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ON THE REGULARITY OF ALEXANDROV SURFACES WITH CURVATURE BOUNDED BELOW

In this note, we prove that on a surface with Alexandrov's curvature bounded below, the distance derives from a Riemannian metric whose components, for any p ∈ [1, 2), locally belong to W 1,p out of a discrete singular set. This result is based on Reshetnyak's work on the more general class of surfaces with bounded integral curvature.

Introduction

It is known that a finite dimensional Alexandrov space (X, d) can be equipped with a Riemannian metric defined almost everywhere that induces the original distance d. On the manifold part of the Alexandrov space, the Riemannian metric components are known to be BV loc functions, as proved by Perelman in [START_REF] Perel Man | DC Structure on Alexandrov Space[END_REF]. For geometric purposes it would be convenient to find an atlas where there is no Cantor part in the derivatives of the metric. Indeed, it is well-known that a continuous function f of a real variable and with bounded variation does not satisfy, in general, the fundamental theorem of calculus:

f (b) -f (a) = ˆb a f (s) ds,
while a Sobolev function does.

In this note, we show that an Alexandrov surface with a lower curvature bound admits a weak Riemannian metric with components in the Sobolev space.

Theorem 1.1. Let (S, d) be a closed surface with curvature bounded below. Then S is a topological (smooth) surface and the distance d derives from a Riemannian metric g defined H 2 -almost everywhere. Furthermore, for all p ∈ [1, 2) there exists a discrete set S p ⊂ S such that the components of g, read in a local chart, belong to W 1,p loc (S \ S p , H 2 ). Moreover,

Reg(S) := {x ∈ S; T x S = R 2 } ⊂ S \ S p .
Last, there exists a well-defined Levi-Civita connection (acting on smooth vector fields) with components locally in L p for any p ∈ [1, 2). Remark 1.2. H 2 stands for the 2-Hausdorff measure relative to d. In [START_REF] Otsu | The Riemannian structure of Alexandrov spaces[END_REF][START_REF] Perel Man | DC Structure on Alexandrov Space[END_REF], the weak Riemannian metric is defined at (and only at) each point of Reg(S), S being a finite dimensional Alexandrov space.

Remark 1.3. This result applies to convex surfaces in Euclidean space. Using the differential structure induced by the ambient space, it can be proved that the metric components are functions of locally bounded variation (indeed, the charts as well as their inverse functions are convex, their first derivatives are then in BV loc ), this estimate is sharp. Therefore, even in this simple case the above result leads to something new. By analogy one can think to the graph of the Cantor-Vitali function that, when viewed in a tilted system of coordinates, is the graph of a Lipschitz function; more generally this is true for the graph of any (multivalued) monotone operator in n variables, see [START_REF] Ambrosio | A geometric approach to monotone functions in R n[END_REF].

Our proof strongly relies on Reshetnyak's work on the more general class of surfaces with bounded integral curvature [START_REF] Yu | Two-Dimensional Manifolds of Bounded Curvature[END_REF]. Reshetnyak's work is recalled in the next section where we present all the necessary material to prove our result. The proof itself is given in the last part of this note.

2. Surfaces with bounded integral curvature 2.1. Definition and properties. Definition 2.1 (Upper angle and excess). Let (S, d) be a complete geodesic space and let bac be a geodesic triangle. The upper angle ∠bac at a is defined as the upper limit of the angle ∠ 0 bac of a (Euclidean) comparison triangle (namely a Euclidean triangle whose sidelengths are the same as the ones of the geodesic triangle bac in S) when b, c go to a along the given geodesics. The excess of bac is then defined as

δ(bac) = ∠bac + ∠abc + ∠bca -π.
Definition 2.2 (Surface with bounded integral curvature). Let (S, d) be a complete godesic space such that S is a closed topological surface. Then (S, d) is said to be a surface of bounded integral curvature if for any point in S there exists a neighborhood homeomorphic to a disc such that the sum of the excesses of finitely many non overlapping simple triangles is bounded from above by a constant depending only on the chosen neighborhood. A triangle is said to be simple if its boundary is made of three geodesic segments, it is convex with respect to its boundary and homeomorphic to a disc.

Remark 2.3. This definition is taken from [START_REF] Yu | Two-Dimensional Manifolds of Bounded Curvature[END_REF]. 

T i max{δ(T i ), 0}
where the supremum is taken over finite sums of simple triangles contained in O. Analogously

ω -(O) = sup T i -min{δ(T i ), 0}.
Then, for an arbitrary Borel set E,

ω ± (E) := inf O⊃E ω ± (O)
where the infimum is taken over open sets.

The above definition gives rise to a signed measure, as proved by Alexandrov and Zalgaller: Chapter 5]). Let (S, d) be a surface with bounded integral curvature. Then the curvature measure ω defined in Definition 2.4 is the restriction to open sets of a signed Borel measure with locally finite total variation on S.

Theorem 2.5 ([2,

2.2.

Reshetnyak's subharmonic metric. Reshetnyak proved the existence of non-trivial coordinates on a surface with bounded integral curvature.

Theorem 2.6 ([14, Theorem 7.1.2]). Let (S, d) be a closed surface of bounded integral curvature ω and let

(1) Ω 1 = z ∈ S : ω + ({z}) < 2π .
Then, for all z ∈ Ω 1 there exist a chart (U, φ) with z ∈ U and a Riemannian metric g defined on V = φ(U ) ⊂ R 2 by the formula

g(x 1 , x 2 ) = exp(-2u(x 1 , x 2 )) (dx 2 1 + dx 2 2 ) where u = u + -u -with u ± ∈ L 1 loc (V ) pointwise defined and satisfying (2) ∆u ± = ω ± in V
in the weak sense.

Remark 2.7. In the above theorem, we adopt the convention

∆ = ∂ 2 x 1 x 1 + ∂ 2 x 2 x 2 .
In particular, the functions u ± are subharmonic. Let us recall that when g ij = exp(-2u)δ ij with u smooth, then ∆u = K g , where K g is the sectional curvature of g (see for instance [START_REF] Besse | Einstein manifolds. Classics in Mathematics[END_REF]).

Proposition 2.8. With the same hypotheses as in the above theorem, setting for q ≥ 4

Ω q = z ∈ S : ω + ({z}) < 2π q ,
and given z ∈ Ω q , we can choose (U, φ) in such a way that:

(a) the metric components g ij and the volume form det(g) belong to L q (V, dx 1 dx 2 ); (b) the distributional derivatives

∂g ij ∂x k of g belong to L p (V, det(g) dx 1 dx 2 )
where p = 2 -6/(q + 2). (c) the Christoffel symbols Γ k ij belong to L p (V, det(g) dx 1 dx 2 ) where p = 2 -2/q. The proof of the above proposition follows from some classical facts in potential theory that we briefly recall. First, the logarithmic potential v of a signed Borel measure µ with finite total variation in R 2 is defined by the formula

(3) v(x) = 1 2π ˆR2 ln |x -ξ|dµ(ξ) x ∈ R 2 .
The logarithmic potential satisfies the following properties (see, for instance, [7, 8, Chap 3,4, and 16] for proofs).

Theorem 2.9. Let µ be a signed Borel measure with finite total variation in R 2 and let v be defined as in [START_REF] Besse | Einstein manifolds. Classics in Mathematics[END_REF]. Then (a) v is smooth in the complement of the support of µ;

(b) v ∈ W 1,p loc (R 2 ) for any p ∈ [1, 2) if µ has compact support; (c) one has (4) ∆v = µ in the weak sense in R 2 .
Notice that if µ is nonnegative and supported in D then v is pointwise defined in D, possibly equal to -∞, with

(5) v(x) ≤ 1 2π ln(1 + |x|)µ(D) ∀x ∈ D.
The following more refined estimate is taken from [START_REF] Troyanov | Un principe de concentration-compacité pour les suites de surfaces riemanniennes[END_REF]Corollary 4.3] (note that in this paper, the Laplacian operator as well as the logarithmic potential differ from ours by a sign). Lemma 2.10. Let µ be a nonnegative and finite Borel measure concentrated on D with µ(D) < 2π/q for some q > 1. Then the logarithmic potential v of µ satisfies

exp(-2v) L q (D) ≤ 2π δ + 2 2 δ+2 1/q
, where δ = -qµ(D)/π > -2.

Building on these results, we can now prove the estimates on the metric components.

2.3. Proof of Proposition 2.8. We prove statements (b) and (c) for q > 4 and with the strict inequalities p < 2 -6/(q + 2), p < 2 -2/q in (b) and (c) respectively. Then the case q = 4 and the cases when p reachs the extremal value can be proved using Ω q = ∪ q >q Ω q , hence any compact subset of Ω q is contained in Ω q for some q > q.

According to Theorem 2.6 we can work in local coordinates, assuming that z = 0 and that g ij = exp(-2u)δ ij in the open unit Euclidean disc D. With the aim of proving (a) and (b), let us also note that g ii = det(g) = exp(-2u).

Defining

h ± (x) := u ± (x) - 1 2π ˆD ln |x -ξ| dω ± (ξ),
it follows that h ± are harmonic in the weak sense in D, thus smooth in (the open set) D. Therefore, in order to obtain local estimates in D on u, we need only to estimate the logarithmic potentials v ± relative to ω ± . Under the further assumption

(6) ω + (D) < 2π q
we get that v ± are uniformly bounded from above in D, more precisely

(7) v ± ≤ ln 2 2π |ω|(D).
Moreover, since we have assumed ( 6), Lemma 2.10 applies to v + yields exp(-2v + ) ∈ L q (D).

By combining the two estimates, we obtain that exp(-2u) ∈ L q loc (D) and (a) is proved.

To prove (b), we fix p ∈ [1, 2) and any r > 1 such that pr < 2. Then, we choose q = (p + 1)r/(r -1) and assume that (6) holds. By definition of the metric g, we have that

g ij = e -2u δ ij thus ∂g ii ∂x k = -2 ∂u ∂x k e -2u .
By the above discussion and Theorem 2.9 (b), we get the W 1,α loc (D) regularity of u for any α ∈ [START_REF] Ambrosio | A geometric approach to monotone functions in R n[END_REF][START_REF] Aleksandrov | Intrinsic geometry of surfaces[END_REF]. Now, by integrating against the volume form (here sD denotes the concentric disk scaled by a factor s > 0), we get

´sD | ∂g ii ∂x k | p det(g i,j ) dx = 2 p ´sD | ∂u ∂x k | p e -2(p+1)u dx ≤ 4 ∂u ∂x k p L rp (sD) exp(-2(p + 1)u) L r/(r-1) (sD) = 4 ∂u ∂x k p L rp (sD) exp(-2u) p+1 L q (sD) < +∞
for all s ∈ (0, 1). To conclude the proof, notice that r < 2/p yields p < 2 -6/(q + 2). Similarly,

ˆsD | ∂u ∂x k | p det(g i,j ) dx < +∞ whenever p < 2 -2/q. (8) 
It remains to prove the last item concerning the Christoffel symbols. Recall that for a smooth metric g such that

g ij = exp(-2u)δ ij , it is a classical result that (9) D ∂ ∂x 1 ∂ ∂x 2 = -∂ x 1 u ∂ ∂x 2 -∂ x 2 u ∂ ∂x 1 , D ∂ ∂x i ∂ ∂x i = -∂ x i u ∂ ∂x i + ∂ x i+1 u ∂ ∂x i+1 ,
see for instance [15, p 399] or [START_REF] Besse | Einstein manifolds. Classics in Mathematics[END_REF] for a general formula relating the Levi-Civita connections of two conformal metrics. This formula yields |Γ k ij | = ∂u ∂xs with s = k or s = k + 1 depending on whether i = j or not. In any case, if we define the Christoffel symbols using (9), the estimate (8) applies and completes the proof of (c).

We conclude this part by explaining why the Levi-Civita connection is well-defined as a tensor on S. Using (9) as a definition, it is simple to check that given two smooth vectors fields X, Y , the vector field D X Y satisfies the torsion free and the compatibility with the metric conditions locally when read in a chart. A result due to Huber (see [START_REF] Huber | Zum potentialtheoretischen Aspekt der Alexandrowschen Flächentheorie[END_REF] or [START_REF] Yu | Two-Dimensional Manifolds of Bounded Curvature[END_REF]Theorem 7.1.3]) guarantees that any transition map relative to the subharmonic metric is a conformal map hence smooth. Therefore, the Levi-Civita connection is well-defined globally in Ω q with components locally in L p for p = 2 -2/q. Note that the same global well-posedness holds for the subharmonic metric.

Surfaces with curvature bounded from below

In this part, we prove Theorem 1.1. Prior to that, we report Alexandrov's result concerning the curvature measure of a surface with curvature bounded below in Alexandrov's sense (see [START_REF] Alexandrov | selected works[END_REF] or [START_REF] Machigashira | The Gaussian curvature of Alexandrov surfaces[END_REF]). There are several equivalent definitions of Alexandrov space with curvature bounded below. We exhibit one such definition and refer to [START_REF] Burago | A course in metric geometry[END_REF] for more on this subject. Definition 3.1 (Surface with curvature bounded below). Let (S, d) be a complete geodesic space whose Hausdorff dimension equals 2. Then (S, d) is a space with curvature bounded below by a number k if every point has a neighborhood U such that for any a, b, c, d ∈ U the following inequality is satisfied

∠ k bac + ∠ k cad + ∠ k dab ≤ 2π,
where ∠ k bac stands for the angle at a of a comparison triangle in the 2-dimensional space form of curvature k. where ω s , the singular part of ω w.r.t. H 2 , is a nonnegative and locally finite Borel measure and the density f of the absolutely continuous part of ω satisfies f ≥ k H 2 -almost everywhere in S.

The proof that a 2-dimensional Alexandrov space with curvature bounded below is a topological surface is usually attributed to Alexandrov (and it is not true in general in higher dimension). This property can also be deduced from results in [START_REF] Yu | Aleksandrov spaces with curvatures bounded below[END_REF] or in [START_REF] Ya | Elements of Morse theory on Aleksandrov spaces[END_REF] where Perelman proves that any point x in an Alexandrov space admits a neighborhood which is homeomorphic to a neighborhood of the apex of the cone over the space of directions at x (indeeed, a closed 1-dimensional Alexandrov space is homeomorphic to a circle). The precise statement on the curvature measure given above is [START_REF] Machigashira | The Gaussian curvature of Alexandrov surfaces[END_REF]Proposition 4.5].

Proof of Theorem 1.1. Thanks to Theorem 3.2 and the results in Section 2, there exists a subharmonic metric around any point of S such that ω({z}) = ω + ({z}) < 2π. Moreover, it is a general property of surfaces with bounded integral curvature that around such a point, the distance induced by the subharmonic metric locally coincides with the distance d, see [START_REF] Yu | Two-Dimensional Manifolds of Bounded Curvature[END_REF]Paragraph 7] for more details. Now, for any point z in a surface with curvature bounded below, ω({z}) = 2π -L(Σ z ) (see for instance [START_REF] Machigashira | The Gaussian curvature of Alexandrov surfaces[END_REF]) where L(Σ z ) stands for the (positive) length of the space of directions at z which is a 1-dimensional space of curvature bounded below by 1. In particular, ω({z}) = ω + ({z}) < 2π and therefore Ω 1 = S. Moreover, the distance induced by the subharmonic metric globally coincides with d.

In this setting, the measure induced by the metric g coincides with the Hausdorff measure H 2 (see [START_REF] Otsu | The Riemannian structure of Alexandrov spaces[END_REF] for a proof). Proposition 2.8 then yields the result with S p = S \ Ω q , with q related to p by p = 2 -6/(q + 2).
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