniquely determined up to ν(x) 7→ −ν(x) that maps
f+(x) to f−(x) and vice versa. The jump part of Df is equal to

Djuf = (f+(x)− f−(x))ν(x) H N−1 Jf .
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For a proof of this proposition, we refer to the the book [3, Chapter 3] (see also Definition 2.8
below).

We will also use the following result.

Theorem 2.6. Let F : U → V be a biLipschitz homeomorphism between open subsets of RN such
that, either det dF ≥ 0 H N -a.e. on U or det dF ≤ 0 H N -a.e. on U . Then, for all f ∈ BV (U)
the function f ◦ F−1 belongs to BV (V ) and

|D(f ◦ F−1)| ≤ (Lip F )N−1F](|Df |),

where ·] stands for the pushforward of a measure (see Section 2.3).

For a proof, we refer to [3, Theorem 3.16].

Lemma 2.7. Let f ∈ BV (Ω), with Ω ⊂ RN open and connected. If Djuf = 0 and, for any ball
Br(x) b Ω one has |f |−1 ∈ L∞(Br(x)), then the sign of f is constant.

Proof. By the connectivity of Ω, it suffices to show that if B is a ball, f ∈ BV (B), |f |−1 ∈ L∞(B)
and Djuf = 0 in B imply that f has constant sign in B. Notice that Djuf = 0 in B implies
H N−1(B ∩ Sf ) = 0. If f has not a constant sign, then both {f > 0} and {f < 0} have positive
H N -measure. By the coarea formula we can find s, t > 0 with |f | ≥ max{s, t} in B such that
{f < −s} and {f > t} have finite perimeter. By our choice of s and t and by the hypothesis on
|f |−1, B is partitioned up to H N -negligible sets in two sets of finite perimeter which therefore
have in B the same essential boundary (namely the set of points of density neither 0 nor 1). On
the other hand, since (1) implies that all sets

{y ∈ Bρ(x) : |f(y)− f̃(x)| > ε} ε > 0

have 0 density at x whenever x /∈ Sf , it follows that any point in the intersection of the essential
boundaries of {f < −s} and {f > t} belongs to Sf . It follows that the essential boundary of these
sets is H N−1-negligible in B, and this forces one of the two sets (by the relative isoperimetric
inequality for sets of finite perimeter) to be H N -negligible and the other one to coincide, up to
H N -negligible sets, with B. �

Let Ω ⊂ RN open and f ∈ BV (Ω). Recall that, by definition, at all points x ∈ Ω \ Sf there
exists a number, called approximate limit and denoted f̃(x), satisfying

´
Br(x)

|f− f̃(x)| dy = o(rN ).

In addition, Lebesgue’s theorem gives that f̃ = f L N -a.e. in Ω.
Analogously, at all points x ∈ Jf one can identify two values f±(x), the so-called one-sided
approximate limits, where an analogous property holds by averaging along an halfspace passing
through x (see Theorem 2.5 (d)).

Definition 2.8 (Precise representative of a BV function). The precise representative f∗ is defined
on Ω \ (Sf \ Jf ) by

f∗(x) =

{
f̃(x) if x ∈ Ω \ Sf ;
1
2

(
f+(x) + f−(x)

)
if x ∈ Jf .

and it is left undefined on the H N−1-negligible set Sf \ Jf .

As a consequence of the definition, we have Df = Df∗. In the rest of this paper a BV function
f will be always identified with its precise representative.

We refer to [3, Corollary 3.80] for more on the precise representative. Notice that the use of the
representative is necessary in several results in this paper. For instance, the precise representative
f∗ will be used when the chain rule formula [3, Theorem 3.96] is applied in our setting, see also
Lemma 4.12.
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2.2. Cw functions, geometric BV functions and Radon measures.

Definition 2.9 (Cw and Cw ,o functions). Let Ω ⊂ RN be an open set and f : Ω → R. We say
that f ∈ Cw (Ω) if there exists a set S, σ-finite with respect to H N−1, such that:

(a) f |Ω\S is continuous;
(b) f |Ω\S is locally bounded in Ω, i.e. for all x ∈ Ω one has supBr(x)\S |f | < ∞ for some ball

Br(x) b Ω.
We say that f ∈ Cw ,o(Ω) if, in addition, S can be chosen to be H N−1-negligible.

Notice that (a) does not imply (b), unless S = ∅. Occasionally we will use the notation Cw (Ω, S)
or Cw ,o(Ω, S) to emphasize the role of the set S in the defining properties of the classes Cw (Ω)
and Cw ,o(Ω).

It is obvious that if f ∈ Cw (Ω, S), then Sf ⊂ S and f = f̃ = f∗ on Ω \ S. In particular, for
f ∈ BVloc(Ω)∩Cw ,o(Ω), the precise representative coincides with f H N−1-a.e. on Ω. Most of the
results stated below in the class Cw (Ω) ∩ BV (Ω) (for instance Lemma 4.12 below) could actually
be stated and proved in the class BV (Ω) using the precise representative; however the use of the
spaces Cw (Ω) and Cw ,o(Ω) is compatible with our geometric applications and it simplifies some
technical aspects.

Notice also that the Euclidean gradient ∇f of a DC function f : Ω ⊂ RN → R (arbitrarily
defined on the set of points where f is not differentiable) belongs to Cw (Ω). The following definition,
then, is natural.

Definition 2.10 (The class DC0(Ω)). Let Ω ⊂ RN be an open set. DC0(Ω) is the collection of
all functions f ∈ DC(Ω) such that ∇f ∈ (Cw ,o(Ω))N . Analogously, DC0(Ω, S) is the collection of
all functions f ∈ DC(Ω) such that ∇f ∈ (Cw ,o(Ω, S))N .

For later use, let us also introduce

(3) BV(Ω) := BVloc(Ω) ∩ Cw (Ω) and BV0(Ω) := BVloc(Ω) ∩ Cw ,o(Ω).

Analogous definitions can be given for the subclasses BV(Ω, S), BV0(Ω, S).
The natural Radon measures related to these spaces are introduced in the following definition.

Definition 2.11 (GM(Ω) and GM0(Ω) Radon measures). The set of Radon measures on Ω that
vanish on H N−1-negligible sets is denoted by GM(Ω), whereas the set of Radon measures on Ω
that vanish on H N−1-finite sets is denoted by GM0(Ω).

Remark 2.12. In our terminology, a Radon measure µ on Ω has finite total variation only on
compact subset of Ω. Consequently, if µ is a signed Radon measure, µ(B) makes sense only for
Borel sets B with compact support in Ω. Note that the derivative of f ∈ BV0(Ω) has no jump
part, therefore according to Theorem 2.5 it belongs to GM0(Ω) .

2.3. Pull-back of function and measure trough DC0 homeomorphisms.

We start with the definition of DC and DC0 homeomorphisms.

Definition 2.13. Let F : Û ⊂ RN −→ V̂ ⊂ RN be a homeomorphism from Û onto V̂ . The map F
is said to be a DC (resp. DC0 homeomorphism) if F and F−1 have DC (resp. DC0) components.

Recall that, for a proper map F : X −→ Y , the push-forward operator F] maps Radon measures
in X to Radon measures in Y via the formula F]µ(B) = µ(F−1(B)) for any Borel set B with
compact support in Y . Equivalently, since Borel functions can be approximated with simple Borel
functions, one can characterize F]µ via the change of variables formulaˆ

Y

ϕdF]µ =

ˆ
X

ϕ ◦ F dµ.

In particular, we obtain the useful formula

(4) F]((k ◦ F )µ) = kF]µ for any locally bounded Borel function k : Y −→ R,
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since (by applying the change of variables formula with ϕ = kχB)

F]((k ◦ F )µ)(B) =

ˆ
F−1(B)

k ◦ F dµ =

ˆ
B

k dF]µ

for any Borel set B with compact support.
For geometrical purposes, we need also to introduce the pull-back of measures, in a form that

takes into account the Jacobian determinant of F , see (5) below.

Definition 2.14 (Pull-back of functions and measures). Let F : Û −→ V̂ be a DC0 homeomor-
phism. Given f ∈ Cw (V̂ ) we define the pull-back of f through F by

F ∗(f) = f ◦ F.

Analogously, given µ ∈ GM(V̂ ), we define the pull-back of µ through F by

〈F ∗(µ), ψ〉 =

ˆ
V̂

ψ ◦ F−1|det dF−1|µ(dx),

where ψ is any compactly supported and bounded Borel function on Û .

Equivalently, taking the change of variables formula for F] into account, one can write

(5) F ∗(µ) = (F−1)](|det dF−1|µ).

Combining (4) and (5) we immediately get a formula “dual” to (4), namely

(6) F ∗(kµ) = (k ◦ F )F ∗(µ) for any locally bounded Borel function k.

If µ = ρH N and ψ is any compactly supported and bounded Borel function, the change of
variable formula of H N for biLipschitz homeomorphisms givesˆ

ψ(x) dF ∗(µ)(x) =

ˆ
ψ(F−1(x)) |det dF−1| ρ(x) dx

=

ˆ
ψ(x) ρ(F (x)) dx.

Thus,

(7) F ∗(ρH N ) = (F ∗ρ)H N

and the two definitions given above, for functions and measures, are mutually consistent.

Remark 2.15. Note that x 7→ |det dxF
−1| belongs to BV0(V̂ ) thus, in particular, it is defined

µ-almost everywhere whenever µ ∈ GM(V̂ ).

2.3.1. Approximation result and geometrical consequences.

In this part we prove a proposition whose corollary will be used many times in the rest of the
paper.

Proposition 2.16. Let Ω be an open subset of RN and h : Ω → R bounded. Assume that either
h ∈ Cw ,o(Ω) and µ ∈ GM(Ω), or h ∈ Cw (Ω) and µ ∈ GM0(Ω). Let (µε)ε>0 be Radon measures
with finite total variation in Ω absolutely continuous with respect to H N such that µε → µ in the
duality with Cc(Ω). We further assume that

(8) lim sup
ε↓0

|µε|(Ω) ≤ |µ|(Ω) <∞.

Then hµε → hµ in the duality with Cb(Ω), the class of bounded continuous functions in Ω.
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Proof. The leading idea of the proof is that the set of discontinuity points of a suitable restriction
of h is negligible with respect to µ and µε. From [3, Theorem 2.2], we infer that |µε| → |µ| in the
duality with Cb(Ω). As a consequence, we clearly have that µ±ε → µ± in the duality with Cc(Ω).
Combining this remark with the analogous decomposition of h into its positive and negative part,
the boundedness of h reduces the proof to the case when µε ≥ 0 and h is nonnegative and bounded.

Let us consider the case h ∈ Cw (Ω, S) and µ ∈ BV0(Ω), the proof in the other case is similar.
We then define the lower semi-continuous envelope h− : Ω→ R

h−(x) = inf
{

lim inf h(xn); xn ∈ Ω \ S and lim
n→∞

xn = x
}
.

We define the upper-semicontinuous h+ envelope analogously. Now, using that h− ≥ 0 is lower-
semicontinuous and µ ≥ 0, we get (see for instance [3, Proposition 1.62] for a proof) for any
nonnegative continuous function ψ

lim inf
ε↓0

ˆ
ψh− dµε ≥

ˆ
ψh− dµ.

Analogously, if ψ is also bounded, we have

lim sup
ε↓0

ˆ
ψh+ dµε ≤

ˆ
ψh+ dµ.

Now, the continuity assumption on h yields h+ = h− on Ω \ S, so thatˆ
ψh+ dµε =

ˆ
ψh− dµε =

ˆ
ψhdµε

and ˆ
ψh+ dµ =

ˆ
ψh− dµ =

ˆ
ψhdµ.

This proves the convergence of hµε to hµ in the duality with bounded and nonnegative continuous
functions. The general case can be achieved splitting the test function ψ in positive and negative
part. �

Corollary 2.17. Let F : Û −→ V̂ be a DC0 homeomorphism. Assuming that h ∈ BV(V̂ ), the
following chain rule in the sense of Radon measures holds:

(9)
∂

∂xi
(h ◦ F ) =

N∑
s=1

∂F s

∂xi
F ∗
(
∂h

∂ys

)
for any i ∈ {1, · · · , N} and F = (F 1, · · · , FN ).

Proof. We set hε = h ∗ ρε with ρε a family of mollifiers. Then, hε and hε ◦ F are locally Lipschitz
functions. Thus, (9) holds with hε instead of h. Since hε ◦ F → h ◦ F in L1

loc(Û), one has

∂(hε ◦ F )

∂xi
→ ∂(h ◦ F )

∂xi
i = 1, · · · , N

in the duality with C∞c (Û), and then in the duality with Cc(Û). On the other hand, using
F ∗(hµ) = (h ◦ F )F ∗(µ), we can rewrite the right-hand side of (9) as

N∑
s=1

∂F s

∂xi
F ∗
(
∂h

∂ys

)
=

N∑
s=1

F ∗
(
∂F s

∂xi
◦ F−1 ∂h

∂ys

)
.

Now, µε = ∂hε/∂y
sH N satisfy the hypotheses in Proposition 2.16 (a proof is given in [3, Theorem

2.2] for instance), ∂h/∂ys ∈ GM(V̂ ), |det dF−1| ∂F s/∂xi ◦ F−1 ∈ Cw ,0(V̂ ) therefore Proposition
2.16 yields

|det dF−1| ∂F
s

∂xi
◦ F−1 ∂hε

∂ys
H N → |det dF−1| ∂F

s

∂xi
◦ F−1 ∂h

∂ys
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in the duality with Cc(V̂ ). This implies, using F ∗(µ) = F−1
] (|det dF−1|µ),

F ∗(
∂F s

∂xi
◦ F−1 ∂hε

∂ys
H N )→ F ∗(

∂F s

∂xi
◦ F−1 ∂h

∂ys
)

in the duality with Cc(Û). By combining this convergence with (6), we get (9). �

3. DC0 manifolds

3.1. Definition and properties of DC0 manifolds.

We start with the definition of the class of manifolds we are interested in.

Definition 3.1 (DC0 manifolds). A countable at infinity N dimensional topological manifold X∗
is said to be a DC0 (open) manifold if the following property holds:

There exist a singular set S ⊂ X∗ and a maximal atlas of X∗ (Uα, φα)α∈Λ made of charts
φα : Uα → RN which are homeomorphisms onto their image such that for any α, β ∈ Λ,

φα(Uα ∩ S) is H N−1-negligible,

and any transition map

F = φβ ◦ φ−1
α : Ûα := φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ) =: Ûβ

belongs to DC0(φα(Uα ∩ Uβ), φα(Uα ∩ S)).

Remark 3.2. In particular, the transition maps are DC0 homeomorphisms.

Remark 3.3 (Sign of determinant of transition maps). The determinant det dF of the transition
map is a BV function with no jump part of derivative. Therefore, Lemma 2.7 and condition
(b) in Definition 3.9 give that the sign of det dF is (H N -almost everywhere) constant on the
connected components of the domain of F . This allows us the application of Theorem 2.6, namely
the invariance of the BV property under composition with F−1.

Remark 3.4. Note that a DC0 manifold is in particular a Lipschitz manifold. Therefore, there is a
well-defined first order calculus for locally Lipschitz functions. Namely, a function f is said to be
locally Lipschitz if f ◦φ−1 is a locally Lipschitz function with respect to the Euclidean norm when
read in an arbitrary chart (U, φ). Throughout this paper, “locally Lipschitz” will always refer to
this definition.

We can extend all the definitions of Section 2.2 to functions or Radon measures on a DC0

manifold, by requiring that the corresponding definition given there is satisfied when the object
is read in any chart (U, φ). Namely, a function f belongs to the space “X” if and only if f ◦ φ−1

belongs to the space “X” in the Euclidean sense, and a Radon measure µ belongs to the space “X"
if φ]µ belongs to the same space in the Euclidean sense. The well-posedness of these definitions is
guaranteed by the fact that a DC0 transition map is a DC0 homeomorphism thus, in particular,
a biLipschitz homeomorphism, and the fact that sets which are σ-finite or negligible w.r.t. H N−1

are invariant under biLipschitz maps.

3.2. Tensors on a DC0 manifold.

Definition 3.5 (Covariant tensors on an open set V̂ ⊂ RN ). A covariant p-tensor S on V̂ with
BV (resp. GM) components is by definition,

S =
∑

j1,··· ,jp

Sj1···jpdy
j1 ⊗ · · · ⊗ dyjp

where the multi-indices (j1, · · · , jp) run into {1, · · · , N}p and Sj1···jp ∈ BV(V̂ ) (resp. GM(V̂ )).

Now, we define the pull-back of a covariant tensor with components in BV(V̂ ) or in GM(V̂ ),
through a transition map.
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Definition 3.6 (Pull-back of a tensor). Given F : Û −→ V̂ a DC0 homeomorphism and S a
covariant p-tensor on V̂ with components in BV(V̂ ) (resp. GM(V̂ )), we define a covariant p-tensor
F ∗S on Û by the formula

(10) F ∗S =
∑

i1,··· ,ip

∑
j1,···jp

∂F j1

∂xi1
· · · ∂F

jp

∂xip
F ∗(Sj1···jp) dxi1 ⊗ · · · ⊗ dxip .

Remark 3.7. F ∗S has BV components according to Theorem 2.6. According to the fact that
BV0(Û) is an algebra and Remark 2.15, the components of F ∗S belong to BV0(Û) (resp. GM0(Û))
whenever the components of S belong to BV0(V̂ ) (resp. GM0(V̂ )).

Definition 3.8 (Covariant tensors on a DC0 manifold X∗). A covariant p-tensor S on an open
subset Ω ⊂ X∗ with BV (resp. GM) components is, by definition, a family

S = {Sα}α∈Λ

where for each α such that Uα∩Ω 6= ∅, Sα is a covariant p-tensor on φα(Uα∩Ω) with BV(φα(Uα∩Ω))
(resp. GM(φα(Uα∩Ω))) components. The family of tensors is required to satisfy the compatibility
condition

F ∗Sβ = (φβ ◦ φ−1
α )∗Sβ = Sα in φα(Uα ∩ Uβ ∩ Ω),

as Radon measures or for H N -a.e points, depending on the regularity of the components, and for
any pair of charts (Uα, φα), (Uβ , φβ) such that Uα ∩ Uβ ∩ Ω 6= ∅.

We define similarly covariant p-tensors S on an open subset Ω ⊂ X∗ with BV0 (resp. GM0)
components.

3.2.1. Riemannian metric on a DC0 manifold. We can now introduce the notion of DC0 Riemann-
ian manifold.

Definition 3.9 (DC0 Riemannian manifolds). A N dimensional DC0 manifold X∗ is said to be
a DC0 Riemannian manifold if there exists a covariant 2-tensor g defined on X∗ \ S (where S is
the singular subset of X∗) whose components gij , when read in a chart (U, φ)

(a) satisfy gij = gji,
(b) belong to BV0(φ(U), φ(U ∩ S)) and satisfy

(11)
1

c(x)
‖p‖22 ≥

∑
1≤i,j≤N

gij(x)pipj ≥ c(x)‖p‖22 for all p ∈ RN , for all x ∈ φ(U \ S),

with c and c−1 locally bounded in φ(U).

3.2.2. Cw , BV, and GM vector fields.

Let us recall that the notion of DC0 manifold is a particular instance of Lipschitz manifold.
Therefore, vector fields are well-defined objects on such a manifold. In this part, we briefly give
the definition of Cw , BV, and GM vector fields on a DC0 manifold X∗ (BV vector fields are
well-defined thanks to Theorem 2.6 and the fact that BV is an algebra).

Definition 3.10 (Cw , BV, and GM vector fields). Let Ω ⊂ X∗ be an open set. A Cw (resp. BV,
GM) vector field on Ω is the datum of a system of vector fields. Namely, for any chart (U, φ) such
that U ∩ Ω 6= ∅, we are given a vector field

Xα = (X1
α, · · · , XN

α ) : φα(Uα ∩ Ω)→ RN

with components in Cw (φα(Uα ∩ Ω)) (resp. BV(φα(Uα ∩ Ω)), GM(φα(Uα ∩ Ω))). Moreover, we
assume that for any pair of charts (φα, Uα), (φβ , Uβ) such that Uα ∩ Uβ ∩ Ω 6= ∅, the following
compatibility condition holds

(12) F ∗(Xβ) :=

N∑
i=1

N∑
j=1

∂(F−1)i

∂yj
F ∗(Xj

β)
∂

∂xi
= Xα H N − a.e (resp. as measures).
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Remark 3.11. Our definition of vector field is a bit non-standard. Here, we identify vector field
with contravariant 1-tensor. However, using that F is a biLipschitz homeomorphism differentiable
at any point out of the range of S, it is easily seen that (12) is equivalent to

(13)
N∑
i=1

∂F j

∂xi
Xi
α = F ∗(Xj

β) H N − a.e (resp. as measures).

for all j ∈ {1, · · · , N}. In the sequel, we freely use both conditions.

Remark 3.12 (Existence of local orthonormal frame made of Cw ,o vector fields). Let X∗ be a
DC0 Riemannian manifold. Let ( ∂

∂xi )1≤i≤N be the constant vector fields induced by a coordinate
system. These vectors obviously belong to Cw ,o(S). By applying the Gram-Schmidt process to the
( ∂
∂xi ) with respect to g(x) at each point x in the domain of the chart where g is defined (i.e out

of the image of S), we get a local orthornormal frame (Ei) where the (Ei) are continuous out of
the image of S through the chart (indeed the metric components satisfy this continuity property).
Since the (Ei) are unit vectors with respect to g, the property (11) on g yields that the (Ei) are
locally bounded out of a H N -negligible set. Combining this with the continuity property we just
mentioned shows the (Ei) are Cw ,o vector fields with singular set the image of S.

Lemma 3.13. Let Ω ⊂ X∗ be an open set and let X be a BV vector field on Ω. Then, given two
charts (φα, Uα), (φβ , Uβ) such that Uα ∩Uβ ∩Ω 6= ∅, if Xα is a precise representative of X read in
the chart (φα, Uα), then dxF (Xα(x)) is a precise representative of Xβ ◦ F .

Proof. Since Xα coincides with its precise representative on the image of Ω \ S through φα and F
is differentiable at such points, it suffices to prove that for H N−1 almost every approximate jump
point xα of Xα, F (xα) is an approximate jump point of Xβ and the one-sided approximate limits
satisfy

X+
β (F (xα)) +X−β (F (xα)) = dxαF (X+

α (xα) +X−α (xα)).

We shall prove this formula for approximate jump points xα ∈ φα(Ω ∩ Uα \ S) which is sufficient
for our purpose.

According to Theorem 2.5, for such a xα there exists a Borel map ν : JXα → SN−1 such that

lim
ρ↓0

 
B±ρ (xα,ν(xα))

‖Xα(x)−X±α (xα)‖2 dL N (x) = 0.

We set xβ = F (xα), κ(F (x)) = (t(dxF ))−1(ν(x)), and ν′(y) = κ(y)/‖κ(y)‖2. We have to show
that

lim
ρ↓0

 
B±ρ (xβ ,ν′(xβ))

‖Xβ(y)− dxαF (X±α (xα))‖2 dL N (y) = 0.

To this aim, we point out that F−1(Bρ(xβ)) ⊂ BLip(F−1)ρ(xα) and F−1(y) ∈ B±ρ (xα, ν(xα))

whenever y ∈ B±ρ (xβ , ν
′(xβ)) and ρ is sufficiently small. Indeed, since xβ is a regular point by

assumption, F−1 is differentiable at xβ ; hence

〈F−1(y)− F−1(xβ), ν(xα)〉 = 〈dxβF−1(y − xβ), ν(xα)〉+ o(‖y − xβ‖2)

= 〈y − xβ ,t (dxβF
−1)ν(xα)〉+ o(‖y − xβ‖2)

= ‖κ(xβ)‖2〈y − xβ , ν′(xβ)〉+ o(‖y − xβ‖2).

Therefore, applying the change of variable formula, we get
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ˆ
B±ρ (xβ ,ν′(xβ))

‖Xβ(y)− dxαF (X±α (xα))‖2 dL N (y) ≤
ˆ
B±
Lip(F−1)ρ

(xα,ν(xα))

‖Xβ ◦ F (x)− dxαF (X±α (xα))‖2 |det dxF |dL N (x)

≤ (LipF )N
ˆ
B±
Lip(F−1)ρ

(xα,ν(xα))

‖dxF (Xα(x))− dxαF (X±α (xα))‖2 dL N (x)

by (13). We conclude by using that dxF is continuous at xα and xα is an approximate jump point
of Xα. �

4. General properties of DC0 Riemannian manifold

4.1. Properties of the metric. We begin with technical results that will be used in the sequel.

Lemma 4.1. Let X∗ be a DC0 Riemannian manifold. We set G−1(x) = (gij(x))1≤i,j≤N the
inverse at x ∈ φ(U \ S) of the matrix (gij(x))1≤i,j≤N read in a chart (U, φ). Then, G−1 belongs to
BV0(φ(U))N

2

.

Proof. Let Ω = φ(U) and let S be the H N−1-negligible singular set of g, in these local coordinates.
Using the expression of the inverse of a matrix in terms of the matrix of cofactors and the fact
that BV0 is an algebra, it suffices to prove that 1/g, with g = det(gij), belongs to BVloc(Ω) and is
locally bounded in Ω, according to Definition 2.9. Local boundedness of 1/g follows immediately
by condition (b) in Definition 3.9. The fact that 1/g belongs to BVloc(Ω) follows from the local
boundedness and from the chain rule formula for the left composition with a Lipschitz function
(see for instance [3, Theorem 3.96]), which gives

D
1

g
= − 1

g2Dg

provided we work with the precise representative (recall also that g has no jump part in its derivative
since it belongs to BV0(Ω)). �

For later use, we also mention the following result whose proof is along the same lines as the
one above, thus is left to the reader.

Lemma 4.2. Let X∗ be a DC0 Riemannian manifold and let G be the BV0-metric read in a chart.
Then, understanding the derivatives in the sense of distributions, one has

(14)
∂

∂xi

(√
detG

)
=

√
detG

2

∑
k,s

gks
∂gks
∂xi

.

To conclude this part, we notice that as in the smooth case, a Riemannian metric can be defined
locally first and then be extended to a global tensor on the DC0 manifold. Indeed, it is easy to
check that (11) is preserved by a DC0 transformation map and the lemma below guarantees the
existence of DC0 partition of unity.

Lemma 4.3. Given a locally finite atlas (Uα, φα)α∈Λ on X∗, there exists a partition of unity
(ψα)α∈Λ subordinate to (Uα)α∈Λ where ψα are compactly supported Lipschitz DC0 functions in
Uα.

Proof. X∗ is paracompact, thus there exists a locally finite subcover (U ′α)α∈Γ of (Uα)α∈Λ with
U ′α b Uα. Since in Euclidean spaces one can always find, given open sets A b B, a function
φ ∈ C∞c (B) with 0 ≤ φ ≤ 1 and φ ≡ 1 in a neighbourhood of A, we can pull these maps (with
A = Aα = φα(U ′α), B = Bα = φα(Uα)) to obtain DC0 functions ψα and build out of them the
desired partition of unity. �
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4.2. Measure induced by a system of measures. We start with the definition of a system of
measures.

Definition 4.4 (System of Radon measures). Let X∗ be a DC0 manifold with charts (Uα, φα)α∈Λ.
A family of Radon measures (µα)α∈Λ, where µα is a Radon measure on φα(Uα) is called a system
of Radon measures if it further satisfies the compatibility condition F ∗(µβ) = µα in φα(Uα ∩ Uβ).

Example 4.5. Let F : Û −→ V̂ be a DC0 transition map of a DC0 manifold. Then, the change of
variable formula for biLipschitz homeomorphism yields

F ∗(L N V̂ ) = L N Û .

Note that the condition in definition 4.4 is not equivalent to F](µα) = µβ . However, we have
the following result.

Lemma 4.6. Let F : Û −→ V̂ be a DC0 transition map of a DC0 Riemannian manifold. Suppose
we are given µ̃ ∈ GM(V̂ ) and set µ = F ∗(µ̃) ∈ GM(Û). Then,

F](
√

detGµ) =
√

det G̃ µ̃,

where G and G̃ are the metrics in the respective coordinate systems.

Proof. Let ψ be a bounded Borel function with compact support. In this proof, we will need the
fact that

G = t
(
dF
)(
G̃ ◦ F

)
(dF )

and
G−1 =

(
dF (·)F

−1
) (
G̃−1 ◦ F

)t (
dF (·)F

−1
)
.

where tM stands for matrix transposition. These relations are nothing but a reformulation in terms
of matrices of the compatibility condition applied to the covariant 2-tensor g in different charts.
This compatibility condition is recalled in Definition 3.8. We infer from the equalities above that√

det G̃ =
√

detG ◦ F−1|det dF−1|. Thus, we get

〈F−1
] (

√
det G̃ µ̃), ψ〉 =

ˆ
ψ ◦ F−1(y)

√
det G̃(y) µ̃(dy)

=

ˆ
ψ ◦ F−1(y)

√
detG ◦ F−1(y)|det dF−1|(y) µ̃(dy)

= 〈
√

detGF ∗(µ̃), ψ〉,
where we used the identity F ∗(hµ) = (h ◦ F )F ∗(µ) to get the last equality. �

For later use, let us also point out that combining the fact that F is a homeomorphism, F ∗(µ̃) =
F−1
] (|det dF−1|µ̃), and |det dF−1| ≥ 0 yields

(15) |µ| = F ∗(|µ̃|)
by uniqueness of the Radon-Nikodým decomposition (see [3, Corollary 1.29] for a precise state-
ment).

Now, assuming we are given a Riemannian metric on X∗, we can define the measures induced
by a system of (local) measures.

Lemma 4.7. Let X∗ be a DC0 Riemannian manifold with charts (Uα, φα)α∈Λ. Then, any system
of Radon measures (µα)α∈Λ with µα ∈ GM(φα(Uα)) for all α ∈ Λ, induces a Radon measure
µ ∈ GM(X∗), characterized by

(16) µ(B) =

ˆ
φα(B)

√
detGα(x) dµα(x) for any Borel set B ⊂ Uα.

The total variation of this measure is then given by

(17) |µ|g(B) =

ˆ
φα(B)

√
detGα(x) d|µα|(x) for any Borel set B ⊂ Uα.
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Morever, if µα ∈ GM0(φα(Uα)) for all α ∈ Λ, then µ ∈ GM0(X∗).

Proof. The proof is based on a standard argument involving partitions of unity. Recall that,
according to Lemma 4.3, there exists a locally finite partition of unity (ψα)α∈Λ subordinate to
(Uα)α∈Λ where ψα are compactly supported Lipschitz DC0 functions. Then, given any bounded
Borel function χ with compact support, we setˆ

X∗
χdµ :=

∑
α∈Λ

ˆ
φα(Uα)

(ψαχ) ◦ φ−1
α (x)

√
detGα(x) dµα(x).

Using Lemma 4.6 and (15), it is a standard fact that the measure is well-defined (i.e. that it
does not depend on the partition of unity) and that it satisfies (16) and (17). We refer to [10]
or to [20] for more details. Moreover, it is immediately seen that µ ∈ GM0(X∗) whenever all
µα ∈ GM0(φα(Uα)). �

As explained in Example 4.5, the set (L N φα(Uα))α∈Λ is a system of Radon measures. There-
fore, according to Lemma 4.7, it gives rise to a measure on X∗.

Definition 4.8 (Riemannian measure). Let X∗ be a DC0 Riemannian manifold with charts
(Uα, φα)α∈Λ. The Radon measure on X∗ induced by the system (L N φα(Uα))α∈Λ is called
Riemannian measure. It is denoted by dvg in the rest of this paper.

4.3. Covariant derivative of tensors. Our goal in this section is to prove that the covariant
derivative of tensor is well-defined on DC0 Riemannian manifolds, provided that the components
of the tensor belong to BV. We first restrict our attention to covariant tensors since we are mainly
interested in defining the Hessian of a DC function on a DC0 Riemannian manifold (this will be
done in the next section). However, we will also need to consider BV vector fields as a simple
instance of contravariant tensors in order to evaluate our tensor fields, this is done in a dedicated
part. It is simple on the basis of these considerations, to extend our arguments to general tensors;
the details are left to the reader.

To do so, we proceed as for tensors: defining first DS in a chart and then verifying the compat-
ibility condition.

4.3.1. Local definition of covariant derivative.

To this aim, we have to introduce the Christoffel symbols.

Definition 4.9 (Christoffel symbols). Let X∗ be a DC0 Riemannian manifold with a Riemannian
metric g. The Christoffel symbols are then defined as a collection of Radon measures {(Γ(α))kij}α∈Λ,
where

(18) Γkij =
1

2

N∑
l=1

gkl
(
∂gli
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

)
belongs to GM0 with singular set S, the superscript (α) is omitted for simplicity, and gij are the
components of the metric in the chart (Uα, φα).

Remark 4.10. In the appendix, it is proved that the Christoffel symbols read in different charts
satisfy the same compatibility relation as on a smooth Riemannian manifold.

With this definition in hands, we can now introduce the notion of covariant derivative.

Definition 4.11 (Covariant derivative of a BV tensor in a chart V̂ ⊂ RN ). Given a covariant
p-tensor S on V̂ = φ(V ) with BV components, we define a covariant (p + 1)-tensor DS by the
formula

DS =
∑

i0,··· ,ip

(DS)i0···ipdx
i0 ⊗ · · · ⊗ dxip ,



DC CALCULUS 15

where

(19) (DS)i0···ip =
∂Si1···ip
∂xi0

−
p∑
j=1

N∑
m=1

Si1···ij−1mij+1···ipΓmi0ij .

The components of DS belong to GM(V̂ ).

In order to infer from the above definition a well-defined notion of covariant derivative of tensor
on any open subset of X∗, it remains to prove the compatibility formula

F ∗(DS) = D(F ∗S).

This is the goal of the next section.

4.3.2. Covariant derivative of BV covariant tensors on X∗.

We start with the following fact.

Lemma 4.12. Let Ω ⊂ RN be an open set and f, h ∈ BV(Ω). Assume that at least one of the two
functions f, h belongs to BV0(Ω). Then, for any i ∈ {1, · · · , N}, it holds

∂(fh)

∂xi
= f

∂h

∂xi
+ h

∂f

∂xi
.

Proof. For mere BV(Ω) functions, the above formula is not true in general because of the jump
part of the derivatives. Under the assumption of the lemma, at most one of the two functions
has a jump part in its derivative. Then, the standard Leibniz rule formula holds as proved in [3,
Theorem 3.96] for instance. �

Proposition 4.13. Let F : Û → V̂ be a DC0 homeomorphism. Let S be a covariant p-tensor with
components in BV(V̂ ). Then, the following equality of Radon measures holds:

(20) F ∗(DS) = D(F ∗S).

Proof. By linearity of F ∗, and up to a permutation of the coordinates, it is sufficient to prove
(20) in the case when S = S1···p dy

1 ⊗ · · · ⊗ dyp. We start with F ∗(DS). In the following, we set
i = (i0, · · · , ip) and j = (j0, · · · , jp) for arbitrary multi-indices in {1, · · · , N}p+1. By definition of
covariant derivative,

(DS)j =
∂Sj1···jp
∂yj0

−
p∑
k=1

N∑
m=1

Sj1···jk−1mjk+1···jp Γ̃mj0jk ,

where the Γ̃mj0jk stand for the Christoffel symbols in the chart relative to V̂ . This yields

F ∗(DS) =
∑
j

∑
i
∂F j0

∂xi0
· · · ∂F

jp

∂xip
F ∗((DS)j) dx

i0 ⊗ · · · ⊗ dxip .

Therefore, the components of F ∗(DS) satisfy(
F ∗(DS)

)
i

=
∑
j

∂F j0

∂xi0
· · · ∂F

jp

∂xip

(
F ∗
(∂Sj1···jp

∂yj0

))

−
∑
j

p∑
k=1

N∑
m=1

∂F j0

∂xi0
· · · ∂F

jp

∂xip
Sj1···jk−1mjk+1···jp ◦ F F ∗

(
Γ̃mj0jk

)
.

Thus, using that S = S1···p dy
1 ⊗ · · · ⊗ dyp,(

F ∗(DS)
)
i

=
∑
j0

∂F j0

∂xi0
∂F 1

∂xi1
· · · ∂F

p

∂xip

(
F ∗
(∂S1···p

∂yj0

))
(21)

−
p∑
k=1

∑
j0,jk

(∂F 1

∂xi1
· · · ∂̂F

k

∂xik
· · · ∂F

p

∂xip

)∂F j0
∂xi0

∂F jk

∂xik
S1···p ◦ F F ∗

(
Γ̃kj0jk

)
.
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Now, we compute the components of D(F ∗S). Starting from

F ∗S =
∑

(i1,··· ,ip)

∂F 1

∂xi1
· · · ∂F

p

∂xip
S1···p ◦ Fdxi1 ⊗ · · · ⊗ dip ,

we get, (
D(F ∗S)

)
i

=
∂

∂xi0

(
(F ∗S)i1···ip

)
−

p∑
k=1

N∑
m=1

(F ∗S)i1···ik−1mik+1···ipΓmi0ik(
D(F ∗S)

)
i

=
∂F 1

∂xi1
· · · ∂F

p

∂xip
∂

∂xi0

(
S1···p ◦ F

)
+
(
S1···p ◦ F

) ∂

∂xi0

(∂F 1

∂xi1
· · · ∂F

p

∂xip

)
(22)

−
p∑
k=1

N∑
m=1

∂F 1

∂xi1
· · · ∂F

k−1

∂xik−1

∂F k

∂xm
· · · ∂F

p

∂xip
S1···p ◦ F Γmi0ik .

Now according to (9) in Corollary 2.17, we have

(23)
∂

∂xi0

(
S1···p ◦ F

)
=

N∑
u=1

∂Fu

∂xi0
F ∗
(∂S1···p

∂yu

)
.

Therefore, according to (21), (22), and (23), F ∗(DS) = D(F ∗S) if and only if for any multi-index
i we have

(24) −
p∑
k=1

∑
j0,jk

(∂F 1

∂xi1
· · · ∂̂F

k

∂xik
· · · ∂F

p

∂xip

)∂F j0
∂xi0

∂F jk

∂xik
S1···p ◦ F F ∗

(
Γ̃kj0jk

)
=
(
S1···p ◦ F

) ∂

∂xi0

(∂F 1

∂xi1
· · · ∂F

p

∂xip

)
−

p∑
k=1

N∑
m=1

∂F 1

∂xi1
· · · ∂F

k−1

∂xik−1

∂F k

∂xm
· · · ∂F

p

∂xip
S1···p ◦ F Γmi0ik .

This equality can be obtained from the following transformation law of the Christoffel symbols
(whose proof in our setting is given in the appendix):

(25) Γmi0ik =

N∑
θ=1

∂(F−1)m

∂yθ
◦ F

(∑
u,v

∂Fu

∂xi0
∂F v

∂xik
F ∗(Γ̃θuv)

)
+

N∑
θ=1

∂(F−1)m

∂yθ
◦ F ∂2F θ

∂xi0∂xik
.

Indeed, from the above formula we infer
p∑
k=1

N∑
m=1

∂F 1

∂xi1
· · · ∂F

k−1

∂xik−1

∂F k

∂xm
· · · ∂F

p

∂xip
S1···p ◦ F Γmi0ik

=

p∑
k=1

N∑
θ=1

[
∂F 1

∂xi1
· · · ∂F

k−1

∂xik−1

∂̂F k

∂xik
· · · ∂F

p

∂xip
S1···p ◦ F

( N∑
m=1

∂F k

∂xm
∂(F−1)m

∂yθ
◦ F
)

×
(∑
u,v

∂Fu

∂xi0
∂F v

∂xik
F ∗(Γ̃θuv) +

∂2F θ

∂xi0∂xik

)]
=

p∑
k=1

∑
j0,jk

[
∂F 1

∂xi1
· · · ∂F

k−1

∂xik−1

∂̂F k

∂xik
· · · ∂F

p

∂xip
∂F j0

∂xi0
∂F jk

∂xik
S1···p ◦ FF ∗(Γ̃kj0jk)

]
+S1···p ◦ F

∂

∂xi0

(∂F 1

∂xi1
· · · ∂F

p

∂xip

)
where we use that

∑N
m=1

∂Fk

∂xm
∂(F−1)m

∂yθ
◦ F = δkθ in BV0(Û) to get the first equality, and Lemma

4.12 to get the last one. Inserting the last equality into (24) gives the result. �
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4.3.3. Covariant derivative of BV vector fields.

As for covariant tensors, we start with the definition when read in a chart.

Definition 4.14 (Covariant derivative of a BV vector field in a chart V̂ ⊂ RN ). Given a vector
field Y on V̂ = φ(V ) with BV components, we define a (1, 1)-tensor DY by the formula

DY =
∑
j,s

(DY )sj dy
j ⊗ ∂

∂ys
,

where

(26) (DY )sj =
∂Y s

∂yj
+

N∑
v=1

Y v Γsjv.

The components of DY belong to GM(V̂ ).

Definition 4.15 (Pull-back of (1, 1)-tensor). Given a DC0 homeomorphism F : Û −→ V̂ and a
(1, 1)-tensor S a on V̂

S =
∑
j,s

Ssj dy
j ⊗ ∂

∂ys

with components Ssj in BV(V̂ ) (resp. GM(V̂ )), we define a (1, 1)-tensor F ∗S on Û by the formula

(27) F ∗S =
∑
i,j,k,s

∂F j

∂xi
∂(F−1)k

∂ys
◦ F F ∗(Ssj ) dxi ⊗ ∂

∂xk
.

We refer to [20] for a general definition for (p, k)-tensors. As for covariant tensors, in order to
infer from this local definition a well-defined notion of covariant derivative of BV vector field on
any open subset of X∗, it remains to prove a compatibility formula.

Proposition 4.16. Let F : Û → V̂ be a DC0 homeomorphism. Let Y be a vector field with
components in BV(V̂ ). Then, the following compatibility formula holds

(28) D(F ∗Y ) = F ∗(DY ).

The proof is very similar to that of Proposition 4.13, thus the details are left to the reader.

Our next goal is to define the norm of tensor with Radon measures components. However, to do
so, we cannot apply the standard definition for smooth tensors on smooth Riemannian manifolds
(see for instance [17, Section 6.3]). Indeed, the classical definition involves products of components
of the tensor and thus does not apply to our setting. However, in the case when the tensor
components are functions, our definition coincides with the standard one.

With this aim, we verify that we can evaluate GM tensors by means of BV or Cw ,o vector fields
and get an intrinsic system of Radon measures. This is the goal of the next part.

4.3.4. Evaluation of tensors.

In this part, we assume X∗ is a DC0 manifold.

Definition 4.17 (Evaluation of tensors). Given Ω ⊂ X∗ open, a covariant p-tensor S with GM
components on Ω, and X1, · · · , Xp vector fields with Cw ,o(Ω) components, we may evaluate the
tensor on the vector fields by the formula in any local coordinates

Sβ(Xβ,1, · · · , Xβ,p) =
∑
j

Xj1
β,1 · · ·X

jp
β,pSβ,j .
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Note that it is also possible to evaluate tensors by BV vector fields. However, it is necessary to
use the precise representatives of the vector fields for the formula to make sense, since Sβ,j need
not be absolutely continuous w.r.t. H N . Whatever the regularity of the vector fields, what really
matters is that they are defined everywhere out of a H N−1-negligible set and bounded in the sense
of Definition 2.9.

The following lemma shows that this definition satisfies a compatibility condition.

Lemma 4.18. Suppose we are given a covariant p-tensor S with GM components defined on an
open set Ω ⊂ X∗ and BV or Cw ,o vector fields X1, · · · , Xp on Ω. Then, for any pair of charts
(φα, Uα), (φβ , Uβ) such that Uα ∩ Uβ ∩ Ω 6= ∅, the following compatibility conditions holds

F ∗(Sβ(Xβ,1, · · · , Xβ,p)) = Sα(Xα,1, · · · , Xα,p) in φα(Uα ∩ Uβ ∩ Ω).

Therefore the collection of measures (Sα(Xα,1, · · · , Xα,p))α∈Λ in GM is a system of Radon mea-
sures on Ω according to Definition 4.4.

Remark 4.19. Note that given f a BV function and X a BV vector field defined on Ω, the above
result and Lemma 4.7 yield that df(X) is a well-defined Radon measure on Ω.

Proof. By definition,

Sβ(Xβ,1, · · · , Xβ,p) =
∑
j

Xj1
β,1 · · ·X

jp
β,pSj1···jp .

In other terms, Sβ(Xβ,1, · · · , Xβ,p) is a sum of measures where each summand is a product of a
locally bounded Borel function and a Radon measure in GM(φα(Uα∩Uβ∩Ω)). Therefore, applying
(6), we infer

F ∗(Sβ(Xβ,1, · · · , Xβ,p)) =
∑
j

(Xj1
β,1 ◦ F ) · · · (Xjp

β,p ◦ F )F ∗(Sβ,j).

Now, by definition of vector field (see (13)) and according to Lemma 3.13, we have the following
equality up to a H N−1-negligible set

Xjk
β,k ◦ F =

∑
1≤ik≤N

∂F jk

∂xik
Xik
α,k.

Besides, by definition of F ∗ on tensors,∑
j

∂F j1

∂xi1
· · · ∂F

jp

∂xip
F ∗(Sβ,j) = (F ∗(Sβ))i1,··· ,ip .

By combining all of this, we finally get

F ∗(Sβ(Xβ,1, · · · , Xβ,p)) =
∑
i

(F ∗(Sβ))iX
i1
α,1 · · ·Xip

α,p

=
∑
i

(Sα)iX
i1
α,1 · · ·Xip

α,p

= Sα(Xα,1, · · · , Xα,p),

and the proof is complete. �

Remark 4.20. It is also possible to evaluate a covariant 1-tensor with BV components on a vector
field with GM components. The above proof applies with minor changes.
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4.3.5. Norm of tensors.

In this part, we assume X∗ is a DC0 Riemannian manifold. We first define the norm of a tensor
in a chart. Recall that the existence of local orthonormal frames made of Cw ,o(S) vector fields is
guaranteed by Remark 3.12.

Definition 4.21 (Local definition of |S|g). Let S be a covariant p-tensor defined on an open
set Ω ⊂ X∗ with GM(Ω) components and (Uα, φα) a chart of X∗. Let (Ei)1≤i≤N be a local
orthonormal frame in φα(Ω ∩ Uα) with Ei ∈ Cw ,o(φα(Ω ∩ Uα), φα(S ∩ Uα)). We define the norm
|Sα|g of Sα as the total variation of the RNp -valued Radon measure defined as

(29) (S(Ei1 , · · · , Eip))(i1,··· ,ip)∈{1,··· ,N}p .

Here and in the sequel, we always assume that local orthonormal frames are Cw ,o regular out
of the image of S through the chart. Next, we show that Definition 4.21 is well-posed.

Lemma 4.22. Let S be a covariant p-tensor defined on Ω ⊂ X∗ with GM(Ω) components and let
(Uα, φα) be a chart of X∗. Then, the norm |Sα|g does not depend on the choice of the local frame.

Proof. Let (Ei)1≤i≤N , (Ẽi)1≤i≤N be local orthonormal frames on Ω and let P : Ω → RN2

be the
change-of-basis matrix with respect to (Ei) and (Ẽi), i.e. Ẽ

j
i =

∑
` Pi`E

`
j . We denote by σ = |λ|

the total variation of the vector-valued measure in (29) and by σ̃ and λ̃ the analogous quantities
for Ẽi. Our goal is to show that σ̃ and σ coincide as measures in Ω. To this aim, we will find a
representation of λ̃ in terms of λ. Let T : Ω→ RNp be a Borel unit vector field providing the polar
representation of λ, i.e.

S(Ei1 , · · · , Eip) = Ti σ for all i = (i1, · · · , ip) ∈ {1, · · · , N}p

and, writing S =
∑
j Sj dy

j1 ⊗ · · · ⊗ dyjp , let us compute:

S(Ẽi1 , · · · , Ẽip) =
∑
j

SjẼ
j1
i1
· · · Ẽjpip

=

N∑
`1,··· ,`p=1

∑
j

SjPi1`1E
`1
j1
· · ·Pip`pE

`p
jp

=

N∑
`1,··· ,`p=1

Pi1`1 · · ·Pip`pS(E`1 , · · · , E`p)

=

N∑
`1,··· ,`p=1

Pi1`1 · · ·Pip`p T`1,··· ,`p σ.

Setting (P ∗)i` = Pi1`1 · · ·Pip`p , this proves that

λ̃i =
∑
`

(P ∗)i`T` σ.

Since P is an orthogonal matrix and ‖T (x)‖2 = 1, it is easily seen that ‖P ∗T (x)‖2 = 1, therefore
|λ̃| = σ. �

We can now check that |S|g is a well-defined Radon measure on Ω.

Lemma 4.23. Let S be a covariant p-tensor defined on Ω ⊂ X∗ with GM(Ω) components. Then
(|Sα|g)α∈Λ is a system of GM measures. Thus, it induces a measure |S|g ∈ GM(Ω) defined by
(17) called the norm of S.
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Proof. By definition of tensor, for any pair of charts (φα, Uα), (φβ , Uβ) such that Uα ∩Uβ ∩Ω 6= ∅,
the following compatibility conditions holds

F ∗(Sβ(Eβ,1, · · · , Eβ,p)) = Sα(Eα,1, · · · , Eα,p)

where (Eα,1, · · · , Eα,N ) and (Eβ,1, · · · , Eβ,N ) are local orthormal frames in φα(Uα∩Ω) and φβ(Uβ∩
Ω) respectively. The result then follows from Lemmas 4.6 and 4.7. �

Remark 4.24. Let f ∈ BV(Ω), Ω ⊂ X∗ being an open set. Then, the differential of f is a covariant
1-tensor with GM(Ω) components. As a consequence, the above result applies and gives us an
intrinsic notion of “total variation” |df |g of the measure-valued 1-form df .

The arguments above can easily be adapted to show that there is a well-defined notion of norm
for vector field with GM components. We give the formal definition below and leave the details to
the reader.

Definition 4.25 (Norm of a vector field with GM components). Let X be a vector field with
GM(Ω) components, being Ω ⊂ X∗ an open set. Then the norm |X|g ∈ GM(Ω) of X is defined
as the nonnegative measure induced by the following system of measures. These local measures
are defined in each chart whose domain intersects Ω as the total variation of the RN -valued Radon
measure (θ1, · · · , θN ) where (θi)1≤i≤N are the local coordinates of X with respect to a local
orthonormal frame. This definition does not depend on the choice of the orthonormal frame.

As in the smooth setting, the norm of tensor can be used in the following estimate.

Lemma 4.26. Suppose we are given a covariant p-tensor S with GM components defined on an
open set Ω ⊂ X∗ and BV or Cw ,o vector fields X1, · · · , Xp on Ω. Then, the following inequality
between measures holds

|S(X1, · · · , Xp)| ≤ |X1|g · · · |Xp|g|S|g,

where |Xi|g =
√
g(Xi, Xi).

Proof. Since we proved that |S(X1, · · · , Xp)| and |S|g are both systems of Radon measures, we
can work in local coordinates (U, φ) omitting the ·α for simplicity. Let (Ei) be a local orthonormal
frame. Then, according to Definition 4.21, the Radon-Nikodym theorem implies the existence of a
RNp -valued map M(x) with unit Euclidean norm such that

(S(Ei1 , · · · , Eip))i1··· ,ip = M(x)|S|g.

Decomposing X1, · · · , Xp in the basis (Ei) as Xs =
∑N
i=1 θ

i
sEi, yields for any Borel set A

|S(X1, · · · , Xp)(A)| = |
∑
i1··· ,ip

θi11 · · · θipp S(Ei1 , · · · , Eip)(A)|

≤
∣∣∣ˆ
A

∑
i1··· ,ip

θi11 (x) · · · θipp (x)Mi1··· ,ip(x) d|S|g(x)
∣∣∣

≤
ˆ
A

∑
i1··· ,ip

|θi11 (x)| · · · |θipp (x)| |Mi1··· ,ip |(x) d|S|g(x)

≤
ˆ
A

|X1|g · · · |Xp|g d|S|g(x)

≤ |X1|g · · · |Xp|g|S|g(A),

where to get the penultimate inequality we use the Cauchy-Schwarz inequality, the fact that M(x)

has unit Euclidean norm, and that (Ei) is a local orthormal frame for g, hence
∑N
i=1(θis)

2 = |Xs|2g.
Consequently, since A is arbitrary, we get the result by the definition of total variation. �



DC CALCULUS 21

5. Hessian and Laplacian of a DC function

In this section, we use the tensor calculus we introduced in order to define the Hessian, its norm,
and the Laplacian of a DC function. Let f : Ω ⊂ X∗ −→ R (with Ω an open set) be a DC function.
Then df is a covariant 1-tensor with BV components whose representation in a chart (U, φ) is

d(f ◦ φ−1) =

n∑
i=1

∂(f ◦ φ−1)

∂xi
dxi.

5.1. Hessian of a DC function. We can define the Hessian of f as follows.

Definition 5.1 (Hessian of a DC function). Let X∗ be a DC0 Riemannian manifold and let f
be a DC function defined on an open subset of X∗. We define the Hessian of f as the covariant
2-tensor

Hessf = Ddf.

When read in a chart (U, φ), the components of Hessf are given by

(Hessφf)ij :=
∂2(f ◦ φ−1)

∂xi∂xj
−

N∑
k=1

∂(f ◦ φ−1)

∂xk
Γkij .

The norm of Hessf is then defined as in Lemma 4.23.

Remark 5.2. Note that the components (Hessφf)ij of Hessf in local coordinates are symmetric
with respect to i, j. Therefore, the Hessian of a DC function can also be considered as a symmetric
matrix-valued Radon measure.

Proposition 5.3. Let Ω ⊂ X∗ be an open set, f ∈ DC(Ω), and X, Y ∈ BV(Ω). Then, the
following equality in GM(Ω) holds

(30) Hessf(X,Y ) = D(df(Y ))(X)− df(DXY ).

Remark 5.4. df is a covariant 1-tensor with BV components, therefore it makes sense to evaluate
it on a GM vector field, see Remark 4.20. D(df(Y )) stands for the derivative of the BV function
df(Y ) (which is usually not written d(df(Y )) to avoid confusion with the exterior derivative of
differential forms).

Proof. It is sufficient to check that both measures coincide when read in a chart. For simplicity,
we keep the same notations for the function and the vector fields read in a chart. Let us recall
that read in a chart,

(31) Hessf(X,Y ) =
∑

1≤i,j≤N

XiY j
( ∂2f

∂xi∂xj
−

N∑
k=1

∂f

∂xk
Γkij

)
,

while the right-hand side of (30) is the sum of

(32) D(df(Y ))(X) =
∑

1≤i,j≤N

Xi ∂

∂xi

( ∂f
∂xj

Y j
)

and, using DXY =
∑

1≤i,j≤N X
i(∂Y

j

∂xi +
∑N
s=1 Ys Γjis)

∂
∂xj

(33) −df(DXY ) = −
∑

1≤i,j≤N

∂f

∂xj
Xi ∂Y

j

∂xi
−

∑
1≤i,j,s≤N

XiYs
∂f

∂xj
Γjis.

From (31), (32) and (33), it is then clear that the absolutely continuous part and the Cantor
part of both measures coincide since

Di(uv) = uDiv + vDiu

when u, v are BV functions and Di stands for either the absolutely continuous part or the Cantor
part of the derivative, we refer to [3] for a proof. Therefore, it remains to study the jump part of
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the measures. Let us recall that, according to Theorem 2.5 (d), the jump part of the derivative of
f ∈ BV has the following structure

Djuf = (f+ − f−)νf dH
N−1 Jf

where νf : Jf → SN−1 is a Borel function, the so-called approximate unit normal, and Jf is the
set of approximate jump points of f .

To this aim, we fix i, j ∈ {1, · · · , N} and compute the jump part of ∂
∂xi

(
∂f
∂xj Y

j
)
appearing in

(32). According to the chain rule formula, we have to consider three cases. Below, we write ·ju
for the jump part of the partial derivative and 〈·, ·〉 for the standard Euclidean inner product. We
also use many times that we are considering the precise representatives of Y j and ∂f

∂xj , which are
“undefined” only on the H N−1-negligible set of approximate discontinuity points which are not
approximate jump points.

First, on JY j \ J∂f/∂xj one has

∂ju

∂xi
( ∂f
∂xj

Y j
)

=
∂f

∂xj
(Y j

+ − Y j−) 〈∂/∂xi, νY j 〉 dH N−1 (JY j \ J∂f/∂xj ).

Second, on J∂f/∂xj \ JY j one has

∂ju

∂xi
( ∂f
∂xj

Y j
)

= Y j
( ∂f
∂xj

+

− ∂f

∂xj

−)
〈∂/∂xi, ν∂f/∂xj 〉 dH N−1 (J∂f/∂xj \ JY j ).

Last, assuming with no loss of generality that νY j = ν∂f/∂xj H N−1-a.e. on J∂f/∂xj ∩ JY j (here
we use the fact that the approximate unit normals coincide up to the sign H N−1-a.e. on the
intersection of approximate jump points, see [3, Example 3.97], and so we can assume that they
coincide, up to a permutation of the right and left approximate limits), on J∂f/∂xj ∩ JY j one has

∂ju

∂xi
( ∂f
∂xj

Y j
)

=
(
Y j

+ ∂f

∂xj

+

− Y j− ∂f
∂xj

−)
〈∂/∂xi, ν∂f/∂xj 〉 dH N−1 (J∂f/∂xj ∩ JY j ).

According to (32), (33), we have to compute the density θ with respect to H N−1 of

∂ju

∂xi
( ∂f
∂xj

Y j
)
− ∂f

∂xj
∂ju

∂xi
Y j .

On JY j \ J∂f/∂xj we have

θ =
( ∂f
∂xj

(Y j
+ − Y j−)− ∂f

∂xj
(Y j

+ − Y j−)
)
〈∂/∂xi, νY j 〉 = 0.

On J∂f/∂xj \ JY j we have

θ =
(( ∂f
∂xj

+

− ∂f

∂xj

−)
Y j
)
〈∂/∂xi, ν∂f/∂xj 〉.

Finally, on J∂f/∂xj ∩ JY j , writing θ = θ̃〈∂/∂xi, ν∂f/∂xj 〉 = θ̃〈∂/∂xi, νY j 〉, on this intersection we
have

θ̃ =
(( ∂f
∂xj

+

Y j
+ − ∂f

∂xj

−
Y j
−)− 1

2

(
Y j

+ − Y j−
)( ∂f
∂xj

+

+
∂f

∂xj

−))
=

1

2

( ∂f
∂xj

+(
Y j

+
+ Y j

−)− ∂f

∂xj

−(
Y j

+
+ Y j

−
)
)

=
(( ∂f
∂xj

+

− ∂f

∂xj

−)
Y j
)
.

Therefore in each case the measure
∂ju

∂xi
( ∂f
∂xj

Y j
)
− ∂f

∂xj
∂ju

∂xi
Y j

coincides with the jump part of Y j ∂2f
∂xi∂xj . Since i, j are arbitrary, the proof is complete. �
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5.2. Laplacian of a DC function. In order to define ∆gf , we proceed as for tensors by defining
the Laplacian locally in a chart first and then verifying the required compatibility formula.

Definition 5.5 (Local definition of ∆gf). Let f : Ω ⊂ X∗ → R be a DC function with Ω an open
set. We define the Laplacian ∆φf of f read in the chart φ as the trace of Hessφf with respect
to g. More precisely, if (U, φ) is a chart of X∗ such that U ∩ Ω 6= ∅, in the system of coordinates
induced by φ one defines

∆φf :=
∑

1≤i,j≤N

gij

(
∂2(f ◦ φ−1)

∂xi∂xj
−

N∑
k=1

∂(f ◦ φ−1)

∂xk
Γkij

)
in φ(U ∩ Ω).

Now, we prove that the local definition ∆φf of ∆gf provided above induces a system of Radon
measures.

Lemma 5.6. Let F : Û −→ V̂ be a DC0 transition map relative to the charts (U, φ) and (V, φ̃).
Let f : Ω −→ R be a DC function and suppose Ω ∩ U ∩ V 6= ∅. Then,

(34) F ∗(∆φ̃f) = ∆φf.

Proof. Note that in the following argument, the Hessian is considered as symmetric matrix-valued
Radon measure. By definition,

F ∗(∆φ̃f) = F ∗(tr(G̃−1Hessφ̃f)).

We set F ∗((Hessφ̃f)··) the symmetric matrix-valued Radon measure whose entries are
F ∗((Hessφ̃f)ij) in the sense of Definition 2.14. With this notation, we can rephrase the above
equality in the following way

(35) F ∗(∆φ̃f) = tr
(
G̃−1 ◦ FF ∗((Hessφ̃f)··)

)
.

From the tensor equality Hessφf = F ∗(Hessφ̃f), we infer the following equality of matrices

Hessφf =t (dF )F ∗((Hessφ̃f)··)(dF ),

which is equivalent to
F ∗((Hessφ̃f)··) = t(dF )−1Hessφf(dF )−1.

By combining this together with

G̃−1 ◦ F = (dF )
(
G−1

)t
(dF )

and then inserting these equalities in (35), we obtain

F ∗(∆φ̃f) = tr
((
G−1

)
Hessφf

)
and the proof is complete. �

Now, using Lemma 5.6 and Lemma 4.7, we can define the Laplacian of a DC function on Ω.

Definition 5.7 (Laplacian). Let f : Ω ⊂ X∗ → R be a DC function. We set ∆gf the Radon
measure defined by (16).

Our goal is now to prove that ∆gf coincides with the weak Laplacian defined through integration
by parts. To this aim we generalize to our setting the following classical formula.

Proposition 5.8. Let X∗ be a DC0 Riemannian manifold and f be a DC function defined on an
open subset of X∗. Then the local expression ∆φf of ∆gf in a chart (U, φ) is given by

(36) ∆φf =
1√

detG

∑
1≤i,j≤N

∂

∂xi

(
gij
√

detG
∂(f ◦ φ−1)

∂xj

)
.
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Proof. Let us set f̃ = f ◦ φ−1 for notational simplicity. We expand∑
1≤i,j,k≤N

gij
∂f̃

∂xk
Γkij =

∑
1≤i,j,k,l≤N

1

2

∂f̃

∂xk
gijgkl

(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)

=
∑

1≤i,j,k,l≤N

∂f̃

∂xk
gijgkl

[(
∂gjl
∂xi

)
− 1

2

∂gij
∂xl

]
,

since gij = gji. By differentiating with respect to xi the equality
∑

1≤j≤N g
ijgjl = δil in BV0, we

infer ∑
1≤i,j,k,l≤N

∂f̃

∂xk
gijgkl

(
∂gjl
∂xi

)
= −

∑
1≤i,j,k,l≤N

∂f̃

∂xk
gjlg

kl

(
∂gij

∂xi

)
= −

∑
1≤i,j≤N

∂f̃

∂xj
∂gij

∂xi
,

so that the definition of ∆φf gives

(37) ∆φf =
∑

1≤i,j≤N

gij
∂2f̃

∂xi∂xj
+

∑
1≤i,j≤N

∂f̃

∂xj
∂gij

∂xi
+

1

2

∑
1≤i,j,k,l≤N

∂f̃

∂xk
gijgkl

∂gij
∂xl

.

Now, we expand the right-hand term in (36) using Lemma 4.12, and then apply (14) to get

1√
detG

∑
1≤i,j≤N

∂

∂xi

(
gij
√

detG
∂f̃

∂xj

)
=

∑
1≤i,j≤N

gij
∂2f̃

∂xi∂xj
+

∑
1≤i,j≤N

∂f̃

∂xj
∂gij

∂xi

+
∑

1≤i,j≤N

gij
∂f̃

∂xj
1√

detG

∂
√

detG

∂xi

=
∑

1≤i,j≤N

gij
∂2f̃

∂xi∂xj
+

∑
1≤i,j≤N

∂f̃

∂xj
∂gij

∂xi

+
1

2

∑
1≤i,j,k,s≤N

∂f̃

∂xj
gijgks

∂gks
∂xi

and the proof can be completed comparing with (37). �

Proposition 5.9. Let f : Ω ⊂ X∗ −→ R be a DC function and ψ ∈ Lipc(Ω). Then,ˆ
Ω

g(∇f,∇ψ) dvg = −
ˆ

Ω

ψ∆gf.

Proof. By using a Lipschitz and locally finite partition of unity
∑
α∈Λ θα = 1 subordinate to the

atlas of X∗, we haveˆ
Ω

ψ∆gf =
∑
α∈Λ

ˆ
φα(Ω∩Uα)

ψ ◦ φ−1
α θα ◦ φ−1

α

√
detG∆φf

=
∑
α∈Λ

ˆ
φα(Ω∩Uα)

ψ ◦ φ−1
α θα ◦ φ−1

α

∑
i,j

∂

∂xi

(
gij
√

detG
∂(f ◦ φ−1)

∂xj

)

=−
∑
α∈Λ

ˆ
φα(Ω∩Uα)

∑
i,j

∂(ψ ◦ φ−1
α θα ◦ φ−1

α )

∂xi
gij
√

detG
∂(f ◦ φ−1)

∂xj
dx

=−
∑
α∈Λ

ˆ
Ω

θα g(∇ψ,∇f) dvg + 0

where, to get the last equality, we use the fact that the partition is locallly finite and thus for
H N -a.e. x ∈ Ω, ∇(

∑
α∈Λ θα)(x) = 0. �
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6. Integration by parts formula for the Hessian

In this section, we prove that the Hessian of a DC function satisfies the same integration by
part formula as in the Γ2 calculus, see [5] for a precise definition.

To this aim, we generalize to our setting the following classical formula.

Proposition 6.1. Let ψ be a DC function. The following equality of Radon measures holds

D∇ψ∇ψ =
1

2
∇(|∇ψ|2g)

Proof. It suffices to prove the result when the objects are read in a chart (U, φ). However for
simplicity, we drop ◦φ−1 and simply write f and ψ in the computations below. Let us recall that
in a chart, the covariant derivative of a vector field Y with BV components is defined as

DY =
∑
i,k

(DY )ki dx
i ⊗ ∂

∂xk

where

(38) (DY )ki =
∂Y k

∂xi
+

N∑
s=1

Y s Γkis

Decomposing ∇ψ in the standard basis, we get

∇ψ =
∑

1≤k,s≤N

gks
∂ψ

∂xs
∂

∂xk
.

This leads to

D∇ψ∇ψ =
∑

1≤k,s≤N

gks
∂ψ

∂xs
D ∂

∂xk
∇ψ

=
∑

1≤k,s,l≤N

gks
∂ψ

∂xs

 ∂

∂xk

 ∑
1≤t≤N

glt
∂ψ

∂xt

 ∂

∂xl

+
∑

1≤t≤N

glt
∂ψ

∂xt
D ∂

∂xk

∂
∂xl


Now, if f, g ∈ BV(Ω) are such that at least one of the two functions f, g belongs to BV0(Ω),

then for any i ∈ {1, · · · , N}, it holds
∂fg

∂xi
= f

∂g

∂xi
+ g

∂f

∂xi
.

This yields

(39) D∇ψ∇ψ = A+B,

where

A =
∑

1≤k,s,l,t≤N

gksglt
∂ψ

∂xs
∂2ψ

∂xk∂xt
∂

∂xl

B =
∑

1≤k,s,l,t≤N

gks
∂ψ

∂xs
∂ψ

∂xt

(
∂glt

∂xk
∂

∂xl
+ gltD ∂

∂xk

∂
∂xl

)
.

Now, we compute g(D∇ψ∇ψ, ∂
∂xi ) for a fixed i ∈ {1, · · · , N}. We notice that

g(B, ∂
∂xi ) =

∑
1≤k,s,l,t≤N

gks
∂ψ

∂xs
∂ψ

∂xt
Cl,t,i
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where

Cl,t,i =
∂glt

∂xk
gli + glt

∑
1≤u≤N

Γukl gui.

Using that

(40)
∑

1≤l≤N

glig
lt = δit

hence a constant function (here δ stands for the Kronecker symbol) whose derivative is null, we
can rewrite ∑

1≤l≤N

Cl,t,i =
∑

1≤l≤N

(
− ∂gli
∂xk

glt + glt
∑

1≤u≤N

Γukl gui

)
.

Now, since Γukl = 1
2

(∑
1≤θ≤N g

θu
(
∂glθ
∂xk

+ ∂gkθ
∂xl
− ∂gkl

∂xθ

))
, we get by expanding

∑
1≤u≤N Γukl gui∑

1≤l≤N

Cl,t,i =
∑

1≤l≤N

1

2
glt
(∂gki
∂xl
− ∂gli
∂xk
− ∂gkl
∂xi

)
.

We finally obtain

g(B, ∂
∂xi ) =

∑
1≤k,s,l,t≤N

1

2
gksglt

∂ψ

∂xs
∂ψ

∂xt

(∂gki
∂xl
− ∂gli
∂xk
− ∂gkl
∂xi

)
=

∑
1≤k,s,l,t≤N

−1

2
gksglt

∂ψ

∂xs
∂ψ

∂xt
∂gkl
∂xi

since the other terms cancel because of the symmetries. Using (40) again yields

(41) g(B, ∂
∂xi ) =

∑
1≤t,s≤N

1

2

∂ψ

∂xs
∂ψ

∂xt
∂gts

∂xi
.

The next step is to compute 1
2

∂|∇ψ|2g
∂xi . Starting from the equality

|∇ψ|2g =
∑

1≤t,s≤N

gts
∂ψ

∂xs
∂ψ

∂xt
,

we infer

(42) 1
2

∂|∇ψ|2g
∂xi = g(B, ∂

∂xi ) + 1
2

∑
1≤t,s≤N g

ts ∂
∂xi

(
∂ψ
∂xs

∂ψ
∂xt

)
.

By comparing (42) with (39) and (41), we get

(43) g(D∇ψ∇ψ, ∂
∂xi )−

1
2

∂|∇ψ|2g
∂xi =

∑
1≤k,s,≤N g

ks ∂ψ
∂xs

∂2ψ
∂xk∂xi

− 1
2

∑
1≤k,s≤N g

ks ∂
∂xi

(
∂ψ
∂xs

∂ψ
∂xk

)
where we use (40) to simplify the first term on the right-hand side. Now, if ψ were a DC0 function
then there would be no jump part in its second derivatives and we would get

∂

∂xi

( ∂ψ
∂xs

∂ψ

∂xk

)
=

∂2ψ

∂xi∂xs
∂ψ

∂xk
+

∂2ψ

∂xi∂xk
∂ψ

∂xs
.

Since the second distributional derivative of a function is a symmetric matrix-valued Radon mea-
sure, the result is proved in this special case. But ψ is not DC0 in general, thus we have to
compute the jump part of the term in the right-hand side of (43) and prove that it vanishes. By
symmetry of the second derivative, for any t, s ∈ {1, · · · , N}, the jump parts of ∂2ψ

∂xs∂xt and ∂2ψ
∂xt∂xs

coincide. Let us also recall properties of the jump part ; in the following ∇Eψ stands for the
Euclidean gradient of ψ. First, for H N−1-a.e. point in J ∂ψ

∂xk
∩ J ∂ψ

∂xs
, ν ∂ψ

∂xk
= ν ∂ψ

∂xs
= ν∇Eψ and
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up to a H N−1 negligible set J∇Eψ = ∪Nu=1J ∂ψ
∂xu

. In what follows, we make the convention that
∂ψ
∂xk

+
= ∂ψ

∂xk
−

= ∂ψ
∂xk

out of J ∂ψ

∂xk
, so that the precise representative satisfies

∂ψ

∂xk
=

1

2

( ∂ψ
∂xk

+

+
∂ψ

∂xk

−)
everywhere out of a H N−1 negligible set. This convention allows us to write for any k ∈
{1, · · · , N},( ∂ψ

∂xk

+

− ∂ψ

∂xk

−)
〈ν ∂ψ

∂xk
, ∂
∂xi 〉H

N−1
J ∂ψ

∂xk

=
(
∂ψ
∂xk

+
− ∂ψ

∂xk
−)
〈ν∇Eψ, ∂

∂xi 〉H
N−1

J∇Eψ
.

Using these properties, we can now compare the jump parts of the derivatives. Starting with∑
1≤k,s,≤N

gks
∂ψ

∂xs
∂ju

∂xk

(
∂ψ

∂xi

)
=

∑
1≤k,s,≤N

gks
∂ψ

∂xs
∂ju

∂xi

(
∂ψ

∂xk

)

=
∑

1≤k,s,≤N

(gks
2

( ∂ψ
∂xs

+

+
∂ψ

∂xs

−)( ∂ψ
∂xk

+

− ∂ψ

∂xk

−)
×

〈ν ∂ψ

∂xk
, ∂
∂xi
〉H N−1

J ∂ψ

∂xk

)
=

( ∑
1≤k,s,≤N

gks

2

( ∂ψ
∂xs

+

+
∂ψ

∂xs

−)( ∂ψ
∂xk

+

− ∂ψ

∂xk

−))
×

〈ν∇Eψ, ∂
∂xi
〉H N−1

J∇Eψ

=
( ∑

1≤k,s,≤N

gks

2

( ∂ψ
∂xs

+ ∂ψ

∂xk

+

− ∂ψ

∂xs

− ∂ψ

∂xk

−))
×

〈ν∇Eψ, ∂
∂xi
〉H N−1

J∇Eψ
.

We now consider 1
2

∑
1≤k,s≤N g

ks ∂ju

∂xi

(
∂ψ
∂xs

∂ψ
∂xk

)
.

On J ∂ψ

∂xk
∩ J ∂ψ

∂xs
, ∂ju

∂xi

(
∂ψ
∂xs

∂ψ
∂xk

)
=
(
∂ψ
∂xs

+ ∂ψ
∂xk

+
− ∂ψ

∂xs
− ∂ψ
∂xk
−)
〈ν∇Eψ, ∂

∂xi
〉H N−1

J∇Eψ

On J ∂ψ

∂xk
\ J ∂ψ

∂xs
, ∂ju

∂xi

(
∂ψ
∂xs

∂ψ
∂xk

)
= ∂ψ

∂xs

(
∂ψ
∂xk

+
− ∂ψ

∂xk
−)
〈ν∇Eψ, ∂

∂xi
〉H N−1

J∇Eψ

= 1
2

(
∂ψ
∂xs

+
+ ∂ψ

∂xs
−)( ∂ψ

∂xk
+
− ∂ψ

∂xk
−)
〈ν∇Eψ, ∂

∂xi
〉H N−1

J∇Eψ

On J ∂ψ
∂xs
\ J ∂ψ

∂xk
, ∂ju

∂xi

(
∂ψ
∂xs

∂ψ
∂xk

)
= ∂ψ

∂xk

(
∂ψ
∂xs

+
− ∂ψ

∂xs
−)
〈ν∇Eψ, ∂

∂xi
〉H N−1

J∇Eψ

= 1
2

(
∂ψ
∂xk

+
+ ∂ψ

∂xk
−)( ∂ψ

∂xs
+
− ∂ψ

∂xs
−)
〈ν∇Eψ, ∂

∂xi
〉H N−1

J∇Eψ

Consequently, we get thanks to the symmetry with respect to k and s,

1

2

∑
1≤k,s≤N

gks
∂ju

∂xi

( ∂ψ
∂xs

∂ψ

∂xk

)
=
( ∑

1≤k,s,≤N

gks

2

( ∂ψ
∂xs

+ ∂ψ

∂xk

+

− ∂ψ

∂xs

− ∂ψ

∂xk

−))
〈ν∇Eψ, ∂

∂xi
〉J∇Eψ.

The equality is proved. �

With the above result at our disposal, we can now establish the integration by parts formula
involving the Hessian.

Proposition 6.2 (Integration by parts formula). Let v (respectively u) be a DC (resp. DC0)
function defined on an open subset Ω of X∗. Then, for any compactly supported Lipschitz function
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ψ defined on Ω, the following equality holdsˆ
Ω

ψHess v(∇u,∇u) = −
ˆ

Ω

ψ g(∇v,∇u)∆gu− 1

2

ˆ
Ω

ψ g(∇v,∇|∇u|2g)

−
ˆ

Ω

g(∇v,∇u)g(∇u,∇ψ) dvg.

Proof. The claim follows from the integration by parts formula

(44)
ˆ

Ω

ψ g(∇v,∇u)∆gu = −
ˆ

Ω

g(∇u,∇(g(∇v,∇u)ψ))

proved below. Let us first explain how to complete the proof from this equality. First, notice that
g(∇v,∇u) and ψ are BV functions on Ω and that ψ has no jump part in its derivative. Therefore
according to Lemma 4.12, the Leibniz rule holds for these functions:

∇(g(∇v,∇u)ψ) = ψ∇(g(∇v,∇u)) + g(∇v,∇u)∇ψH N .

This yields

(45)
ˆ

Ω

ψ g(∇v,∇u)∆gu = −
ˆ

Ω

ψ g(∇u,∇(g(∇v,∇u))−
ˆ

Ω

g(∇v,∇u)g(∇u,∇ψ) dH N .

Now we can rewrite the first term on the right-hand side asˆ
Ω

ψ g(∇u,∇(g(∇v,∇u)) =

ˆ
Ω

ψD(dv(∇u))(∇u)

=

ˆ
Ω

ψHessv(∇u,∇u) +

ˆ
Ω

ψ g(∇v,D∇u∇u).

=

ˆ
Ω

ψHessv(∇u,∇u) +
1

2

ˆ
Ω

ψ g(∇v,∇|∇u|2g)(46)

where we used Proposition 5.3 to get the second equality, and Proposition 6.1 to get the last one.
Inserting (46) into (45) gives the result.

It remains to prove (44). Reasoning as in the proof of Proposition 5.9, we can further assume
that ψ is supported in the domain of a chart, thus it suffices to prove the result in local coordinates
defined on an open subset of RN that we also called Ω for simplicity. Let (ρε)ε>0 be a family
of standard radial mollifiers. Let us set h = g(∇v,∇u) and note that h ∈ Cw(Ω). Therefore,
h ∗ ρε → h pointwise out of a σ-finite set with respect to H N−1. The Lebesgue dominated
convergence theorem then yieldsˆ

Ω

ψ g(∇v,∇u)∆gu = lim
ε↓0

ˆ
Ω

ψ h ∗ ρε ∆gu

= lim
ε↓0

(ˆ
Ω

ψ g(∇h ∗ ρε,∇u)dvg +

ˆ
Ω

h ∗ ρε g(∇ψ,∇u)dvg

)
(47)

Since |g(∇ψ,∇u)| is compactly supported and bounded, it is clear that

lim
ε↓0

ˆ
Ω

h ∗ ρε g(∇ψ,∇u)dvg =

ˆ
Ω

g(∇v,∇u) g(∇ψ,∇u)dvg.

We prove the convergence of the remaining integral thanks to Proposition 2.16. Let us check that
the hypotheses of Proposition 2.16 are satisfied. Using the coordinate system (xi)1≤i≤N , we get

ψ g(∇h ∗ ρε,∇u) =

N∑
i=1

gij
∂u

∂xi
ψ
∂(h ∗ ρε)
∂xj

.

By assumption, gij ∂u∂xiψ ∈ Cw,0(Ω) while ∂h
∂xj ∈ GM(Ω). Moreover the convergence ∂(h∗ρε)

∂xj ⇀ ∂h
∂xj

in the duality with Cc(Ω) and (8) hold (see for instance [3, Theorem 2.2]). Therefore

lim
ε↓0

ˆ
Ω

ψ g(∇h ∗ ρε,∇u) =

ˆ
Ω

ψ g(∇h,∇u)
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and the proof of (44) is complete. �

7. Alexandrov spaces

In this part we prove that our results apply to an open dense subset of a finite dimensional
Alexandrov space (X, d) with curvature bounded from below. For an introduction to these spaces
we refer to the book [6] where all the notions below are discussed with further details.

7.1. The regular set of an Alexandrov space is contained in a DC Riemannian manifold.

Definition 7.1 (Quasiregular set X∗). Let (X, d) be an N -dimensional Alexandrov space with
curvature bounded below by k. Given δ > 0, a point x is δ-regular if there exist N pairs of points
(p1, q1), · · · , (pN , qN ) such that {

]̃pixpj > π
2 − δ for all i 6= j,

]̃pixqi > π − δ for all i

where ]̃xyz stands for the angle at y of a comparison triangle in the space form of curvature k.
The collection of pairs (p1, q1) · · · (pN , qN ) is called a δ-strainer (at x). By lower semicontinuity
of angles with respect to x, the set of δ-regular points is open. We shall denote by X∗ the set
of quasiregular points, namely the set of δN -regular points for a fixed δN � 1/N , omitting the
dependence of δN for simplicity of notation.

Remark 7.2. It is proved in [6] (see also the original paper [7]) that δN = 1
100N is a suitable

choice. Namely, for such a choice, the open set X∗ is a dense subset of X and a Lipschitz manifold.
Note that it can be proved that these properties remain true for the set of δ-regular points where
0 < δ ≤ δN (see [6, Corollary 10.8.24]).

Definition 7.3 (Reg(X) and Sing(X)). The set Reg(X) of regular points is the set of points
whose tangent cone is isometric to N−dimensional Euclidean space. Equivalently, it is the set of
points which are δ-regular for any δ > 0. The complement in X of Reg(X) is called singular set
and denoted by Sing(X).

Later, it was proved that Reg(X) is contained in a DC0 Riemannian manifold according to our
terminology.

Theorem 7.4. Given (X, d) a N -dimensional Alexandrov space with curvature bounded from be-
low, there exists an open set X̃ such that Reg(X) ⊂ X̃ ⊂ X∗ and X̃ is a DC0 Riemannian manifold
with singular set S = X̃∩Sing(X)2. More precisely, there exist a Riemannian metric g and locally
biLipschitz charts φ̂ : U → Rn defined by the formula

φ̂ = (d̂p1 , · · · , d̂pn)

where

d̂pi(x) =

 
B(pi,εi)

dzi(x) dH N (zi),

such that X̃ is a DC0 Riemannian manifold. Moreover, the components gij of the Riemannian
metric when read in a chart, belong to BV0 and satisfy

(48)
1

c
‖p‖22 ≤

∑
i,j

gij(x)pipj ≤ c‖p‖22 for all p ∈ RN , for x ∈ φ̂(U ′ \ S),

with c = c(U ′) > 0 for all U ′ b U . Last, the components gij are differentiable Lebesgue almost
everywhere.

2The same result is expected to hold with X̃ = X∗.
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Proof. Property (a) of the definition of DC0 Riemannian manifold was proved by Otsu and Shioya
[15] (with the exception of the DC0 character of the transition maps which is due to Perelman
[16]) as well as the existence of a Riemannian metric g whose components gij are in Cw,0 out of
S = Sing(X). The BV character as well as the differentiability property of gij was proved by
Perelman in [16]. The estimate (48) is a consequence of results proved in these papers but is not
properly stated as such. Let us give a proof of it for the sake of completeness. In the following
(·, ·)x stands for the inner product defined on the tangent cone Kx (note that, strictly speaking, it
is an inner product only when x ∈ Reg(X) and in this case it coincides with g at x) by the formula

(u, v)x = |u| |v| cos]u, v.

Now, any fi := d̂pi is a semiconcave function, thus it admits directional derivative (see [18])
along any tangent vector u ∈ Kx. Moreover, the directional derivative satisfies for all x ∈ Uφ̂ and
u ∈ Kx

f ′i(x, u) ≤ (ξi(x), u)x

where ξi(x) is the “gradient” of fi at x (see [18] for more details). Using the definition of fi as an
average of distance functions, one can prove that

for all u ∈ Kx, f ′i(x, u) = (ξi(x), u)x

whenever x ∈ Reg(X).
Indeed, given a unitary geodesic γ starting at x, the first variation formula (and Lebesgue’s

dominated convergence theorem) yields

fi(γ(s)) = fi(x)− s
 
B(pi,εi)

cos]γ′(0), ↑px dH N (p) + ox(s)

where ↑px stands for the unit direction of the (unique for H N -a.e. p ∈ B(pi, εi)) geodesic from x
to p. See [15] for more details. Consequently, 
B(pi,εi)

(γ′(0), ↑px)x dH
N (p) = −

 
B(pi,εi)

cos]γ′(0), ↑px dH N (p) = f ′i(x, γ
′(0)) ≤ (ξi(x), γ′(0))x

and, by density of the geodesic directions γ′(0) in the space of directions Σx(X) (the unit sphere
of Kx), the above formula holds for any u ∈ Kx. Since the extreme terms are both linear with
respect to u when x ∈ Reg(X), we do have equality in the inequality above whenever x ∈ Reg(X).

Let now U ′ b U . Using this equality for all i ∈ {1, · · · , N} and the fact that φ̂ is a locally
biLipschitz map, namely the existence of c = c(U ′) > 0 satisfying

1

c
d(x, y) ≤ ||φ̂(x)− φ̂(y)||2 ≤ c d(x, y) ∀x, y ∈ U ′,

we get, for all x ∈ Reg(X) ∩ U ′, u ∈ Σx(X)

(49)
1

c
≤ ||((ξi(x), u)x)1≤i≤N ||2 ≤ c,

since φ̂′(x, u) = ((ξi(x), u)x)1≤i≤N . We also infer from the above formula that (ξi(x))1≤i≤N forms
a basis of Kx whenever x is a regular point. In particular for all p ∈ RN we can find up ∈ Kx such
that

φ̂′(x, up) = p.

Then, (49) yields
1

c

√
(up, up)x ≤ ||p||2 ≤ c

√
(up, up)x

by homogeneity and the proof is complete. �
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7.2. Almost everywhere second order Taylor expansion for DC functions. In this part,
following Perelman’s ideas [16], we fully extend to the setting of Alexandrov spaces the classical
result of Alexandrov on the existence of second order Taylor expansion for a convex function at
Lebesgue almost every point. To be more specific, our goal is to prove the following result.

Proposition 7.5. Let f be a DC function defined on Ω ⊂ X∗. Then, for H N -a.e. point x,

f(y) = f(x) + |xy|df(x)(↑yx) +
1

2
|xy|2Hessacf(↑yx, ↑yx) + o(|xy|2)

where |xy| = d(x, y) and ↑yx denotes the direction at x of an arbitrary geodesic from x to y.

Remark 7.6. We don’t know whether this result holds on any DC0 Riemannian manifold. The
proof we give below follows the arguments given by Perelman in [16, Proposition p7] with more
details added. Indeed, this result is of local nature, so there is no need to have a well-defined global
object Hess to consider this question. However, as stated, it shows that our notion of Hess gives
geometric informations on the function.

To prove the result above, we need first to introduce normal coordinates.

7.2.1. Normal coordinates. In this part, following Perelman’s ideas, we establish some properties
of normal coordinates around “good” points of Alexandrov space. We think these results could be
useful in other contexts, so we state them independently of Proposition 7.5.

Remark 7.7. Note that by definition of a DC0 Riemannian manifold, if the metric components are
differentiable at point φ(x), x ∈ Reg(X), when read in a chart φ then this is also true in any other
chart whose domain contains x. The same property holds for the second order Taylor expansion
of any DC function defined on an open subset of X∗. Consequently, it makes sense to say that the
metric g (or a mere function) is differentiable at a point x ∈ Reg(X). According to Theorem 7.4,
g is differentiable at H N -almost every point.

Given two points A,B ∈ RN , we set AB the vector B −A.

Proposition 7.8. Consider a point x ∈ Reg(X) where the metric is differentiable. Then, there
exists a normal coordinate system ν defined on a neighborhood of x and compatible with the DC0

structure (i.e. it makes a DC0 mapping when composed with the inverse of any chart). Namely,
in the coordinate system ν, we have the following properties:
(a) |gij(ν(y))− δij | = o(|xy|) for all y ∈ Reg(X);

(b) | |yz| − ||ν(y)ν(z)||2| = o(max{|xy|, |xz|})|yz|;

(c) limy→x]E(↑ν(y)
ν(x) ν(x)ν(y)) = 0, where ]E stands for the standard Euclidean angle and ↑ν(y)

ν(x)

stands for the image through ν of the direction ↑yx of a geodesic from x to y;

(d) |]̃yxz−]Eν(y)ν(x)ν(z)| = o(|yz|) when all the angles of ν(x)ν(y)ν(z) are bounded away from
0. (The same estimate holds if we consider a comparison triangle in R2 and replace ]̃yxz by
its Euclidean counterpart).

Proof. In order to define ν, we consider the bilinear form (g̃ij)i,j defined in the chart φ by the
formula

g̃ij(z) = gij(x) +

N∑
k=1

(z − x)k
∂gij
∂xk

(x)

being gij the components of the metric read in φ and x = φ(x), z = φ(z). For z close to x, (g̃ij)i,j is
a smooth Riemannian metric whose value at x coincides with that of (gij)i,j and the same property
is true for the first derivatives of g̃ij . Therefore, we can find a smooth normal coordinate system for
g̃ij and we call ν the coordinate system obtained by composing it with φ. Note that in particular
ν is compatible with the DC0 structure. By definition of a normal coordinate system, the metric



32 LUIGI AMBROSIO AND JÉRÔME BERTRAND

components of g̃ read in this normal coordinate system satisfy (we keep the same notation for
simplicity)

gij(x) = δij and
∂gij
∂xk

(x) = 0 for all i, j, k.

Therefore, by construction, the same properties hold for g at ν(x) when read in the chart ν. The
first item then immediately follows. Let us prove the second one.

Set γ a constant speed geodesic defined on [0, 1] from y to z. Note that by density, it is sufficient
to prove (b) for y, z ∈ Reg(X). According to [15], φ(γ) belongs to C1((0, 1)), therefore σ := ν(γ)
belongs to C1((0, 1)) as well. More generally, Otsu and Shioya proved [15, Proposition 6.2] that
the length L(θ) of any C1 curve θ : [0, 1]→ Reg(X) satisfies

(50) L(θ) =

ˆ 1

0

√
gθ(s)(θ′(s), θ′(s)) ds.

Now, we infer from (a) the following estimate

| ||σ′(s)||2 − |σ′(s)|g| =
| ||σ′(s)||22 − |σ′(s)|2g|
||σ′(s)||2 + |σ′(s)|g

≤ o(max{|xy|, |xz})|yz|

where we use the fact that ν is in particular biLipschitz (thus o(| · |) = o(|| · ||2)). Integrating the
inequality above leads to

||ν(y)ν(z)||2 ≤ L||·||2(σ) ≤ |yz|+ o(max{|xy|, |xz})|yz|

where L||·||2(σ) stands for the length of σ with respect to Euclidean metric. The converse inequality
is proved in the same way, up to replace the segment [ν(y)ν(z)] by an arbitrary close and parallel
segment of same (Euclidean) length. Indeed, first notice that the Coarea inequality (see for instance
[9, Theorem 2.10.25]) yields

0 = H N−1(Sing(X) ∩R) ≥
ˆ
RN−1

H 0(Sing(X) ∩ p−1(z))dz,

R being a cylinder with axis [ν(y)ν(z)], and p the projection parallel to ν(y)ν(z). Therefore, by
continuity, we can assume without loss of generality that [ν(y)ν(z)] ∩ Sing(X) = ∅ so that the
equality (50) holds and the previous argument applies.

We now prove (c). For any integer k ≥ 0, set mk := γ( 1
2k

), being γ a constant speed geodesic
from x to y, parameterized on [0, 1] (so that m0 = y, m1 is a midpoint of x and y and so on). Note
that for any vector u,

lim
k→+∞

]E(ν(x)ν(mk), u) = ]E(↑ν(y)
ν(x), u).

Let us fix k ≥ 1. Elementary computations together with (b) lead to

cos]Eν(x)ν(mk)ν(mk−1) + 1 ≤ o(|xmk−1|).

Therefore, for y sufficiently close to x, we get

]Eν(mk)ν(x)ν(mk−1) ≤
√
|xmk−1|ε(|xmk−1|)

where limt→0 ε(t) = 0. By definition, |xmk−1| = |xy|
2k−1 . Moreover, up to reducing |xy|, we can

assume that |ε(s)| ≤ 1 on [0, |xy|]. Consequently, we get

]E(↑ν(y)
ν(x), ν(x)ν(y)) ≤

√
|xy|

∞∑
k=0

1

2
k
2

−→
y→x

0

and the proof of (c) is complete.
It remains to prove (d). First, notice that since the angles of ν(x)ν(y)ν(z) are assumed to be

bounded away from 0, the error terms o(|ν(x)ν(y)|), o(|ν(x)ν(z)|), o(|ν(z)ν(y)|) are all the same
and the property remains true if we use |xy|, |xz|, |yz| instead since ν is locally a biLipschitz map.
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Second, since these distances are assumed to be small, the law of cosines in the space form of
curvature k implies that

(51) | cos ]̃yxz − cos ]̃0yxz| ≤ O(|xy|2)

being ]̃0yxz the angle at x of a comparison triangle in R2. Now, using the Euclidean law of cosines
for both ν(x)ν(y)ν(z) and a Euclidean comparison triangle of xyz, and the estimate (b) (recall that
o(|xy|) = o(|xz|) = o(|yz|)) gives | cos]Eν(y)ν(x)ν(z)− cos ]̃0yxz| = o(|xy|2). Finally, combining
this with (51) yields

| cos ]̃yxz − cos]Eν(y)ν(x)ν(z)| ≤ O(|xy|2).

Using again the fact that the angles of ν(x)ν(y)ν(z) are bounded away from 0 (and π as well)
allows us to conclude. �

7.2.2. Proof of Proposition 7.5. We will use the notation introduced in Proposition 7.8. By defi-
nition, a DC0 Riemannian manifold can be covered by countably many domains of (biLipschitz)
charts, therefore it suffices to prove the result locally. Also, recall Theorem 7.4 asserting that the
metric g is differentiable H N -almost everywhere (see Remark 7.7). Therefore, according to Propo-
sition 7.8, it suffices to prove the result at every point x ∈ Reg(X) where g is differentiable and
the first and second derivatives of f do exist, and we can use a normal coordinate system ν around
x to proceed. (Strictly speaking, to guarantee that it is indeed Hessacf that appears in the Taylor
expansion, we have to discard a H N -negligible set of points where the second derivatives of f and
the derivatives of the metric are not approximately continuous, and |Hesssf |(B(x, r) = o(rN ) is
not satisfied. For more details, we refer to the proof of Alexandrov’s theorem p242 in [8] or to
the proof of Theorem 3.83 in [3].) For the rest of the proof, we fix such a point x and a normal
coordinate system ν around x. We have (writing f instead of f ◦ ν−1)

f(y) = f(x) + dν(x)f(ν(x)ν(y)) +
1

2
D2
ν(x)f(ν(x)ν(y), ν(x)ν(y)) + o(|ν(x)ν(y)|2).

Note that in a normal coordinate system around x, D2
ν(x)f = Hessν(x)f . Therefore, in view of

Proposition 7.8, we are done if we can prove

(52) ]E ↑ν(y)
ν(x), ν(x)ν(y) = o(|xy|).

To this aim, we first claim that

|]E ↑ν(y)
ν(x), ↑

ν(z)
ν(x) −]Eν(y)ν(x)ν(z)| = |] ↑yx, ↑zx −]Eν(y)ν(x)ν(z)| = o(|yz|)

when all the angles of ν(x)ν(y)ν(z) are bounded away from 0.
The first equality follows from the definition of normal coordinate system. To prove the second

one, take a point p such that ν(p) is in the plane ν(y)ν(x)ν(z), ν(x) is contained in the triangle
ν(p)ν(y)ν(z) and all the angles formed by these four points are bounded away from zero. Recall
that for any triple x, y, z, one has ] ↑yx, ↑zx≥ ]̃yxz by definition of an Alexandrov space. Property
(d) in Proposition 7.8 then gives

] ↑yx, ↑zx +] ↑zx, ↑px +] ↑px, ↑yx
≥ ]Eν(y)ν(x)ν(z) + ]Eν(z)ν(x)ν(p) + ]Eν(p)ν(x)ν(y) + o(|yz|)
= 2π + o(|yz|).

On the other hand, ] ↑yx, ↑zx +] ↑zx, ↑px +] ↑px, ↑yx≤ 2π (this is a consequence of the quadruple
condition, see for instance [6]) and the claim is proved.
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The proof of (52) is by contradiction. Take a point y1 such that |xy1| = |xy|/2 and the direction
↑ν(y)
ν(x) is between ν(x)ν(y) and ν(x)ν(y1). In particular, this gives

]E ↑ν(y1)
ν(x) , ν(x)ν(y1) ≥ ]E ↑ν(y1)

ν(x) , ↑
ν(y)
ν(x) −]E ↑

ν(y)
ν(x), ν(x)ν(y1)

≥ ]E ↑ν(y1)
ν(x) , ↑

ν(y)
ν(x) −]Eν(y)ν(x)ν(y1) + ]E ↑ν(y)

ν(x), ν(x)ν(y)

≥ o(|xy|) + ]E ↑ν(y)
ν(x), ν(x)ν(y).

Thus if (52) were false, then we could construct a sequence yk → x with ]E ↑ν(yk)
ν(x) , ν(x)ν(yk)

bounded away from 0 and this would contradict (c) in Proposition 7.8.

Appendix: The transformation law of the Christoffel symbols

The goal of this part is to prove, in our nonsmooth setup, the following classical formula (53)
for the transformation of Christoffel symbols.

(53) Γkab =
∑
θ

∂(F−1)k

∂yθ
◦ F

(∑
m,t

∂Fm

∂xa
∂F t

∂xb
F ∗(Γ̃θmt)

)
+
∑
θ

∂(F−1)k

∂yθ
◦ F ∂2F θ

∂xa∂xb
,

used in the proof of Proposition 4.13 (see (25)), where F : Û → V̂ is a transition map and Γ, Γ̃

denote the Christoffel symbols in Û and V̂ respectively.
We have not been able to locate a proof of (53) in the literature which is only based on (54).

So we provide such a proof for the sake of completeness. The tools we need to do so are basically
those obtained in Corollary 2.17. Let us recall that, by definition,

2 Γkij =
∑
l

gkl
(
∂gli
∂xj

+
∂glj
∂xi
− ∂gij
∂xl

)
.

For the sake of clarity, we shall use as much as possible matrix products to write down the formulas.
For instance, the above formula can be rephrased in the following way

2 Γkij =

(
G−1 ∂G

∂xj

)
ki

+

(
G−1 ∂G

∂xi

)
kj

−
∑
l

gkl
∂gij
∂xl

,

where G denotes the matrix (gij), i.e. the metric in the coordinate system of Û .
We set ∆j = G−1 ∂G

∂xj . Denoting by G̃ = (g̃)ij the metric in the coordinate system of V̂ , we shall
use the fact that (denoting by tM matrix transposition)

(54)
G = t

(
dF
)(
G̃ ◦ F

)
(dF )

and
G−1 =

(
dF (·)F

−1
) (
G̃−1 ◦ F

)t (
dF (·)F

−1
)
.

Thus,

(55)
( ∂G
∂xj

)
=t
( ∂

∂xj
(dF )

)(
G̃ ◦ F

)(
dF
)

+t
(
dF
)( ∂

∂xj
(G̃ ◦ F )

)(
dF
)

+t
(
dF
)(
G̃ ◦ F

)( ∂

∂xj
(dF )

)
.

Accordingly, we decompose ∆j into three terms:

∆j = Aj +Bj + Cj ,

where

(56)


Aj =

(
dF (·)F

−1
)(
G̃−1 ◦ F

)t(
dF (·)F

−1
)t( ∂

∂xj (dF )
)(
G̃ ◦ F

)(
dF
)

Bj =
(
dF (·)F

−1
)(
G̃−1 ◦ F

)(
∂
∂xj (G̃ ◦ F )

)(
dF
)

Cj =
(
dF (·)F

−1
)(

∂
∂xj (dF )

)
.
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We first consider Cj and we compute (Cj)ki:

(Cj)ki =
∑
s

∂(F−1)k

∂ys
◦ F ∂2F s

∂xj∂xi
.

Using the symmetry of the second distributional derivatives, we get

(Cj)ki = (Ci)kj =
∑
s

∂(F−1)k

∂ys
◦ F ∂2F s

∂xj∂xi
.

Now, we treat the term Bj . We shall use that for h ∈ BV0 (see (9) in Corollary 2.17), the chain
rule formula holds in the following form

(57)
∂

∂xi
(h ◦ F ) =

N∑
s=1

∂F s

∂xi
F ∗
( ∂h
∂ys

)
.

Thus,

(Bj)ki =
∑
m

∂Fm

∂xj

[(
dF (·)F

−1
)(
G̃−1 ◦ F

)(
F ∗
( ∂G̃
∂ym

))(
dF
)]
ki
,

and we get by expanding this expression

(Bj)ki =
∑
m,s,t

∂Fm

∂xj
∂(F−1)k

∂ys
◦ F

[(
G̃−1 ◦ F

)(
F ∗
( ∂G̃
∂ym

))]
st

∂F t

∂xi
.

Similarly,

(Bi)kj =
∑
t,s,m

∂F t

∂xi
∂(F−1)k

∂ys
◦ F

[(
G̃−1 ◦ F

)(
F ∗

(
∂G̃

∂yt

))]
sm

∂Fm

∂xj
.

By adding the two formulas above, we get

(Bj)ki + (Bi)kj =
∑
m,s,t

∂Fm

∂xj
∂F t

∂xi
∂(F−1)k

∂ys
◦ F F ∗

[(
G̃−1 ∂G̃

∂ym

)
st

+

(
G̃−1 ∂G̃

∂yt

)
sm

]
,

where we use the fact that for α ∈ BV0, µ ∈ GM, F ∗(αµ) = (α ◦ F )F ∗(µ) (see Corollary 2.17).
Let us notice that

F ∗

((
G̃−1 ∂G̃

∂ym
)
st

+
(
G̃−1 ∂G̃

∂yt
)
sm

)
= F ∗

(
2Γ̃smt +

∑
θ g̃

sθ ∂g̃mt
∂yθ

)
= F ∗

(
2Γ̃smt

)
+
∑
θ g̃

sθ ◦ F F ∗
(
∂g̃mt
∂yθ

)
.

Therefore, if we combine all the equalities above, we get

2Γkij = 2
∑
s

∂(F−1)k

∂ys
◦ F ∂2F s

∂xj∂xi
+ 2

∑
m,s,t

∂Fm

∂xj
∂F t

∂xi
∂(F−1)k

∂ys
◦ F F ∗

(
Γ̃smt

)
+

∑
m,s,t,θ

∂Fm

∂xj
∂F t

∂xi
∂(F−1)k

∂ys
◦ F g̃sθ ◦ F F ∗

(
∂g̃mt
∂yθ

)
+
(
Aj
)
ki

+
(
Ai
)
kj
−
∑
u

gku
∂gij
∂xu

.

The proof is then complete if we prove that

(58)
∑

m,s,t,θ

∂Fm

∂xj
∂F t

∂xi
∂(F−1)k

∂ys
◦ F g̃sθ ◦ F F ∗

(
∂g̃mt
∂yθ

)
+
(
Aj
)
ki

+
(
Ai
)
kj
−
∑
u

gku
∂gij
∂xu

= 0.

To this aim, we write according to (56)

(Aj)ki =
∑

s,t,u,v,w

∂(F−1)k

∂ys
◦ F g̃st ◦ F ∂(F−1)u

∂yt
◦ F ∂2F v

∂xj∂xu
g̃vw ◦ F

∂Fw

∂xi
.
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By writing (Ai)kj the same way (exchanging the role of v and w) and then adding the two
expressions, we get

(59) (Ai)kj + (Aj)ki =
∑

s,t,u,v,w

∂(F−1)k

∂ys
◦ F g̃st ◦ F g̃vw ◦ F

∂(F−1)u

∂yt
◦ F ∂

∂xu

(∂Fw
∂xi

∂F v

∂xj

)
.

To conclude, it remains to rewrite
∑
l g
kl ∂gij
∂xl

. Using (55), we obtain

∂gij
∂xu

=
∑
w,v

∂

∂xu
(∂Fw
∂xi

∂F v

∂xj
)
g̃wv ◦ F +

∑
w,v

∂Fw

∂xi
∂F v

∂xj
∂

∂xu
(
g̃wv ◦ F

)
.

Then, combining this together with (54):

gku =
∑
s,t

∂(F k)−1

∂ys
◦ F g̃st ◦ F ∂(F−1)u

∂yt
◦ F

yield,

(60)
∑
u

gku
∂gij
∂xu

=
∑

u,w,v,s,t

∂(F−1)k

∂ys
◦ F ∂(F−1)u

∂yt
◦ F ∂

∂xu
(∂Fw
∂xi

∂F v

∂xj
)
g̃wv ◦ F g̃st ◦ F︸ ︷︷ ︸

(D)

+
∑

u,w,v,s,t

∂(F−1)k

∂ys
◦ F ∂(F−1)u

∂yt
◦ F ∂Fw

∂xi
∂F v

∂xj
∂

∂xu
(
g̃wv ◦ F

)
g̃st ◦ F︸ ︷︷ ︸

(E)

.

According to (59), (Ai)kj + (Aj)ki = (D). To complete the proof, we apply (57) to g̃wv in (E).
This gives

(E) =
∑

u,w,v,s,t,θ

∂(F−1)k

∂ys
◦ F ∂(F−1)u

∂yt
◦ F ∂F θ

∂xu︸ ︷︷ ︸∑
u=δtθ

∂Fw

∂xi
∂F v

∂xj
F ∗
(∂g̃wv
∂yθ

)
g̃st ◦ F

=
∑

w,v,s,θ

∂(F−1)k

∂ys
◦ F ∂Fw

∂xi
∂F v

∂xj
F ∗
(∂g̃wv
∂yθ

)
g̃sθ ◦ F.

Therefore (E) coincides with the first term in (58) and the proof is complete.
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