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PRESCRIPTION OF GAUSS CURVATURE ON COMPACT HYPERBOLIC
ORBIFOLDS

JÉRÔME BERTRAND

Abstract. In this paper, we generalize a result by Alexandrov on the Gauss curvature pre-
scription for Euclidean convex bodies. We prove an analogous result for hyperbolic orbifolds. In
addition to the duality theory for convex sets, our main tool comes from optimal mass transport.

Keywords: Convex bodies, Gauss curvature, optimal mass transport

1. Introduction

In this paper, we consider the problem of prescribing the Gauss curvature (in a generalised
measure-theoretic sense) of convex sets in the Minkowski spacetime. This problem is a generalisa-
tion of a similar problem on Euclidean convex sets, raised and solved by Alexandrov in the 40’s.
Our proof builds on the fact (also valid for Alexandrov’s problem) that this problem is equivalent
to a strong form of a well-known statement in optimal mass transport: the Kantorovich duality.
We mean that the solutions of both problems are in one-to-one correspondence if the cost function
is appropriate. Let us first recall the Euclidean result which was proved by A.D. Alexandrov in
[1, 2].

In order to state the result, we recall the notion of Gauss curvature measure introduced by
Alexandrov. Consider a convex body Ω in Rm+1 and assume that the origin of Rm+1 is located
within Ω. Under these assumptions, the map

(1)
−→ρ : Sm −→ ∂Ω

x 7−→ ρ(x)x

is a homeomorphism (where ρ(x) = sup{s; sx ∈ Ω}).
The Gauss curvature measure is the Borel probability measure

µ := σ(G ◦ −→ρ (·))
where σ stands for the uniform Borel probability measure on Sm (considered as the unit sphere
centered at the origin) and G : ∂Ω ⇒ Sm is the Gauss map. In other terms, the Gauss curvature
measure is the pull-back of the uniform measure through the map G ◦ −→ρ . We point out that this
definition makes sense for general convex bodies as a consequence of [3, Lemma 5.2]. Note also
that the curvature measure depends on the location of the origin within the convex body and is
invariant under homotheties about that point.

Alexandrov found a necessary and sufficient condition for µ arising from the construction above.

Theorem 1.1 (Alexandrov). Let σ be the uniform probability measure on Sm and µ be a Borel
probability measure on Sm satisfying for any Borel set ω ⊂ Sm,

µ(ω) < σ({x ∈ Sm; inf
w∈ω
〈x,w〉 > 0})

Then, there exists a unique convex body in Rm+1 containing 0 in its interior (up to homotheties)
whose µ is the Gauss curvature measure.
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The goal of this paper is to prove an analogue of Alexandrov’s theorem for hyperbolic orbifolds,
this includes in particular all hyperbolic manifolds as explained in Section 2.1. Here, we consider
Alexandrov’s result as an embedding result for manifolds homeorphic to the sphere like in (1) with a
given Gauss curvature. For hyperbolic manifolds, the Gauss formula prevents from embedding such
a manifold as the boundary of Euclidean convex set. Following [13] where Labourie and Schlenker
considered smooth surfaces, the idea is then to embed its universal cover in an equivariant way in
the Minkowski spacetime (Rm1 , q) (where the Gauss formula is reversed for space-like planes, see
[18, 20]). In order to propose a general definition, we first have to define Fuchsian convex set.

Definition 1.2 (Fuchsian convex set). A Fuchsian convex set in the Minkowski spacetime is a
non-empty (Euclidean) closed convex set which lies on the (open) future cone at the origin Cf
and which is invariant under the action of a given cocompact discrete subgroup Γ of the isometry
group of Rm1 fixing the cone Cf , namely

Γ. C = C.

The set of isometries of Rm1 fixing Cf is denoted by Isom+(Rm1 ).

It is proved further in the paper that any inward normal vector (with respect to q) at a point
x ∈ ∂C where C is a Fuchsian convex set, belongs to Hm. Here, we identify the hyperbolic space
Hm with

{x ∈ Rm1 ; q(x) = −1 and xm+1 > 0} .
As a consequence, we define the Gaus curvature measure as the Γ-invariant measure induced by

µ = σ(G ◦ p−1(·))

where σ is now the Riemannian measure on Hm and p : ∂C −→ Hm is the projection onto Hm
(namely p(x) = x√

−q(x)
). A more detailed exposition on the Gauss curvature measure is given in

Section 2.2.
The main result of this paper is the following.

Theorem 1.3. Let M = Hm/Γ be a compact hyperbolic orbifold and µ be a Borel probability
measure on M . Then, there exists a unique (up to homotheties) Γ-invariant homeomorphism
Φ : Hm −→ Rm1 such that Φ(Hm) is the boundary of a Γ-Fuchsian convex set1 and V ol(M)µ is
the Gauss curvature measure of M . In particular, if µ is a finite sum of Dirac masses then the
corresponding convex set is an equivariant polyhedron.

Remark 1.4. This result generalizes [11] where a similar result is proved when the embedded
manifold is the boundary of an equivariant, spacelike, and two-dimensional convex polyhedron.

Our strategy to prove this result is to show that the solutions of Alexandrov’s problem in the
Minkowski spacetime are in one-to-one correspondence with the solutions of Kantorovich’s dual
problem on functions recalled below

Theorem 1.5. Let σM be the uniform measure on a compact hyperbolic orbifold M and µ be
an other measure on M whose total mass is identically equal to that of σM . We set c(n, x) =
ln(cosh(d(n, x))) where d is the distance on M . Then, the following Kantorovich duality holds

(2) max
A

{∫
M

φ(n)dσM (n) +

∫
M

ψ(x)dµ(x)

}
= min

Π∈Γ(σM ,µ)

∫
M×M

c(n, x) dΠ(n, x)

where A denotes the set of pairs (φ, ψ) of Lipschitz functions on M such that for all x, n ∈M ,

φ(n) + ψ(x) ≤ c(n, x)

and Γ(σ, µ) the set of plans whose marginals are σM and µ respectively.

1In a previous draft of the paper, we give another equivalent definition of "Fuchsian" embedding; we switched
to this easier-to-state definition after discussions with F. Fillastre.
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Moreover, there exists a unique pair of maximisers (φ, φc) ∈ A (up to adding a constant to φ)
in the left-hand side problem. The pair of functions (φ, φc) satisfies for all n, x ∈M

φc(x) = min
n∈M

c(n, x)− φ(n)

φ(n) = min
x∈M

c(n, x)− φc(x).(3)

Note that the function f = ln ◦ cosh is a strictly convex and C1 function of a real variable
such that f(0) = 0 and f ′(0) = 0. Therefore, Theorem 1.5 is a particular instance of a more
general result due to McCann [15, Sections 2 and 5] on Riemannian manifolds and the author on
Alexandrov spaces [5], applied with c(n, x) = ln ◦ cosh(d(n, x)) as a cost function. This result gives
the existence and the uniqueness2 of Lipschitz solutions (φ, φc) to the left-hand side problem.

1.1. Comments and related results. Our motivation to study this generalization of Iskhakov’s
result [11] comes from a paper by Oliker [16]. In this paper, Oliker proves Alexandrov’s theorem
through the study of Kantorovich’s primal problem (the left hand-side in (2)). Moreover his proof,
as Alexandrov’s one, consists in establishing the result for convex polyhedra first and then "passing
to the limit". Oliker also studied the regularity of the convex body in terms of the density when
the Gauss curvature measure is absolutely continuous [17], generalizing work of Pogorelov [19] on
surfaces.

Let us also mention the Minkowski problem which is, somehow, dual to Alexandrov’s problem
in Euclidean space. In the polyhedron case, it consists in prescribing the normal vectors and the
area of each face; in the smooth case, it is the problem of finding which functions can be realised as
the Gauss curvature of a convex set (see for instance [2, 24]). It is worth noticing that this problem
can also be treated by methods involving or related to optimal mass transport [14, 7]. A study of
other curvature measures in the smooth case has been carried out in [10] (see also the references
therein). Recently, Barbot, Béguin and Zéghib [4] proved by analytical methods, a result similar
to Theorem 1.3 for the Minkowski problem in R2

1.

Acknowledgements. The author wishes to thank F. Fillastre, C. Lecuire, and J.-M. Schlenker
for useful discussions on Alexandrov’s problem in the Minkowski spacetime.

2. Duality of star-shaped sets in the Minkowski spacetime

2.1. Background on the Minkowski spacetime and groups of hyperbolic isometries.

2.1.1. The Minkowski spacetime. In this part, we recall the results we need in Lorentzian geometry
to prove our main theorem. We refer to the textbooks [18, 20] for (much) more on the Lorentzian
geometry. The Minkowski spacetime in m+ 1 dimensions, denoted by Rm1 , is Rm+1 endowed with
the quadratic form

q(x) =

m∑
i=1

x2
i − x2

m+1.

For simplicity, we use the same notation for the associated bilinear form. This quadratic form
is non-degenerate and admits isotropic vectors. The isotropic cone is divided into the future cone
and the past cone. For later use, let us define the future cone through the origin as

Cf = {z ∈ Rm1 ; q(z) < 0 and zm+1 > 0}.
At some places, we shall also consider the future cone through a general point x ∈ Rn1 , this cone
will be denoted Cx,f .

2In McCann’s paper, uniqueness of φ (up to adding a constant) is stated in an equivalent way as the uniqueness
of the optimal transport map
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Definition 2.1 (time-like, space-like, and light-like subspaces). A vector x ∈ Rm1 is said to be
time-like if q(x) < 0, space-like if q(x) > 0, and light-like if q(x) = 0. We set Cx,t = {z ∈
Rm1 ; q(−→xz) < 0}, Cx,s = {z ∈ Rm1 ; q(−→xz) > 0}, and Cx,l = {z ∈ Rm1 ; q(−→xz) = 0} the set of time-like
vectors, space-like vectors, and light-like vectors centered at x. When x is omitted means that we
consider a cone through the origin of Rm1 .

Similarly, a vector subspace V of Rm1 is said to be time-like if it has a time-like vector, space-like
if every nonzero vector is space-like and light-like otherwise.

Definition 2.2 (Hyperbolic space). We denote by Hm the hyperbolic space endowed with its
canonical metric of curvature −1. Throughout the paper, we shall use that Hm is isometric to the
following subset of Cf :

{x ∈ Rm1 ; q(x) = −1 and xm+1 > 0} .
The hyperbolic space is to be considered as the unit sphere of Cf relative to q. More generally,

we denote by S(r) =
{
x ∈ Rm1 ; q(x) = −r2 and xm+1 > 0

}
the sphere of radius r. Besides, it is

worth noticing that the distance d induced by the Riemannian metric of Hm is related with q in
the following way:

(4) ∀x, n ∈ Hm q(n, x) = − cosh(d(n, x)).

We conclude this review section on the Minkowski space with a useful result on the linear
isometry group.

Definition 2.3 (Isometry groups). We denote by Isom(Rm1 ) the group of isometries of Rm+1,
namely the linear maps which preserve the quadratic form q. The subset of positive isometry
group denoted by Isom+(Rm1 ) is the subset of Isom(Rm1 ) whose elements preserve the future cone
Cf . This group is homeomorphic to the (Riemmanian) isometry group of Hm.

Moreover, Isom+(Rm1 ) acts transitively on the set of vector subspaces of given dimension n ≤ m
and type (namely either time-like, space-like, or light-like).

Last, we set || · || the Euclidean norm in Rm+1.

2.1.2. Discrete cocompact subgroups of Isometries. In this part, we recall classical fact about isom-
etry subgroups of the hyperbolic space. Our main reference is [20]. We start with the definition of
several kinds of subgroups to be considered in the sequel.

Definition 2.4 (Discrete, cocompact, and torsion-free subgroups of Isom(Hm)). Let Γ be a sub-
group of Isom(Hm). Γ is said to be

• discrete if the induced topology (of Isom(Rm1 )) is the discrete topology. It can be shown
that it is equivalent (in this setting) to require that Γ is

• discontinuous if for any compact subset K ⊂ Hm, the set K ∩ gK is nonempty for finitely
many g ∈ Γ.

• torsion-free if for each x ∈ Hm, the stabilizer {g ∈ Γ; g. x = x} = {1} is trivial.
• cocompact if Hm/Γ endowed with the quotient topology is a compact space.

We also have

Proposition 2.5. Let Γ be a discrete subgroup of Isom(Hm). Then, each orbit Γ. x = {γ. x, γ ∈ Γ}
is a discrete closed subset of Hm. Moreover, the formula

dΓ(Γ. x,Γ. y) = inf
γ∈Γ

d(x, γ. y)

defines a distance on Hm/Γ whose induced topology is the quotient topology. Moreover, the canon-
ical map pΓ : Hm −→ Hm/Γ is an open map.

Definition 2.6 (Fundamental domains). A connected subset D of Hm is a fundamental domain
for a group of isometries Γ if

(1) D is an open set



PRESCRIPTION OF GAUSS CURVATURE ON COMPACT HYPERBOLIC ORBIFOLDS 5

(2) the elements of {g.D; g ∈ Γ} are pairwise disjoint
(3) Hm = ∪g∈Γg.D.

Moreover, a fundamental domain is said to be locally finite if {g.D; g ∈ Γ} is locally finite, namely
for each x ∈ Hm, there exists an open neighborhood of x which intersects only finitely many g.D
with g ∈ Γ.

Theorem 2.7 (Existence of fundamental domain). Let Γ be a non-trivial discrete subgroup of
Isom(Hm). Then, there exists a convex, locally finite, fundamental domain D for Γ. Moreover, D
is bounded whenever Γ is cocompact.

We also need this general property of fundamental domains for discrete groups.

Theorem 2.8. Let D be a convex, locally finite fundamental domain for a non-trivial discrete
subgroup of Isom(Hm). Then, the boundary of D is negligible with respect to the Riemannian
measure, σ(∂D) = 0.

An easy consequence of this result is the

Corollary 2.9. Let Γ be a discrete cocompact subgroup of Isom(Hm) and f : Hm/Γ −→ R be a
Lipschitz map. Then f admits a unique Lipschitz Γ-invariant lifting f̃ : Hm −→ R, namely

∀x ∈ Hm, ∀γ ∈ Γ, f̃(γ. x) = f([x]).

Proof. Let D be a convex, locally finite fundamental domain and f̃ be defined on ∪γ∈Γγ.D by the
formula f̃(γ. x) = f([x]). f̃ is well-defined since γ.D are pairwise disjoint. Moreover, f̃ is Lipschitz
on ∪γ∈Γγ.D with the same Lipschitz constant Lip(f) as f . Indeed,

f̃(γ. x, γ′. y) = f([x], [y]) ≤ Lip(f) dΓ([x], [y]) ≤ Lip(f) d(γ. x, γ′. y)

by definition of dΓ. Now, since ∪γ∈Γγ.D is dense in Hm thanks to Theorem 2.8, f̃ admits a unique
Lipschitz Γ-invariant extension to Hm. �

Now, we deal with the geometric objects we consider in this paper.

Definition 2.10 (Hyperbolic orbifolds and hyperbolic manifolds). We call hyperbolic orbifold the
quotient space Hm/Γ where Γ is a discrete subgroup of isometries of Hm. This space is a metric
space according to Proposition 2.5, moreover it is an Alexandrov space of finite dimension and
curvature K ≥ −1 according to the proposition below. Last, if Γ is further assumed to be torsion-
free, then Hm/Γ is actually a smooth hyperbolic manifold.

Remark 2.11. Our definition of hyperbolic orbifold is non-standard, however as explained in [20,
Chapter13], this definition is equivalent to the usual one and is easier to state.

Proposition 2.12. Let X be a hyperbolic orbifold. Then, X has curvature bounded from below by
−1 in the sense of Alexandrov.

Proof. This is a particular case of [6, Proposition 10.2.4]. �

2.2. Properties of Fuchsian convex sets. In this part, we establish the properties of Fuchsian
convex sets required in the rest of this paper.

Lemma 2.13. Let C be a Fuchsian convex set and Γ ⊂ Isom+(Rm1 ) be its related subgroup. Then,
a) C is not contained in a plane of positive codimension.
b) all supporting planes to C are space-like.
c) C is contained in the future half-space delimited by any supporting plane to C.

Proof. Suppose C is contained in a plane P of positive codimension. Without loss of generality,
we can assume that P is of codimension 1. Now, fix a point x ∈ C and consider its orbit under the
action of Γ, Γ. x. Since Γ is a subgroup of isometries fixing Cf , Γ. x is contained in a sphere S(r) of
radius r =

√
−q(x) in Cf . Recall that such a sphere is homothetic to the hyperbolic space. Now,
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elementary considerations lead to the following alternatives. S(r)∩P is either a hyperellipse when
P is space-like, or a totally geodesic hyperplane of S(r) when P is time-like, or a horosphere of
S(r) when P is light-like (see [20, p 127] and use the stereographic projection from the conformal
ball model [20, p 122]). Note that by assumption, Γ is a cocompact discrete subgroup, therefore
Hm admits a bounded fundamental domain D for Γ (see Section 2.1). This gives

Hm = ∪γ∈Γγ.D.

This property is in contradiction with all the previous alternatives since in all cases, Hm is not
at finite distance of S(r) ∩ P . Thus a) is proved.

Let P be a supporting plane at a point x ∈ ∂C and r =
√
−q(x). Then, Γ. x ⊂ C ∩ S(r). As

before, P ∩ S(r) is either a hyperplane, a hyperellipse or a horosphere. Moreover, each connected
component of S(r) \ (P ∩ S(r)) corresponds to the set of points of S(r) on a given side of P .
Therefore, since Γ. x is a subset of the convex set C whose P is a supporting plane, Γ. x is con-
tained in exactly one connected component of S(r) \ (P ∩ S(r)) up to points in P . Using again
that fundamental domains are bounded under our assumptions, we get that the other connected
component of S(r) \ (P ∩ S(r)) has to be bounded. Thus, P is necessarily a space-like plane and
Γ is contained in the future half-space of P . �

A class of examples is given by

Definition 2.14 (Fuchsian convex polyhedron). F is a Γ-Fuchsian convex polyhedron if there
exist x1, · · · , xk ∈ Hm pairwise non-collinear and λ1, · · · , λk > 0 such that

F = {z ∈ Cf ; q(z − (1/λi)γ. xi, γ. xi) ≤ 0 ∀i = 1, · · · , k, ∀γ ∈ Γ}.

F is obviously Γ-invariant. The fact that F is a Fuchsian convex set follows from Lemma 2.30.
A useful property of Fuchsian convex set is given by the following proposition.

Proposition 2.15. Let C be a Fuchsian convex set. The projection
p : ∂C −→ Hm

x 7−→ x√
−q(x)

is a homeomorphism.

Proof. The proof follows from the fact, proved below, that if x, y ∈ ∂C then −→xy is space-like.
Consequently, the map p : ∂C −→ Hm is continuous and injective. Now, this map is also onto.
Indeed, by assumption C is in Cf , thus in particular 0 6∈ C. Since Γ is a cocompact subgroup,
there exists a fundamental domain F which is bounded. By combining these two properties, we
get that the distance between 0 and C is positive. Therefore, for any vector n ∈ Hm, there exists a
hyperplane P q-orthogonal to n separating {0} and C. By moving P orthogonally along {tn, t > 0}
till it meets C, we get the existence of a supporting plane to C orthogonal to n. To get the continuity
of p−1, we prove that p is a proper map. To this aim, we fix K a compact subset of Hm. Let us
proved that p−1(K) is bounded. If not, we claim that there exists a sequence xk ∈ p−1(K) such
that ||xk|| → +∞, and nk ∈ G(xk) such that nk →∞ in Hm. Inded if nk were bounded, we would
get by combining the fact that C is future-convex (Lemma 2.13) and ||xk|| → +∞ that C is empty,
therefore nk is unbounded. But then by compactness of K, we can find a converging subsequence
xnk

to x∞ ∈ K where nnk
is unbounded in Hm. Moreover, we can also assume that nnk

/||nnk
||

converges to a vector n∞. By assumption on nnk
, we get that n∞ ∈ ∂Cf , in other terms n∞ is

light-like. We conclude by noticing that the set of normal vectors to C is closed and thus we get a
contradiction with Lemma 2.13 b). �

Remark 2.16. This proposition was proved for Fuchsian embedding in the 2-dimensional smooth
case in [13].

Now we prove the lemma used in the proof of Proposition 2.15.

Lemma 2.17. Let C be a Fuchsian convex set and x, y ∈ ∂C then the vector −→xy is space-like.
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Proof. We shall argue by contradiction and assume that −→xy is not space-like. Without loss of
generality, we can assume that y belongs to the closure Cx,f of the future cone through x. We note
that the segment [x, y] cannot lie on ∂C otherwise there would exist (thanks to the Hahn-Banach
theorem) a supporting plane which is not space-like. Thus, there exists a point c ∈ (x, y)∩

◦
C.

Consider a supporting plane P of C through y. By assumption on −→xy, x /∈ P , hence the point c
clearly belongs to the past halfspace delimited by P . This contradicts Lemma 2.13.c). �

2.3. Gauss curvature measure. Thanks to Proposition 2.15, we are now in position to properly
define the Gauss curvature measure of a Fuchsian convex set. We start with a technical fact.

Lemma 2.18. Let C be a Fuchsian convex set. The Gauss map of C is defined as the multivalued
map G : ∂C ⇒ Hm which maps each point x ∈ ∂C onto the set G(x) of inward unit normal vectors
(with respect to q) to supporting hyperplane to C at x. Moreover, for any Borel set U ⊂ ∂C (for
the induced topology), the set G(U) is a Borel subset of Hm.

Proof. A proof for Euclidean convex sets is given in [24, Lemma 2.2.10]. To get the proof in
our setting, note that the Gauss map relative to q is nothing but the Euclidean Gauss map of C
composed with a symmetry with respect to the plane orthogonal to the vertical axis. �

As a consequence, we get

Lemma 2.19. Given Γ a discrete cocompact subgroup of Isom+(Hm), we define

pΓ : Hm −→ Hm/Γ

the canonical map. Then, the mapping

pΓ ◦ G ◦ p−1 : Hm −→ Hm/Γ

is well-defined and Γ-invariant. Therefore, it factorizes to a map

(5) GΓ : Hm/Γ −→ Hm/Γ

such that GΓ(U) is a Borel set whenever U ⊂ Hm/Γ is Borel.

Proof. First note that Γ. C = C yields Γ. ∂C = ∂C since Γ is made of isometries. To get the result,
we shall prove that for any x ∈ ∂C, G(γ .x) = γ.G(x). To this aim and given x0 ∈ ∂C, note that
n ∈ G(x0) if and only if q(x−x0, n) ≤ 0 for any x ∈ C (this follows from Lemma 2.13). Now, using
that Γ ⊂ Isom+(Rm1 ), it is obvious that

q(x− x0, n) ≤ 0 iff q(γ .x− γ .x0, γ .n) ≤ 0

therefore γ .n is a normal vector to C at γ .x0 and the result is proved since pΓ maps Borel set on
Borel set. �

In the same vein, we also need the

Lemma 2.20. Let C be a Fuchsian convex set. Then

(6) σ({n ∈ Hm;∃x 6= x′ ∈ ∂C, n ∈ G(x) ∩ G(x′)}) = 0.

Proof. In the Euclidean case, this is proved for possibly unbounded convex hypersurfaces in [3,
Lemma 5.2]. We conclude in our case by using a symmetry as in the proof of Lemma 2.18. �

The last technical tool we need in this part is the following

Lemma 2.21. Let C be a Fuchsian convex set and Γ its related subgroup of isometries. Then, there
exists a unique canonical Borel measure σHm/Γ on Hm/Γ, its total mass equals σHm(D) where σHm

is the Riemannian measure on Hm and D is any convex, locally finite, fundamental domain for Γ.
In the sequel, σHm(D) is denoted by V ol(Hm/Γ).
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Proof. Since Γ is a discrete cocompact sugroup of isometries, it admits according to Theorem 2.7 a
convex, locally finite, fundamental domain D ⊂ Hm. Moreover, any such fundamental domain D∗
has the same volume V (V is finite since we assume Γ is cocompact) since Theorem 2.8 indicates
that σHm(∂D∗) = 0 under these hypotheses. Therefore, we can define σHm/Γ by means of any D∗
as above, the condition on the boundary ∂D∗ gives us uniqueness of σHm/Γ. �

Definition 2.22 (Gauss curvature measure). Let C be a Fuchsian convex set and Γ its related
subgroup of isometries. We define the Gauss curvature measure µ as the Borel measure on Hm/Γ
defined by the formula

µ(U) = σHm/Γ(GΓ(U))

where U is a Borel subset of Hm/Γ. Note that µ(Hm/Γ) = σHm/Γ(Hm/Γ) = V ol(Hm/Γ).

Remark 2.23. Note that the Gauss curvature measure remains the same if C is replaced by Ho(C)
with Ho any homothety about the origin of Rm1 .

2.4. Radial and support functions of Fuchsian convex sets. We now define the radial and
support function of a Fuchsian convex set. These functions are completely analogous to those
relative to Euclidean convex body and are related to each other as in the Euclidean case. This
relation is the starting point of the proof of Theorem 1.3.

Thanks to Proposition 2.15, we can define the radial function of a Fuchsian convex set in the
following way.

Definition 2.24. Let C be a Fuchsian convex set. The radial function θ : Hm −→ (0,+∞) of ∂C
is defined by the following formula

∀x ∈ Hm, p−1(x) = θ(x)x.

Equivalently,
θ(x) = sup{s > 0; sx ∈ Cc}.

The radial function satisfies the following property.

Lemma 2.25. Let C be a Fuchsian convex set. For any supporting plane P to C through z ∈ ∂C
(namely P = z + n⊥ with n ∈ Hm), the following inequality holds true

(7) ∀x ∈ Hm, θ(x)q(x, n) ≤ θ(x0)q(x0, n)

where x0 = p(z). Conversely, if the inequality above holds true then the plane p−1(x0) + n⊥ is a
supporting plane to C at p−1(x0), in other terms

(8) (7)⇔ n ∈ G(θ(x0)x0).

Last, the function θ is invariant under the action of Γ:

∀x ∈ Hm,∀γ ∈ Γ θ(γ.x) = θ(x).

Proof. Let P be a supporting plane to C through p−1(x0). Since by assumption P is space-like,
P = p−1(x0) + n⊥ with n ∈ Hm. We can parametrize P ∩ Cf thanks to the map

f : Hm −→ P ∩ Cf
x 7−→ θP (x)x

where θP (x) is defined by the equality

q(θP (x)x− θ(x0)x0, n) = 0.

Now, thanks to Lemma 2.13c), the convexity of C is equivalent to

∀x ∈ Hm, θ(x) ≥ θP (x)

for any supporting plane P . This gives the inequality since q(x, n) < 0. The rest of the proof
follows easily. �

By analogy with the Euclidean case, we define the support function in the following way.
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Definition 2.26. We denote by h : Hm → (−∞, 0) the support function defined by the formula

(9) h(n) = sup
x∈Hm

θ(x)q(x, n).

2.5. Duality on Fuchsian convex sets. Now, we want to define a mapping anologous to the
polar transform in Euclidean space. Despite this mapping being valid for any subset of Cf , we
mainly concentrate on the polar transform of certain star-shaped subsets of the future cone trough
the origin.

Definition 2.27 (Future star-shaped sets). A future star-shaped set is a closed set S contained
in Cf , whose complement Sc is star-shaped with respect to the origin and whose radial function
θS : Hm −→ (0,+∞) defined by the formula

θS(x) = sup{s ∈ (0,+∞); sx ∈ Sc}

is a continuous function, bounded away from 0 and ∞. By analogy with Fuchsian convex sets, we
define the support function hS of any S ∈ E by the formula (9).

The set of all future star-shaped sets is denoted by E .

Remark 2.28. Thanks to Proposition 2.15, the projection p : ∂C → Hm is a homeomorphism thus
the radial function of a Fuchsian convex set C, θC =

√
−q(p−1(x)) is continuous. It is also bounded

away from 0 and ∞ since it is invariant under the action of a cocompact group Γ. In short, any
Fuchsian convex set belongs to E .

Now, we define the polar transform for any non-empty S ⊂ Cf .

Definition 2.29 (Polar transform of a future set). Given S ⊂ Cf a nonempty set, the polar
transform of S is defined by

S◦ = {x ∈ Cf ;∀n ∈ S, q(x, n) ≤ −1} .

The basic properties of this polar transform, similar to the Euclidean polar transform, are
summarized in the following

Lemma 2.30. Let S ⊂ Cf be a nonempty set. Then, S◦ is a closed convex set. Moreover,
(S◦)◦ ⊃ S and, if we further assume that Sc is a star-shaped set with respect to 0, then equality
holds if and only if S is a convex set. When S ∈ E, we have relations between the radial and
support function similar to those in the Euclidean case, namely

(10) − 1

θS◦
= hS

and
1

θS
≤ inf
n∈Hm

q(·, n)

hS(n)

where the two functions are identically equal if and only if S is a convex set.

Proof. The polar transform of S can be rewritten in the following way

S◦ = ∩n∈S{x ∈ Rm+1; q(n, x) ≤ −1} ∩ Cf .

Therefore, since {x ∈ Rm+1; q(n, x) ≤ −1} is a half-space, S◦ is a closed convex set. Now, the
symmetry of q obviously implies that (S◦)◦ ⊃ S. Let us show that if S is convex and Sc is
star-shaped then equality holds. Pick x ∈ Cf \ S and consider P a supporting space-like plane
to S at p−1(x). We denote by n ∈ Hm a normal vector to P . To get the existence of such
a plane, it is sufficient to prove that there is plan orthogonal to n that separates S and the
origin. Now if there was no such plan, we would get that 0 ∈ C by considering a sequence of
points which belong to S and a plane orthogonal to n where the distance between the origin and
the corresponding sequence of planes goes to 0, a contradiction. Therefore, Lemma 2.25 yields
that for any z ∈ S, q(z, n) ≤ q(p−1(x), n) < 0 and q(x, n) > q(p−1(x), n) since x ∈ Cf \ S by
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assumption. Therefore the first inequality implies n/
√
−q(p−1(x), n) ∈ S◦ while the second gives

q(x, n/
√
−q(p−1(x), n)) > −1. By combining these properties, we get x 6∈ (S◦)◦.

Now, let us prove the inequalities involving radial and support functions. By assumption on S,
we have

S◦ = {n ∈ Cf ;∀x ∈ ∂S, θS(x)q(x, n) ≤ −1}.
Now, fixing n and considering λθS(x)q(x, n) ≤ −1 for λ > 0, we get using q(x, n) < 0, that

θS◦(n) = sup
x∈Hm

−1

θS(x)q(x, n)

and (10) is proved. To prove the last formula, we first use that (S◦)◦ ⊃ S which can be restated
as θ(S◦)◦ ≤ θS . Now applying (10) to (S◦)◦ yields

1

θ(S◦)◦
= −hS◦ = − sup

n∈Hm

θS◦(n)q(n, ·).

Applying (10) to S now gives
1

θS
≤ 1

θ(S◦)◦
≤ inf
n∈Hm

q(·, n)

hS(n)
.

To conclude, note that equality holds if and only if S is convex since by assumption Sc is star-shaped
with respect to the origin.

�

Now, we restrict our attention to Fuchsian convex sets. Recall that for these sets, the functions
θC and hC are also invariant under the action of a cocompact subgroup of isometries Γ. Therefore,
we can consider θC and hC as functions on the compact space Hm/Γ.

Lemma 2.31. The radial and support functions of C considered as functions on Hm/Γ, are Lips-
chitz regular.

Proof. First, note that thanks to Corollary 2.9, a Γ-invariant function on Hm is Lipchitz if and
only if the function induced on Hm/Γ is Lipschitz. Thus, we shall consider the radial and support
function as functions on the compact space Hm/Γ. By compactness, it is sufficient to prove that
θC and hC are locally Lipschitz functions. Note that since C is a convex set, θC is a locally Lipschitz
function viewed (locally) as a function of X ∈ Rm×{0} ⊂ Rm+1. Combining this together with the
fact that the inverse of the Riemannian exponential map from Hm to TxHm (for an arbitrary x) is
locally Lipschitz as well as the Euclidean orthogonal projection from TxHm to Rm×{0}, we get that
θC is Lipchitz on a neighborhood of any point. We conclude that θC is locally Lipschitz on Hm/Γ
by using that the canonical map pΓ : Hm −→ Hm/Γ is open (see Proposition 2.5). It remains to
prove that hC is a Lipschitz function. Recall that for any n ∈ Hm, hC(n) = supx∈Hm θC(x)q(x, n).
Using that q(x, n) = − cosh(dHm(x, n)) together with the Γ-invariance of θC and hC , we get that
for any [n] ∈ Hm/Γ,

hC([n]) = sup
[x]∈Hm/Γ

−θC([x]) cosh(dΓ([x], [n])).

Finally, using that θC is bounded away from zero and the compactness of Hm/Γ, we get the
existence of [x0] such that

hC([n]) = θC([x0]) cosh(dΓ([x0], [n]))

which in turn implies that hC : Hm/Γ −→ (−∞, 0) is Lipschitz (with the Lipschitz constant
depending on the diameter of Hm/Γ). �

To summarize the results of this section, the radial function θC and support function hC of a
Fuchsian convex set can be seen as functions on the compact space Hm/Γ. Moreover, the induced
functions, still denoted by θC and hC , are Lipschitz regular; besides the first one is positive while



PRESCRIPTION OF GAUSS CURVATURE ON COMPACT HYPERBOLIC ORBIFOLDS 11

the second is negative. As a consequence, the functions ln(1/θC) and ln(−hC) are well-defined and
thanks to Lemma 2.30, satisfy the relations

ln(−hC(n)) = inf
x∈Hm/Γ

{
ln(−q(x, n))− ln

(
1

θC(x)

)}
and

ln

(
1

θC(x)

)
= inf
n∈Hm/Γ

{ln(−q(x, n))− ln(−hC(n))}

for any x, n ∈ Hm/Γ. For simplicity, let us denote by c the function c(n, x) = ln(−q(x, n)). In
optimal mass transport theory, the above relations are well-known: ln(−hC(n)) and ln

(
1

θC(x)

)
are

obtained one from the other through the c-transform as recalled in the next section. This simple
remark is the starting point of the proof of our main theorem.

3. Equivalence of Theorem 1.3 and Theorem 1.5

In this part, we show that the solutions of both problems are in one-to-one correspondence.
Therefore, thanks to McCann’s theorem and its generalization to Alexandrov spaces, this will give
us a proof of Alexandrov’s theorem for hyperbolic orbifolds. We use in this part some elementary
properties of c-concave functions to be defined below.

3.1. c-concave functions. Throughout this part c(n, x) = ln(−q(n, x)) = ln ◦ cosh(d(n, x)).

Definition 3.1 (c-concave function and c-subdifferential). Let Hm/Γ be a hyperbolic orbifold and
φ : Hm/Γ −→ R∪{−∞} be a function. We define φc : Hm/Γ −→ R∪{−∞, +∞}, the c-transform
of φ by the formula

φc(x) = inf
n∈Hm

c(n, x)− φ(n).

Such a function φ is said to be c-concave if for all x ∈ Hm/Γ, φc(x) < +∞ (so that (φc)c is
well-defined) and (φc)c = φ (in the rest of the paper, we will write φcc). The c-subdifferential of a
function φ is defined by the formula

∂cφ = {(n, x) ∈ Hm/Γ×Hm/Γ;φ(n) + φc(x) = c(n, x)}.

Under our assumptions, it is not difficult to prove that c-concave function is Lipschitz (for
instance, a proof is given in [15, Lemma 2]).

Lemma 3.2. Let Hm/Γ be a hyperbolic orbifold and φ : Hm/Γ −→ R∪{−∞} be a c-concave map.
Then, φ is Lipschitz map.

3.2. Proof of the equivalence. The first step of the proof is to check that to a Fuchsian convex
set corresponds a unique pair (φ, ψ) of c-concave functions (with ψ = φc) where uniqueness is to be
understood up to homotheties on Fuchsian convex sets and up to adding/subtracting a constant
to the pair of c-concave maps.

Now, a Fuchsian convex set (as its Euclidean analogue) is clearly determined by the data of
its support h and radial θ functions on Hm/Γ (Lipschitz lifting to Hm exists thanks to Corollary
2.9). Moreover, as explained in Sections 2.4 and 2.5, the functions θ and h are Lipschitz regular,
positive and negative respectively, and ln(−h) and ln

(
1
θ

)
are c-concave.

Conversely, given two functions φ and φc where φ is c-concave, Lemma 3.2 insures that φ and
φc are Lipschitz. Easy computations then show that θ = exp(−φc) > 0 and h = − exp(φ) < 0 are
Lipschitz regular and satisfy

h = sup
x∈Hm/Γ

θ(x)q(x, ·) and
1

θ
= inf
n∈Hm/Γ

q(·, n)

h(n)
.

Thus, Lemma 2.30 implies that the liftings of h and θ on Hm determine a unique Fuchsian
convex set C (indeed θ is Γ-invariant yields ∂C is Γ-invariant then we conclude by using that Γ is
made of linear isometries).
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So we are left with proving that, on one hand, the pair of c-concave maps (φ, ψ) we get (as
explained above) from the datum of a Fuchsian convex set is indeed a solution of Kantorovitch’s
dual problem. On the other hand, we also have to prove that the Fuchsian convex set determined
by a solution of Kantorovitch’s dual problem (φ, ψ) admits µ as Gauss curvature measure. We
start with the proof of the first point.

To this aim, we just have to find a transport plan Π ∈ Γ(σHm/Γ, µ) with the property

Π({(n, x) ∈ Hm/Γ×Hm/Γ; φ(n) + ψ(x) = c(n, x)}) = V ol(Hm/Γ)

Indeed, the existence of such a plan yields the equality∫
Hm/Γ

φ(n)dσHm/Γ(n) +

∫
Hm/Γ

ψ(x)dµ(x) =

∫
Hm/Γ×Hm/Γ

c(n, x) dΠ(n, x)

which in turns gives that (φ, ψ) is a solution of Kantorovitch’s dual problem. Recall that we
write ∂cφ = {(n, x) ∈ Hm/Γ × Hm/Γ; φ(n) + ψ(x) = c(n, x)}. We claim that the plan Π(A) =
σHm/Γ(pn(A∩∂cφ)) (where A ⊂ Hm/Γ×Hm/Γ is a Borel set, and pn stands for the projection onto
the n coordinate) defines a measure in Γ(σHm/Γ, µ). First, since ∂cφ is a compact set, pn(∂φ ∩A)
is a Suslin set hence measurable. Now, Π is σ-additive since, given two disjoint sets A and B,

pn(∂cφ ∩A) ∩ pn(∂cφ ∩B) ⊂ {n ∈ Hm/Γ;∃x 6= x′ ∈ Hm/Γ, n ∈ GΓ(x) ∩ GΓ(x′)}

thanks to Lemma 2.25. Now, let D be a fundamental domain for Γ. Recall that γ.D ∩D = ∅ for
any non-trivial γ ∈ Γ. By definition of σHm/Γ, we have

(11) σHm/Γ({n ∈ Hm/Γ;∃x 6= x′ ∈ Hm/Γ, n ∈ GΓ(x) ∩ GΓ(x′)}) =

σ({n ∈ D;∃x 6= x′ ∈ D,n ∈ G(p−1(x)) ∩ G(p−1(x′))}) = 0

where the last equality follows from Lemma 2.20. Moreover, note that Π(Hm/Γ × Hm/Γ) =
µ(Hm/Γ) = V ol(Hm/Γ) since GΓ is onto. With these properties in hand, it is easy to check that
Π ∈ Γ(σHm/Γ, µ).

It remains to prove that the Fuchsian convex set determined by a solution of Kantorovitch’s dual
problem (φ, ψ) admits µ as Gauss curvature measure. This follows from the sequence of identities
below where U is an arbitrary Borel subset of Hm/Γ and Π0 ∈ Γ(σHm/Γ, µ) an optimal plan .

µ(U) = Π0(Hm/Γ× U)

= Π0(Hm/Γ× U ∩ {(n, x) ∈ (Hm/Γ)2;φ(n) + ψ(x) = c(n, x)})
= Π0(Hm/Γ× U ∩ {(n, x) ∈ (Hm/Γ)2;n ∈ GΓ(x)})
= Π0(GΓ(U)× U ∩ {(n, x);n ∈ GΓ(x)})
= Π0(GΓ(U)×Hm/Γ ∩ {(n, x);n ∈ GΓ(x)})
= Π0(GΓ(U)×Hm/Γ)

= σHm/Γ(GΓ(U))

where we used several times that Π0({(n, x) ∈ (Hm/Γ)2;φ(n) + ψ(x) = c(n, x)}) = V ol(Hm/Γ)
and, to get the equality in line 5, the fact that

GΓ(U)× U c ∩ {(n, x) ∈ (Hm/Γ)2;n ∈ GΓ(x))} ⊂
{(n, x) ∈ (Hm/Γ)2;∃x′ 6= x, n ∈ GΓ(x) ∩ GΓ(x′)}

which yields

Π0(GΓ(U)× U c ∩ {(n, x) ∈ (Hm/Γ)2;n ∈ GΓ(x))}) ≤
σHm/Γ({n ∈ Hm/Γ;∃x′ 6= x, n ∈ GΓ(x) ∩ GΓ(x′)})

and finally gives us the result thanks to (11).
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It remains to prove that the Fuchsian convex set is a polyhedron when the Gauss curvature
measure is a finite sum of Dirac masses. To this aim, we need the intermediate result below.

Lemma 3.3. Let Γ be a discrete cocompact group and F be a Γ-Fuchsian convex polyhedron. Then,
the polar set F ◦ is also a Γ-Fuchsian convex polyhedron.

Proof. According to Lemma 2.30, F ◦ is a convex subset of Cf . Moreover, F ◦ is Γ-invariant since
F is Γ-invariant.The only thing to prove is that F ◦ is a polyhedron in the sense of Definition 2.14.
Recall that F is a Fuchsian convex polyhedron if and only if there exist x1, · · · , xs ∈ Hm and
λ1, · · · , λs, s positive numbers, such that

F = {λiγ. xi; i ∈ {1, · · · , s}, γ ∈ Γ}◦.
Note that using (S1 ∪ S2)◦ = S◦1 ∩ S◦2 , we can assume s = 1 in the definition above. Moreover,

up to a homothety about the origin, we can assume that λ1 = 1. Now, let D be a convex,
locally finite fundamental domain for Γ. Since Γ is discrete then for any x ∈ Cf , the set Γ. x is a
closed discrete subset of Cf (see Lemma 2.5). Therefore, Γ. x1 (where x1 is such that F = {x1}◦)
intersects finitely many points in D. Let y1, · · · , ys ∈ Hm be those points (pairwise distinct).
An easy computation gives q(yi − yj) > 0 when i 6= j, therefore the convex hull of {y1, · · · , ys}
in Rm+1 is a polyhedron whoses faces are space-like. Therefore, each face Fi can be written as
Fi = {z ∈ Cf ; q(z − µini, ni) = 0} with ni ∈ Hm and µi > 0. In other terms, each face Fi
is contained in the boundary of {(1/µi)ni}◦. We conclude by using that Hm = ∪γ∈Γγ.D by
definition of a fundamental domain. �

Now, let µ be a finite combination of Dirac masses and C be "the" Fuchsian convex set whose
µ is the Gauss curvature measure. Let D be a convex, locally finite, fundamental domain. We
set x1, · · · , xk ∈ D such that supp µ = {[x1], · · · , [xk]}. Let h : Hm −→ (−∞, 0) and θ : Hm :−→
(0,+∞) be the radial and support functions of C. Recall that µ is supported on the compact set
{x ∈ Hm;∃n; h(n) = θ(x)q(n, x)}/Γ. Note that using Lemma 2.30, we have θC◦ = −1/hC and
hC◦ = −1/θC . Therefore, using that n ∈ G(p−1(x)) iff h(n) = θ(x)q(n, x), we get that for any
n, x ∈ Hm,

n ∈ GC(p−1
C (x))⇐⇒ x ∈ GC

◦
(p−1
C◦ (n))

where we add C and C
◦
to G in order to distinguish between the two Gauss maps. Therefore,

combining this together with the assumption on µ, we get that C◦ has finitely many normal
vectors in D, namely the vectors x1, · · · , xk. This yields that C◦ is a Fuchsian convex polyhedron.
Thanks to Lemma 3.3, the proof is complete.
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