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PRESCRIPTION OF GAUSS CURVATURE USING OPTIMAL MASS
TRANSPORT

JÉRÔME BERTRAND

Abstract. In this paper we give a new proof of a theorem by Alexandrov on the Gauss curvature
prescription of Euclidean convex sets. This proof is based on the duality theory of convex sets
and on optimal mass transport. A noteworthy property of this proof is that it does not rely
neither on the theory of convex polyhedra nor on P.D.E. methods (which appeared in all the
previous proofs of this result).
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1. Introduction

In this paper, we consider the problem of prescribing the Gauss curvature (in a generalised
measure-theoretic sense) of convex sets in the Euclidean space. Our aim is to prove this geometrical
statement by solving an appropriate variational problem.

1.1. Alexandrov’s problem in Euclidean space. We start with the description of the Eu-
clidean result which was proved by A.D. Alexandrov in [1, 2].

In order to state the result, we recall the notion of Gauss curvature measure introduced by
Alexandrov. Consider a convex body (i.e. a closed bounded convex set whose interior is nonempty)
Ω in Rm+1 and assume that the origin of Rm+1 is located within Ω. Under these assumptions, the
map

(1)
−→ρ : Sm −→ ∂Ω

x 7−→ ρ(x)x

is a homeomorphism (where the radial function ρ is defined by ρ(x) = sup{s; sx ∈ Ω}). Note that
ρ is a Lipschitz function bounded away from 0 and ∞.

The Gauss curvature measure is the Borel probability measure

µ := σ(G ◦ −→ρ (·))
where σ stands for the uniform Borel probability measure on Sm (considered as the unit sphere
centered at the origin) and G : ∂Ω ⇒ Sm is the Gauss multivalued map. In other terms, the Gauss
curvature measure is the pull-back of the uniform measure through the map G ◦−→ρ . The curvature
measure µ is well-defined since

(2) σ ({n ∈ Sm; ∃x1 6= x2 ∈ Sm; n ∈ G(ρ(x1)x1) ∩ G(ρ(x2)x2)}) = 0

(see [3, Lemma 5.2] for a proof).
Note also that the curvature measure depends on the location of the origin within the convex

body and is invariant under homotheties about that point.
By using the assumption 0 ∈

◦
Ω, it is easy to convince oneself that for all non-empty spherical

convex set ω ( Sm,

(3) µ(ω) < σ(ωπ/2)
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where ωπ/2 = {x ∈ Sm; d(x, ω) < π/2} and d(·, ·) is the standard distance on Sm.

Remark 1.1. Note that (3) implies that µ cannot be supported in a closed hemisphere. Con-
sequently, the distance between an arbitrary point in Sm and the support of µ is smaller than
π
2 .

Alexandrov’s theorem states that (3) is actually a sufficient condition for µ arising from this
construction.

Theorem 1.2 (Alexandrov). Let σ be the uniform probability measure on Sm and µ be a Borel
probability measure on Sm satisfying for any non-empty convex set ω ( Sm,

µ(ω) < σ(ωπ/2).

Then, there exists a unique convex body in Rm+1 containing 0 in its interior (up to homotheties)
whose µ is the Gauss curvature measure.

Our proof of Alexandrov’s result is an easy consequence of a well-known result in optimal mass
transport (but for non-standard cost function thus the proof is non trivial): Theorem 1.5. Alexan-
drov’s theorem is deduced from the latter result in Section 2 through an elementary argument
based on the classical notion of polar transform of bounded sets.

1.2. Optimal mass transport. In this part, we introduce notation and briefly describe the
optimal mass transport problem on Sm. For much more on the subject, we refer to [24, 25]. This
problem involves two probability measures, denoted by µ, σ ∈ P(Sm) in the sequel, and a cost
function c : Sm× Sm → R+ ∪ {+∞}. We also need to introduce the set of transport plans Γ(σ, µ),
namely the set of probability measures Π ∈ P(Sm × Sm) such that for any Borel set A ⊂ Sm

(4) σ(A) = Π(A× Sm) and µ(A) = Π(Sm ×A).

The transport plans can also be characterized in terms of continuous functions as follows. Given
f : Sm → R a continuous fonction, it holds

(5)
∫
Sm×Sm

f(n) dΠ(n, x) =

∫
Sm
f(n) dσ(n) and

∫
Sm×Sm

f(x) dΠ(n, x) =

∫
Sm
f(x) dµ(x).

Equipped with the topology induced by the weak convergence of probability measures, the set
Γ(σ, µ) is a compact set as a consequence of the Banach-Alaoglu theorem.

The cost function c we consider is defined by the formula

(6) c(n, x) =

{
− log〈n, x〉 = − log cos d(n, x) if d(n, x) < π/2
+∞ otherwise

The cost function c satisfies a standard set of assumptions in the field (highlighted in the lemma
below) with the important exception that it is not real-valued. Therefore, some standard results
do not apply to c.

Lemma 1.3. The cost function c : Sm × Sm −→ R+ ∪ {+∞} defined in (6) is a continuous map.
Moreover, restricted to the open set {c < +∞}, the function c is a strictly convex and increasing
smooth function of the spherical distance. Consequently, for (n, x) in any fixed open set Ω such
that Ω ⊂ {c < +∞}, the function (n, x)→ c(n, x) is a Lipschitz differentiable function.

Remark 1.4. The set R+ ∪ {+∞} is endowed with the order topology.

The mass transport problem consists in studying

(7) inf
Π∈Γ(σ,µ)

∫
Sm×Sm

c(n, x) dΠ(n, x).

Note that the compactness of Γ(σ, µ) combined with the (lower semi-)continuity of c yields
existence of minimizers in the problem above. These minimizers are called optimal (transport)
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plans. To study the property of the optimal plans (including the question of the uniqueness),
Kantorovitch introduced a dual problem. Let us define A as the set of pairs (φ, ψ) of Lipschitz
functions defined on Sm that satisfy φ(n) + ψ(x) ≤ c(n, x) for all x, n ∈ Sm. Kantorovitch’s
variational problem consists in studying

(8) sup
(φ,ψ)∈A

{∫
Sm
φ(n)dσ(n) +

∫
Sm
ψ(x)dµ(x)

}
.

It is easy to see that the quantity above is always smaller or equal to (7). Indeed, given (φ, ψ) ∈ A
and Π ∈ Γ(σ, µ), Property (5) allows us to write∫

Sm
φ(n) dσ(n) +

∫
Sm
ψ(x) dµ(x) =

∫
Sm×Sm

(φ(n) + ψ(x)) dΠ(n, x) ≤
∫
Sm×Sm

c(n, x) dΠ(n, x).

It can be proved that (7) = (8) whenever the cost function is continuous and nonnegative;
this type of result is called Kantorovitch’s duality. However, since the cost function assume infinite
values, the common value could be infinite. Besides, for some (real-valued) Lipschitz cost functions
and when the base space is compact, existence and uniquess of the solution of Kantorovitch’s
variational problem can be proved. On the contrary, there are cases (involving non real-valued
cost function) where solution of Kantorovitch’s problem does not exist. We refer to [25] for more
on this.

The main result of the paper is a proof of a strong form of the Kantorovitch duality relative to
the non real-valued cost function c.

Theorem 1.5 (Strong Kantorovich duality, [13]). Consider µ and σ as in Alexandrov’s theorem.
Then, the following equality holds.

(9) max
(φ,ψ)∈A

{∫
Sm
φ(n)dσ(n) +

∫
Sm
ψ(x)dµ(x)

}
= min

Π∈Γ(σ,µ)

∫
Sm×Sm

c(n, x) dΠ(n, x) < +∞.

Moreover, Kantorovitch’s variational problem admits a unique solution (φ, ψ) (up to replacing
(φ, ψ) by (φ+ s, ψ − s) with s ∈ R). If (φ, ψ) ∈ A is a solution of the variational problem then,

ψ(x) = min
n∈Sm

c(n, x)− φ(n)

φ(n) = min
x∈Sm

c(n, x)− ψ(x)(10)

for all n ∈ Sm and µ-a.e. x ∈ Sm.
The proof of Theorem 1.5 is in two steps. First, we show that the quantities in (9) are finite.

More precisely we show a result which, we believe, is of independent interest (in connection with
Theorem 1.7 for instance).

Theorem 1.6. Let µ be a Borel probability measure on Sm. Then, µ satisfies Alexandrov’s condi-
tion (3) if and only if there exists Π ∈ Γ(σ, µ) such that

c ∈ L∞(Π).

Then, we show the existence of maximizers of Kantorovitch’s variational problem as well as
their uniqueness up to constants. Note that as a by-product of our proof, we get an analogue of
the Brenier-McCann theorem for the cost c stated below.

Theorem 1.7. Let fσ and µ two probability measures on Sm such that there exists Π ∈ Γ(fσ, µ)
for which c ∈ L∞(Π). Then, the mass transport problem

(11) min
Π∈Γ(fσ,µ)

∫
Sm×Sm

c(n, x) dΠ(n, x) < +∞

admits a unique solution Π0. Moreover, Π0 = (Id, T )]fσ where for σ-a.e. n ∈ Sm,

T (n) = expn

(
− arctan |∇φ(n)|
|∇φ(n)|

∇φ(n)

)
being φ a Lipschitz c-concave function.
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We refer to Definition 4.3 for the definition of c-concave function. We don’t know whether the
assumption that c ∈ L∞(Π) for a well-chosen transport plan Π can be weakened to (11). The
details of the proof are left to the reader (however a proof is sketched in Remark 4.9).

1.3. Comments, related results, and organization of the paper. Our motivation to study
this problem comes from a paper by Oliker [13]. In this paper, Oliker proves Alexandrov’s theorem
through the study of Kantorovich’s variational problem. Moreover his proof, as Alexandrov’s one,
consists in establishing the result for convex polyhedra first and then "passing to the limit". This
requires some fine estimates (see the proofs of [13, Theorems 6 and 7]). This paper led us to the
question of whether it was possible to deduce Alexandrov’s theorem from optimal mass transport
techniques without using convex polyhedra. Roughly speaking, the arguments relying on the theory
of convex polyhedra are replaced in our proof by elementary compactness results relative to the
Hausdorff metric. Moreover, taken for granted that Kantorovitch’s variational problem can be
solved, optimal mass transport gives a very simple argument to prove that the given measure is
indeed the Gauss curvature measure of the underlying convex body. We also mention that the
paper is self-contained (up to elementary properties of Hausdorff metric and a lemma on c-cyclical
monotonicity whose proof is less than a page) and does not require any specific knowledge in
optimal mass transport.

Under the assumption that the Gauss curvature measure is absolutely continuous, the regularity
of the convex set has been studied by Pogorelov in two dimensions [16] and by Oliker [14] in higher
dimensions. Let us also mention a paper by Treibergs [23] where the author proves a priori bounds
for the ratio of circumscribed and inscribed radii of the convex body depending on the curvature
measure. A study of other curvature measures in the smooth case has been carried out in [7] (see
also the references therein).

To conclude, let us also mention that the same approach has been applied in [5] where we prove
an analogue of Alexandrov’s theorem for compact hyperbolic orbifolds. However in the hyperbolic
setting the relative cost function is real-valued and standard results in optimal mass transport can
be applied. Adapting known results in optimal mass transport to the non-standard cost function
involved in Alexandrov’s problem is the main achievement of this paper. Building on the results
of this paper, we consider in a joint work in progress with Castillon, the problem of prescribing
the Gauss curvature of convex bodies in the hyperbolic space.

In Section 2, we infer Theorem 1.2 from Theorem 1.5. In Section 3, we use the Hausdorff metric
to establish two reinforcements of Assumption (3). In the last section, we prove Theorem 1.6 and
Theorem 1.5.

Acknowledgment: The author thanks the referee for useful suggestions, especially to consider
the set F0.

2. Proof of Alexandrov’s theorem

In this part we prove Alexandrov’s theorem by means of Theorem 1.5. We start with some
preliminary remarks on support functions. Let us recall that the support function h of a convex
body Ω is defined by the formula

(12) h(n) = sup
x∈Sm

{ρ(x)〈x, n〉}

Note that h(n) = ρ(x)〈x, n〉 if and only if the hyperplane orthogonal to n through
→
ρ (x) supports

the convex Ω. In other words, this equality amounts to

(13) n ∈ G ◦ −→ρ (x).

More generally, we can consider the radial and support functions of star-shaped sets with respect
to 0. More precisely, we denote by E the set of non-empty subsets of Rm+1 that are closed, bounded
and star-shaped with respect to 0 and whose radial function is positive and continuous.
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It is worth mentioning that the support function hF of any set F ∈ E is related to the radial
function of its polar set F ◦ in the following way:

(14)
1

hF
= ρF◦

where F ◦ = {n ∈ Rm+1; ∀x ∈ F 〈x, n〉 ≤ 1}.
Let us recall that F ◦ is a convex set belonging to E . Moreover by definition of a polar set, it

is always true that F ◦◦ ⊃ F and the equality holds if and only F ∈ E is a convex set (we refer to
[21] for more on polar sets, including a proof of the previous equivalence, see Theorem 1.6.1). In
terms of radial functions, this amounts to

(15) ρF◦◦ ≥ ρF

and (using that F is star-shaped) that the equality holds if and only if F ∈ E is convex.
To summarize, a set C is a convex body with 0 in its interior if and only if its support and radial

functions are related by (12) and

(16) ρ(x) = ρC◦◦(x) =
1

hC◦
(x) =

1

supn∈Sm
〈x,n〉
h(n)

= inf
n∈Sm;〈x,n〉>0

{
h(n)

〈x, n〉

}
Now, if we set φ = ln(1/h) and ψ = ln(ρ), these functions are well-defined Lipschitz functions.

Moreover (12) and (16) can be rephrased as

ψ(x) = min
n∈Sm

c(n, x)− φ(n)

φ(n) = min
x∈Sm

c(n, x)− ψ(x)

for all x, n ∈ Sm and c is the cost function defined in (6).
(Note that to get the formula above, we use the fact that the extremums are realized by x, n

such that 〈n, x〉 > 0.) In other terms, φ and ψ are c-concave functions according to the theory of
optimal mass transport. Conversely, the datum of two Lipschitz c-concave functions φ, ψ obviously
determines a unique convex body.

To complete the proof of the existence part of Alexandrov’s theorem, it remains to show that,
given a solution (φ, ψ) of Kantorovitch’s variational problem, the Gauss curvature measure of the
convex body determined by (φ, ψ) is indeed µ. To this aim, we select Π0 an optimal transport plan
and notice that the equality (9) reads∫

Sm
φ(n)dσ(n) +

∫
Sm
ψ(x)dµ(x) =

∫
Sm×Sm

c(n, x) dΠ0(n, x)

which, using (5), can be reformulated as∫
Sm×Sm

(c(n, x)− φ(n)− ψ(x)) dΠ0(n, x) = 0.

Equivalently,

(17) Π0({(n, x) ∈ (Sm)2;φ(n) + ψ(x) = c(n, x)}) = 1

since φ(n) + ψ(x) ≤ c(n, x) for all n, x ∈ Sm. Now, the discussion above allows us to rewrite (17)
as

Π0({(n, x) ∈ (Sm)2;n ∈ G(−→ρ (x))}) = 1.
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As a consequence, for any Borel set U ⊂ Sm, it holds

µ(U) = Π0(Sm × U)

= Π0(Sm × U ∩ {(n, x) ∈ (Sm)2;φ(n) + ψ(x) = c(n, x)})
= Π0(Sm × U ∩ {(n, x) ∈ (Sm)2;n ∈ G(−→ρ (x))})
= Π0(G ◦ −→ρ (U)× U ∩ {(n, x);n ∈ G(−→ρ (x))})
= Π0(G ◦ −→ρ (U)× Sm ∩ {(n, x);n ∈ G(−→ρ (x))})
= Π0(G ◦ −→ρ (U)× Sm)

= σ(G ◦ −→ρ (U))

where we used in line 5

G◦−→ρ (U)×U c ∩{(n, x) ∈ (Sm)2;n ∈ G(−→ρ (x)))} ⊂ {(n, x) ∈ (Sm)2;∃x′ 6= x, n ∈ G(−→ρ (x))∩G(−→ρ (x′))}

which yields

Π0(G ◦ −→ρ (U)× U c ∩ {(n, x) ∈ (Sm)2;n ∈ G(−→ρ (x)))}) ≤
σ({n ∈ Sm;∃x′ 6= x, n ∈ G(−→ρ (x)) ∩ G(−→ρ (x′))}) = 0

according to (2).
It remains to prove the uniqueness part. If two distinct convex bodies C1, C2 have the same

curvature measure then their radial and support functions give rise to two distinct solutions of
Kantorovitch’s variational problem through the transformation φi = ln(1/hi) and ψi = ln(ρi)
(i ∈ {1, 2}). Therefore, Theorem 1.5 yields that φ1 − φ2 = −(ψ1 − ψ2) is constant which means
that C1 and C2 are dilations of each other about the origin.

3. Hausdorff convergence and self-improvement of Alexandrov’s assumption (3)

This part is devoted to technical results that will be used in the subsequent parts to prove
Theorem 1.5.

In this section we recall some standard compactness results on the space of closed (or convex)
sets of a given compact metric space. We restrict our attention to the case where the metric space
is the round sphere. The topology on the closed sets is induced by the Hausdorff metric whose
definition is recalled below. Then, we prove some continuity results on functionals defined on these
spaces. Finally, we use these results to prove reinforcements of Alexandrov’s assumption (3).

3.1. Continuity and compactness results for the Hausdorff topology.

Definition 3.1 (Hausdorff metric). Let F be the set of nonempty compact sets in Sm and F0 be
the subset of F defined by

F0 := {F ∈ F ;Fπ/2 6= Sm}.
Recall that for V1, V2 ∈ F , the Hausdorff distance between these sets is defined by the formula

dH(V1, V2) = min
{
ε;V1 ⊂ (V2)ε and V2 ⊂ (V1)ε

}
where Vε = {y ∈ Sm; d(y, V ) < ε}.

Proposition 3.2. The set F endowed with dH is a compact metric space. Moreover, F0 is a closed
subset of F for this topology.

For more on the Hausdorff metric, including a proof of the proposition above, we refer to
Rockafellar’s book [18]. From now on, we assume that F and F0 are endowed with the Hausdorff
metric.

The next result is based on the following fact whose proof is an easy consequence of standard
theorems in Measure theory.
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Fact: Let θ be a Borel probability measure on Sm. The map

(18) F −→ [0, 1]
V 7−→ θ(V )

is upper semi-continuous.
For later use, let us state the following result.

Lemma 3.3. The map Θ defined below is continuous on F × (0, π2 ].

Θ : F × (0, π/2] −→ R
(F, ε) 7−→ σ(Fε)

Proof. Suppose that (Fk, εk) converges to (F, ε) in the domain of Θ. We claim that the correspond-
ing characteristic functions χ(Fk)εk

converge pointwise to χFε
out of a σ-negligible set. Indeed, if

z ∈ Fε and k is large, the definition of Gromov-Hausdorff convergence and the triangle inequality
tell us that z ∈ (Fk)εk . Similarly, if z is such that d(z, F ) > ε then for large k, d(z, Fk) > εk. To
conclude, it suffices to notice that σ({z; d(z, F ) = ε}) = 0 since ε > 0 (if not, take a Lebesgue
point of this set and use a geodesic of length ε between z and F to get a contradiction). The result
follows from Lebesgue’s dominated convergence theorem. �

3.2. Reinforcement of Assumption (3). In this part, we use the compactness of F to get some
safety margin in (3). Intuitively speaking, this corresponds to the fact that the origin of Rn is
located within the convex body we are looking for. To this end, we note that for an arbitrary set
U ,

(19) Uπ/2 = Uπ/2 = (Conv(U))π/2

since U cπ/2 = {z ∈ Sm;∀u ∈ U, 〈z, u〉 ≤ 0} and where Conv stands for the convex hull. Let us
also recall that a set ω ⊂ Sm is convex if and only if the Euclidean cone generated by ω is convex.
Consequently, the Hahn-Banach theorem yields that any spherical convex set ω 6= Sm is contained
in a closed ball of radius π/2. Especially, (19) yields that for F ∈ F

(20) F ∈ F0 ⇔ (Conv(F ))π/2 6= Sm ⇔ Conv(F ) 6= Sm

Thus, (3) also holds true for all Borel sets V such that Conv(V ) 6= Sm. The first reinforcement
of (3) is given by the following proposition.

Proposition 3.4. Let µ be a Borel probability measure satisfying (3). There exists a positive
number ε such that for all F ∈ F0,

(21) µ(F ) < σ(Fπ/2)− ε

Proof. According to (3), (19), and (20), we have for F ∈ F0

µ(F ) < σ(Fπ/2).

Now, according to Fact (18) and Lemma 3.3, the map

F0 −→ R
F 7−→ σ(Fπ/2)− µ(F )

is lower semi-continuous. Combining this together with the compactness of F0 gives the thesis. �

Now, for later use, we need to strengthen (3) in another way.

Proposition 3.5. Let µ be a Borel probability measure satisfying (3). There exists α > 0 such
that for all F ∈ F ,

(22) µ(F ) ≤ σ(Fπ/2−α).
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Remark 3.6. It was already known that the curvature measure of a convex body satisfies (22) (of
course, at that stage we don’t know yet that µ is the curvature measure of such a set). This is the
content of [23, Theorem 1.B]. In the same paper, Treibergs also proves that the ratio circumscribed
radius/inscribed radius of a convex body can be uniformly bounded from above by a universal
function of α and m. On the contrary, he proves this result is false if we use (21) instead of (22).

Proof. We start by noticing that supp(µ) 6∈ F0 since, otherwise, this would contradict (3). There-
fore, α0 := maxx∈Sm d(x, supp(µ)) < π/2 and, obviously, σ((suppµ)α0

)−µ(suppµ) = 0. Using this
remark, we can prove the result by contradiction.

Let εk be an increasing sequence converging to π/2. We set m(ε) := infF∈F σ(Fε) − µ(F ),
by assumption m(εk) < 0. As in the proof of Proposition 3.4, we let Fk ∈ F be a sequence of
minimizers for each m(εk). Using the lower semicontinuity of (F, α)→ σ(Fα)−µ(F ) which follows
from (18), Lemma 3.3, and the compactness of F , we can find F∞ ∈ F such that for any ε > 0

σ((F∞)π/2)− µ(F∞)− ε ≤ σ((Fk)εk)− µ(Fk) ≤ 0

for large k. We first notice that F∞ 6∈ F0 since otherwise we would have σ((F∞)π/2)−µ(F∞) > 0.
Therefore, (F∞)π/2 = Sm. Consequently, we get

σ((F∞)π/2)− µ(F∞) = 1− µ(F∞)

which is a positive number unless F∞ ⊃ suppµ. To summarize, Fk converges to F∞ ⊃ suppµ. This
gives us

(F∞)α0 ⊃ (suppµ)α0 = Sm

by definition of α0. Finally, the latter property contradicts m(εk) < 0 for large k since (Fk)εk ⊃
(F∞)α0 for large k. �

4. Proof of Theorem 1.5

4.1. Well-posedness of the optimal transport problem. In this part, we prove Theorem 1.6
whose straightforward consequence is

(23) min
Π∈Γ(σ,µ)

∫
Sm×Sm

c(n, x) dΠ(n, x) < +∞.

Let us recall the statement of Theorem 1.6.

Theorem 4.1. Let µ be a Borel probability measure on Sm satisfying (3). There exists a plan
Π ∈ Γ(σ, µ) such that

c ∈ L∞(Π).

Remark 4.2. The converse of the above result is straightforward. Indeed, if c ∈ L∞(Π) then there
exists α > 0 such that for Π-a.e. pair (n, x), d(n, x) ≤ π/2− α. By definition of a transport plan,
this implies that for any Borel set U ⊂ Sm, µ(U) ≤ σ(Uπ/2−α); in particular µ satisfies (3).

Proof. Let µ be a probability measure on Sm satisfying (3). Thanks to Proposition 3.5, there exists
a number α > 0 such that (22) holds for any F ∈ F . The first step of the proof is to show that
we can approximate µ by a finitely supported measure µ̃ that still satisfies (22) (up to sligthly
decreasing α). To this end, we first approximate µ by (µ ∗ ρε)ε<α/4, being ρε a family of standard
radial mollifiers on Sm. We fix such a ε and set µ̂ = µ ∗ ρε; by definition, µ̂ satisfies (22) with 3α

4
instead of α. Now, we claim there exists a finite partition (Ui)i∈{1,···N} of Sm made of Borel sets
such that

(24) diam(Ui) < ε and µ̂(Ui) ∈ Q,
a proof is given in the appendix.

For each Ui, choose xi ∈ Ui and set

µe =

N∑
i=1

µ̂(Ui)δxi .
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By assumption on the diameter of Ui, µe satisfies

(25) ∀F ∈ F ; µe(F ) ≤ σ
(
∪x∈FB

(
x, π/2− α

2

))
and the proof of the first step is complete. According to (24), µe can be rewritten (up to repeating
some the xi)

µe =
1

M

M∑
i=1

δxi

with M ∈ N.
The next step is to show the existence of Πe ∈ Γ(σ, µe) such that∫

Sm×Sm
c(n, x) dΠe(n, x) ≤ − ln

(
sin
(α

4

))
.

Up to enlarging M and repeating xi if necessary, we can build by induction on the dimension m
another partition (Vi)

M
i=1 of Sm such that diam(Vi) ≤ α

4 and σ(Vi) = 1
M (see the appendix). We

claim that the set-valued map

F : {1, · · · ,M} −→ {Vs, s ∈ {1, · · · ,M}}
i 7−→ {Vs;Vs ⊂ B(xi, π/2− α

4 )}

satisfies the assumptions of the Marriage lemma. Indeed, consider I a subset of {1, · · · ,M}.
Thanks to (25), we have

]I

M
≤ µe({xi, i ∈ I}) ≤ σ

(
∪i∈I B

(
xi, π/2−

α

2

))
.

Now, by assumption on the Vi’s, we get⋃
i∈I

B
(
xi, π/2−

α

2

)
⊂

⋃
Vs∈F (I)

Vs.

Combining these properties together proves that the assumptions are satisfied. Consequently,
there exists a one-to-one map f : {1, · · · ,M} −→ {Vi; i ∈ {1, · · · ,M}} such that for all i, f(i) ⊂
B(xi, π/2− α

4 ). This fact clearly entails that the plan which maps the mass located at xi uniformly
on f(i) is a plan Πe in Γ(σ, µe) such that

(26) Πe

({
(n, x) ∈ (Sm)2; d(n, x) ≤ π/2− α

4

})
= 1.

Note that the bound does not depend on M nor on ε. Therefore, by letting ε go to 0, we can
construct by the same method a sequence of empirical measures which converges to µ, all of whose
elements satisfy (26). Then using the Banach-Alaoglu theorem, we can extract a subsequence of
plans which converges to an element of Γ(σ, µ) that satisfies (26). �

4.2. Proof of Theorem 1.5: the existence part. Let us start with a definition.

Definition 4.3 (c-concave function and c-subdifferential). Let φ : Sm −→ R∪{−∞} be a function.
We define φc : Sm −→ R ∪ {−∞, +∞}, the c-transform of φ by the formula

φc(x) = inf
n∈Sm

c(n, x)− φ(n).

Such a function φ is said to be c-concave if for all x ∈ Sm, φc(x) < +∞ (so that (φc)c is well-
defined) and (φc)c = φ (in the rest of the paper, we write φcc). The c-subdifferential of a function
φ is defined by the formula

∂cφ = {(n, x) ∈ Sm × Sm;φ(n) + φc(x) = c(n, x)}.

The c-subdifferential at n is defined as the subset of Sm:

∂cφ(n) = {x ∈ Sm;φ(n) + φc(x) = c(n, x)}.
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The overall idea of the proof is to build a pair of Lipschitz c-concave functions (φ, φc) such that
there exists an optimal plan Π0 whose support satisfies

(27) Supp(Π0) ⊂ ∂cφ.
Indeed, this yields∫

Sm
φ(n)dσ(n) +

∫
Sm
φc(x)dµ(x) =

∫
Sm×Sm

φ(n) + φc(x) dΠ0(n, x) =

∫
Sm×Sm

c(n, x) dΠ0(n, x)

and (φ, φc) is then a maximizing pair.
We will need the following regularity result on the c-transform.

Proposition 4.4. Let ψ : Sm −→ R ∪ {−∞} be an upper semicontinuous function such that

(28) ∀x ∈ Sm σ({ψ > −∞} ∩B(x, π/2)) > 0.

Then, ψc is real-valued and Lipschitz regular on Sm. Moreover, ψcc ≥ ψ.

Proof. First, note that ψc(Sm) ⊂ R ∪ {−∞} follows from the definition of the c-transform and
(28). Now, suppose there exists n0 such that ψc(n0) = −∞. Combining the upper semicontinuity
of ψ:

lim inf
xk→x∞

c(n0, xk)− ψ(xk) ≥ c(n0, x∞)− ψ(x∞) ≥ −ψ(x∞)

together with the compactness of Sm yields the existence of x0 such that

−∞ = ψc(n0) ≥ −ψ(x0)

contradicting ψ(Sm) ⊂ R∪{−∞}. Therefore ψc is real-valued. Repeating the very same argument
also gives us, for all n ∈ Sm,

(29) ψc(n) = min
x∈Sm

c(n, x)− ψ(x).

Second, we prove that ψc : Sm → R is continuous. Let (nk)k∈N be a sequence converging to n.
Using (29) and the upper semicontinuity of ψ, we get

lim inf
k→+∞

ψc(nk) ≥ ψc(n).

On the other hand, since ψc is defined as an infimum of continuous functions, it is an upper
semicontinuous function. Thus, ψc is continuous and, especially, bounded. As a consequence, ψcc
is well-defined and for all n, there exists x such that

ψcc(n) = c(n, x)− ψc(x) ≥ c(n, x)− (c(n, x)− ψ(n)) = ψ(n)

by definition of the c-transform.
It remains to prove that ψc is Lipschitz, i.e. supn,n′(ψ

c(n)− ψc(n′))/d(n, n′) < +∞. Since Sm
is compact and ψc is bounded, it suffices to prove that ψc is locally Lipschitz in the neighborhood
of any point n ∈ Sm. To this end, observe that we now have for all (n, x) ∈ Sm × Sm,

ψ(x) + ψc(n) ∈ R ∪ {−∞}.
Since the cost function is nonnegative, we infer

∂cψ = {(n, x) ∈ Sm × Sm;ψ(x) + ψc(n) = c(n, x)} ⊂ {c < +∞}.
Moreover, the continuity of ψc and c, and the upper semicontinuity of ψ yield that ∂cψ is a closed
(hence compact) subset of Sm × Sm. Therefore, the definition of the cost function guarantees the
existence of α > 0 such that

∂cψ ⊂ {(n, x) ∈ Sm × Sm; d(n, x) < π/2− α}.
Recall that c is Lipschitz on {(n, x) ∈ Sm×Sm; d(n, x) < π/2−α}; we set Lα its Lipschitz constant.
According to (29), for all n ∈ Sm, there exists xn such that (n, xn) ∈ ∂cψ. By definition of ψc, we
have for any z close to n (say z ∈ B(n, α/2)),

ψc(z)− ψc(n) ≤ (c(z, xn)− ψ(xn))− (c(n, xn)− ψ(xn)) = c(z, xn)− c(n, xn) ≤ Lα/2 d(z, n).
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Using the same argument focusing on z instead of n, we get the same estimate for ψc(n)− ψc(z).
Therefore ψc is locally Lipschitz on B(n, α/2) and the proof is complete. �

To complete the proof of this part, it remains to build a c-concave map satisfying (27). To this
end, we need to recall the notion of c-cyclically monotonicity introduced by Knott and Smith [22].

Definition 4.5 (c-cyclically monotone set). A subset S ⊂ Sm×Sm is called a c-cyclically monotone
set if for any integer s > 0 and any pairs (n1, x1), · · · , (ns, xs) ∈ S, the following inequality is
satisfied:

c(n2, x1) + c(n3, x2) + · · ·+ c(n1, xs) ≥ c(n1, x1) + · · ·+ c(ns, xs).

Remark 4.6. When the underlying marginals are finite combination of Dirac masses, optimality
of a transport plan is equivalent to c-cyclically monotonicity of its support. By approximation, it
can be proved that whatever the marginals are, the support of an optimal plan is a c-cyclically
monotone set when the cost function c is a continuous map [6, Theorem 2.3].

The c-subdifferential of a c-convave function is a c-cyclically monotone set. The main result of
this section is the following

Theorem 4.7. Let µ be a Borel probability measure on Sm satisfying (3) and Π0 ∈ Γ0(σ, µ) be an
optimal plan relative to the transport problem (23). There exists a Lipschitz c-concave map φ such
that

Supp(Π0) ⊂ ∂cφ ⊂ {c < +∞}.

Remark 4.8. This result is a generalization of a construction due to Rockafellar which gives a convex
function from a cyclically monotone set (defined similarly in terms of the standard scalar product
instead of c). When the cost function is a lower semi-continuous real-valued map, Theorem 4.7
is known as the Rockafellar-Rüschendorff Theorem [20] (the result holds true for any c-monotone
set in this setting). Our proof will be along the same lines; however due to the fact that the cost
function assume infinite values, there are additional difficulties to prove the map φ is well-defined.

Proof. As recalled above, the support of any optimal plan relative to c is c-cyclically monotone.
The set

Γ := supp(Π0) ∩ {c < +∞}
is then c-cyclically monotone as a subset of a set satisfying this property.

According to the result in Section 4.1, ∫
c dΠ0 < +∞

whenever Π0 ∈ Γ0(σ, µ). Therefore, Π0({c < +∞}) = 1 and Γ is a set of full Π0-measure.
We fix (n0, x0) ∈ Γ and define

ϕ(n) = inf
s∈N

inf
{ s∑
i=0

c(ni+1, xi)− c(ni, xi) ; ∀i ∈ {1, · · · , s} (ni, xi) ∈ Γ
}

where ns+1 = n. By assumption, Γ ⊂ {c < +∞} thus, for (n1, x1) · · · (ns, xs) ∈ Γ, the term inside
the brackets above is in R ∪ {+∞} and the map ϕ is well-defined. Moreover ϕ(Sm) ⊂ R ∪ {±∞}.

The first step is to prove that ϕ(n) < +∞ for all n. We start with proving ϕ(n0) = 0. Taking
s = 0 in the definition above leads to the inequality

(30) ϕ(n) ≤ c(n, x0)− c(n0, x0).

In particular, ϕ(n0) ≤ 0. Let (n1, x1), · · · , (ns, xs) ∈ Γ. The term appearing in the definition of
ϕ(n) when n = n0 reads

c(n1, x0) + · · ·+ c(n0, xs)− (c(n0, x0) + · · · c(ns, xs)) ≥ 0

since Γ is c-cyclically monotone. Consequently ϕ(n0) = 0.
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As a particular case, consider n ∈ B(x0, π/2). By definition of the cost function and using (30),
we get ϕ(n) < +∞ for such a n. For general n, we will show that there exists a finite chain of
points from n0 to n such that, roughly speaking, the previous condition is satisfied. More precisely,
we will prove that there exists k ∈ N \ {0} and (ni, xi)1≤i≤k ∈ Γk such that

c(n1, x0) < +∞
∀i ∈ {1, · · · , k − 1} c(ni+1, xi) < +∞

c(n, xk) < +∞.
To this end, let us define by induction the following nondecreasing sequence of measurable sets

(as analytic sets):
A0 = {x0}
Ai+1 = px(p−1

n ((Ai)π/2) ∩ Γ)

where pn and px stand for the projections on the n and x coordinates respectively. Our goal is to
show that for sufficiently large k, (Ak)π/2 = Sm which, by definition of c, implies the existence of
a chain described above of length at most k. Indeed, ni+1 ∈ (Ai)π/2 means there exists xi ∈ Ai at
distance less than π/2 from ni+1. Moreover, by definition of Ai, there exists ni such that (ni, xi) ∈ Γ
and ni ∈ (Ai−1)π/2. The existence of the finite chain follows by an inductive argument.

We estimate the masses as follows

µ(Ai+1) =
Π0 is a plan (4)

Π0(p−1
x (Ai+1)) ≥

def. of Ai+1

Π0(p−1
n ((Ai)π/2) ∩ Γ)

=
Π0(Γ)=1

Π0(p−1
n ((Ai)π/2)) =

Π0 is a plan (4)
σ((Ai)π/2).

Now, we have the following alternative: either (Ai)π/2 = Sm or not. If the latter holds then using
(Ai)π/2 = (Ai)π/2, we infer that Ai ∈ F0. Therefore, combining the above inequality together with
Proposition 3.4 yields

µ(Ai+1) ≥ µ(Ai) + ε.

Consequently, since µ is a probability measure, there exists an integer k such that (Ak)π/2 = Sm.
This proves the first claim.

Using the same approach, we will show that ϕ > −∞ on pn(Γ) hence σ−almost everywhere.
Once again, consider as a particular case a point n ∈ pn(Γ) for which there exists x such that
(n, x) ∈ Γ and c(n0, x) < +∞. Take n′ ∈ Sm and (ni, xi)1≤i≤s ∈ Γs. Using (ni, xi)1≤i≤s+1 where
(ns+1, xs+1) = (n, x), we get by definition of ϕ

ϕ(n′) ≤
s∑
i=1

(c(ni+1, xi)− c(ni, xi)) + c(n′, x)− c(n, x).

Since (ni, xi)1≤i≤s ∈ Γs is arbitrary, we infer for all n′ ∈ Sm,

(31) ϕ(n′) ≤ ϕ(n) + c(n′, x)− c(n, x).

In particular, the formula above with n′ = n0 together with ϕ(n0) = 0 gives ϕ(n) > −∞.
By an inductive argument, we generalize (31) to

(32) ϕ(n′) ≤ ϕ(n)+
(
c(ñ1, x)−c(n, x)

)
+· · ·+

(
c(ñk, x̃k−1)−c(ñk−1, x̃k−1)

)
+
(
c(n′, x̃k)−c(ñk, x̃k)

)
where (ñi, x̃i) ∈ Γ for all i ∈ {1, · · · , k}. As a consequence, (32) with n′ = n0 allows us to conclude
provided we can find (ñi, x̃i)1≤i≤k ∈ Γk such that

c(ñ1, x) < +∞
∀i ∈ {1, · · · , k − 1} c(ñi+1, x̃i) < +∞

c(n0, x̃k) < +∞.
In other terms, we are done if there exists a finite chain from n to n0. But the previous arguments
apply verbatim with A0 = {x} and (n, x) ∈ Γ. Consequently, ϕ > −∞ on pn(Γ). In particular,
since σ(pn(Γ)) = Π0(Γ) = 1,

σ({ϕ = −∞}) = 0.
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Now, we prove that Γ ⊂ ∂cϕ. To this aim, fix (n, x) ∈ Γ. Using (31) we get, since n′ is arbitrary,

c(n, x)− ϕ(n) ≤ inf
n′∈Sm

c(n′, x)− ϕ(n′).

The reverse inequality being straightforward, this implies equality:

(33) c(n, x) = ϕ(n) + ϕc(x),

i.e. (n, x) ∈ ∂cϕ.
To conclude the proof, we build out of ϕ, a c-concave function. By what precedes, ϕ satisfies the

assumptions of Proposition 4.4 (recall that by definition, ϕ is an infimum of continuous functions).
We get by applying this proposition to ϕ and then to ϕc that ϕc and ϕcc are (real-valued) Lipschitz
functions and

(34) ϕcc ≥ ϕ.

By definition of the c-transform, we infer from (34) the inequality ϕccc ≤ ϕc. On the other hand,
applying Proposition 4.4 to ϕc leads to ϕccc ≥ ϕc. Consequently, ϕccc = ϕc and φ := ϕcc is a
Lipschitz c-concave map. To complete the proof, it remains to check that Γ ⊂ ∂cφ. Take (n, x) ∈ Γ
and recall (33): ϕ(n) + ϕc(x) = c(n, x). This yields

ϕ(n) = c(n, x)− ϕc(x) ≥ ϕcc(n)

which combined with (34) gives
φ = ϕcc = ϕ on pn(Γ).

Since φc = ϕccc = ϕc as proved above, (33) is actually equivalent to φ(n) + φc(n) = c(n, x).
Therefore, Π0(∂cφ) = 1. Since ∂cφ ⊂ {c < +∞} is a compact set, the proof is complete. �

4.3. Proof of Theorem 1.5: the uniqueness part. In Section 4.2, we have proved the existence
of a solution of Kantorovitch’s variational problem (φ, φc) where φ is a Lipschitz c-concave map.
It remains to prove the uniqueness of this pair. We start with the following observation, called the
double complexification trick. Let (φ, ψ) ∈ A. By definition of A, we have

J(φ, ψ) ≤ J(φ, φc) ≤ J(φcc, φc)

where J(φ, ψ) =
∫
Sm φ(n)dσ(n) +

∫
Sm ψ(x)dµ(x) (the c-transform of a Lipschitz function is a

Lipschitz function as well, thanks to Proposition 4.4). So, any maximising pair (φ, ψ) has to
satisfy

ψ = φc µ-a.e.
φ = φcc σ-a.e.

By continuity, this implies φ = φcc, and φ and φc are Lipschitz c-concave maps. (Similarly,
J(φ, ψ) ≤ J(ψc, ψ) yields ψc = φ.) Therefore, the set ∂cφ = {(n, x) ∈ Sm × Sm;φ(n) + φc(x) =
c(n, x)} is contained in the open set {c < +∞} and is a compact subset of Sm × Sm.

Now, for any optimal plan Π0 ∈ Γ0(σ, µ), we have∫
Sm
φ(n)dσ(n) +

∫
Sm
φc(x)dµ(x) =

∫
Sm
φ(n)dσ(n) +

∫
Sm
ψ(x)dµ(x) =

∫
Sm×Sm

c(n, x) dΠ0(n, x)

Subtracting the left-hand term to the right-hand term yields c(n, x)− φ(n)− φc(x) = 0 Π0 − a.e..
By compactness of ∂cφ, this yields

(35) supp(Π0) ⊂ ∂cφ.

It remains to prove that the above condition determines φ up to adding a constant.
We set N = {n ∈ Sm;φ is not differentiable at n}. Since φ is Lipschitz, σ(N) = 0. Let n

be in Sm \ N and x ∈ ∂cφ(n) ⊂ B(n, π/2). By definition of φc, this implies that the map
z 7−→ c(z, x) − φ(z) admits a minimum at n, therefore its gradient equals 0. This gives (with a
slight abuse of notation)

c′(d(n, x))∇dx(n) = ∇φ(n)
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(where dx(n) := d(n, x) and c′(0) = 0) which entails

arctan((|∇φ(n)|) = d(n, x) <
π

2
.

Using x = expn(−d(n, x)∇dx(n)), we get that x is unique and given by the expression

T (n) = expn

(
− arctan(|∇φ(n)|)

|∇φ(n)|
∇φ(n)

)
.

We have proved that

suppΠ0 ∩ (Sm \N × Sm) ⊂ {(n, T (n);n ∈ Sm \N}.
Therefore, if two Lipschitz c-concave maps φ1 and φ2 satisfy (35) then for σ-almost every n,
∇φ1(n) = ∇φ2(n). To conclude, we use that a Lipschitz function defined on a connected manifold
whose derivative is null σ-a.e. is a constant function.

Remark 4.9. Since the Monge-Kantorovitch is linear, we have actually proved that, under the
assumptions of the theorem above, there exists a unique optimal transport plan and this plan is
induced by the map T . Once the regularity of φ is proved, the strategy employed in the proof
above is now classical. On Riemannian manifolds, it is due to Mc Cann [12]. Another proof in this
particular case is given in [13].

The proof of Theorem 1.7 goes as follows. According to Remark 4.2, we get that for all spherical
convex set ω 6= Sm

µ(ω) < (fσ)(ωπ/2).

Note that the arguments required to prove Proposition 3.4 remain true if σ is replaced by (fσ).
As a consequence, the reinforced assumption (21) holds with fσ in place of σ. With this property
at our disposal, it suffices to repeat the arguments in Sections 4.2 and 4.3 with fσ instead of σ to
get a proof of Theorem 1.7.

Appendix

In this appendix, we prove the following result

Lemma 4.10. Let µ be a finite Borel measure on the unit sphere Sm endowed with its canonical
distance d. Suppose that µ is absolutely continuous with respect to the standard uniform measure
on Sm and µ(Sm) is a positive rational number. Then for any α > 0, there exists a finite parti-
tion (Pi)1≤i≤K of Sm (depending on α) such that for all i, µ(Pi) > 0 is a rational number and
diam(Pi) < α.

Remark 4.11. When µ is the uniform probability measure σ, the proof below together with the
expression of σ in polar coordinates guarantee that we can further require ∀i, σ(Pi) = 1/M , being
M a sufficiently large integer.

Proof. The proof is by induction on the dimension m. For m = 1, fix a number α1 > 0. Then,
partition S1 into finitely many left-open, right-closed segments (Ij)1≤j≤K1

whose length l(Ij) sat-
isfies l(Ij) < α1 and µ(Ij) ∈ Q (we use that s 7→ µ((a, s]) is continuous); µ(IK1

) ∈ Q is guaranteed
by µ(S1) ∈ Q. For m = 2, fix a point N ∈ S2 and α2 > 0. Consider a partition (Ci)1≤i≤K2

where C1 is the closed ball with radius R1 and center N , Ci = {z ∈ S2;Ri−1 < d(N, z) ≤ Ri} for
i ∈ {2, · · · ,K2 − 1} and CK2

is the closed ball with radius π − RK2
and center −N . We require

that the (Ri) satisfy:

α2/2 < R1 < α2, α2/2 < Ri −Ri−1 < α2, π −RK2
< α2

and µ(Ci) ∈ Q. Let us set p the projection onto the equator relative to N . Note that the measures
(p](µ Ci))1≤i≤K2

) are absolutely continuous with respect to the uniform measure on the circle
thus, applying the casem = 1 to all the measures (p](µ Ci))1≤i≤K2

), we get a partition (Pi)1≤i≤K
of S2 (namely (Ci ∩ p−1(Iij))i,j , being (Iij)j the partition corresponding to p](µ Ci)) such that
µ(Pi) ∈ Q. Moreover, the expression of the spherical distance in polar coordinates implies that
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the diameter of any Pi is smaller than α provided α1 and α2 are sufficiently small. The higher
dimensional case easily follows from the arguments used for m = 2.

�
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