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ABSTRACT 
 
These lectures deal with some elastic effects in crystal growth. We recall some basics results 

about the elastic description of a bulk solid and its surface, then we emphasize on surface 
stress and surface strain quantities and on the description of surface defects in terms of point 
forces. Then we focus on the morphological stability of a stressed surface and epitaxially 
strained crystal as well. We will show how surface stress modifies wetting conditions and 
how bulk stress modifies the equilibrium state. For 2D growth (perfect wetting) bulk strain 
modifies the chemical potential of each layer and due to finite size wetting we introduce, it 
results a number of equilibrium layers for each imposed undersaturation. 

For 3D growth (no perfect wetting) the epitaxial stress acts against wetting and leads to a 
global thickening of the equilibrium shape. We also show how elastic relaxation is a 
prerequisite for the simultaneous existence of 2D layers and 3D crystals (Stranski Krastanov 
or SK growth). In the three cases of 2D, 3D or SK mixed mode, beyond some critical size, 
plastic relaxation may occur. In a last part we consider elastic effects on growth mechanisms. 
We show that, except for Stranski Krastanov growth, the activation barrier for nucleation is 
not significantly influenced by strain. In contrast strain plays a role on the detachment rate of 
atoms (strain lowers the barrier to detachment of atoms from laterally large islands in respect 
to laterally small islands) and then on kinetics. Then we focus on strain effects on step flow 
growth and show how step-step and/or adatom-step elastic interactions may give birth to a 
supplementary net force on each adatom. This force modifies the net current of adatoms and 
thus leads to some new growth instabilities. The surface diffusion coefficient itself may also 
be modified by strain but without noticeable modification of growth mechanisms. At last we 
mention some collective effects. 

 

                                                 
*Associé aux Universités Aix-Marseille II et III. 



 

INTRODUCTION 
 
Since Royer [1] the regular oriented over-growth of a crystalline material A onto a single 

crystal surface B is called epitaxy. Two lattice planes of A and B and at least two lattice rows 
come in contact and in case of coherent epitaxy accommodate their two dimensional (2D) 
misfit. By this means the couple A/B stores a certain amount of elastic energy. The so-stored 
elastic energy has been recognised so far as a source of mechanical problems such as 
cracking, blistering, peeling… Then for many years the main problem of crystal growers was 
to avoid strain by choosing very low-mismatched systems. Nevertheless it has also been 
recognised that stress can modify some crystal properties. This is the case of the functional 
performance of devices such as the possibility of band-gap engineering involving strained 
structures [2] or the correlation between mechanical stress and magnetic anisotropy in ultra 
thin films [3]. These technological considerations have stimulated crystal growers to consider 
also crystal growth properties induced by stress. Nevertheless the problem of formation of a 
strained crystal on a single crystal is complex. The difficulties basically have three origins. 

The first difficulty arises from the fact that since the equilibrium shape of a crystal 
essentially depends upon surface energy considerations [4,5], a good description of the 
thermodynamic state of a strained crystal needs to accurately define the role of stress and 
strain on specific surface energies. This can be done by properly defining surface stress and 
strain quantities as partially done by Gibbs [6], Shuttleworth [7], Herring [5] and others 
[8,9,10]. 

The second difficulty arises from the fact that most strains are anisotropic and 
inhomogeneous. Indeed on one hand because of the Poisson effect the in-plane strain due to 
misfit accommodation is accompanied by a vertical opposite strain. Furthermore on the other 
hand, islands or nuclei can relax by their edges. Obviously this elastic relaxation depends on 
the shape of the island and therefore cannot be homogeneous! Thus a good description of the 
bulk elastic energy needs to calculate accurately elastic relaxation. 

The third difficulty arises from the fact that, even weak, the elastic effects dominate at long 
range. Thus elasticity may also affect long-range behaviour usually driven by surface 
diffusion considerations. In other words not only the energetics of crystal growth may be 
altered by elasticity but kinetics behaviour may also be altered.  

 
Our purpose in these lectures is to describe some elastic effects on crystal growth. For the 

sake of simplicity we will only consider pure cubic materials A over B and furthermore do not 
consider alloy composition, especially changes induced by strain (except briefly in section 
3.3.4.). Furthermore as in most of the analytical formulations we will use macroscopic and 
linear elasticity. For too high misfits (>1%) linearity may fail, for studying the first stages of 
growth as nuclei the macroscopic treatment may be questionable too. The main advantage of 
linear elasticity is the possible analytic form of the results (even when complex) that gives the 
basic tendencies. Obviously in a specific treatment theses results have to be compared with 
atomistic (if better) calculations. 

 Last but not least, though kinetics may more or less slow down the realization of the final 
state, thermodynamics remains the primer way to tell what is possible so that in the 
framework of these lectures we first focus on thermodynamic properties then on kinetics. The 
lectures are divided into three parts corresponding approximately to the three above-
mentioned difficulties. 

In the first part (section 1.) we will recall some basic results of the classical elasticity theory. 
Since considering crystal growth and thus surface phenomena, we will focus on the accurate 



 

description of elastic properties of surfaces. For this purpose we will introduce surface stress 
and surface strain as surface excess quantities. Furthermore since crystal growth often starts 
on surface defects (such as steps) we will also describe elastic fields induced by such surface 
defects (adatoms, steps, domains…) 

In the second part (section 2.) we will focus on elasticity effects on the macroscopic 
thermodynamic state. For this purpose we will revisit Bauer’s thermodynamic analysis of 
epitaxial growth [11,12] by taking into account elastic energy of bulk and surface as well. 
More precisely we will consider elastic effects on two dimensional (2D), three dimensional 
(3D) and mixed 3D/2D (or Stranski-Krastanov) growth modes. We will see that, even weak, 
elasticity may play a major role on the equilibrium properties such as the number of 
equilibrium layers of 2D film or the equilibrium aspect ratio of 3D crystals. More exciting is 
the fact that, if in absence of elastic relaxation there is no place for the Stranski-Krastanov 
growth mode in equilibrium conditions (except in case of some exotic structure change or for 
kinetics reasons) elasticity considerations open a place for equilibrium Stranski-Krastanov 
transition. 

The third part (section 3.) concerns elasticity effects on microscopic or elementary growth 
mechanisms. For this purpose we will see how elastic interactions may influence nucleation 
and step flow. In the first case we only have to consider the role of the elastic interactions on 
the nucleation activation energy. In fact it will be very weak. In the second case we will 
reconsider usual kinetics formulation of step flow with as a new ingredient an elastic 
contribution to the net current of adatoms due to step-step or adatom-step elastic interactions. 
The main effect of elasticity is then to favour the appearance of new kind of surface 
instabilities. 

At last in a short conclusion we will mention some elastic effects we do not take up in detail 
in these lectures. 

 
 

1. ELASTIC DESCRIPTION OF A SOLID AND ITS SURFACE  
 

1.1. Elastic description of bulk phases 
When a bulk material is stressed (resp. strained) it becomes strained (resp. stressed). Stress 

and strain are connected by the elastic constants of the material. Many textbooks deal with 
elastic properties of solids, fundamental aspects are given in [13,14] whereas [15] essentially 
focus on anisotropic properties.  

In this first section we only recall some fundamental concepts. 
 

1.1.1. Bulk stress tensor 
Let us consider an elementary parallelepiped (volume dV=dxidxjdxk) centred on a point xi in 

a stressed solid (see figure 1a). Each of its faces (area dxidxj) normal to the xk (i,j,k=1,2,3) 
direction is submitted to a force per unit area (a pressure when negative) whose ith component 
reads ikσ  in the homogeneous case or ( ) kkikik dxx∂∂+ σσ 2/1  up to the first order in the 

inhomogeneous case (independent of xi). The bulk stress thus is defined by a third order 
tensor of rank two [σ]. The three iiσ  components describe normal stress whereas 

ikσ components with i≠k define shearing stresses. The components σij of [σ] are not invariant 

under axis rotation (only the trace of the tensor whose mean value equals the mean negative 
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pressure is invariant). As for all symmetric second rank tensors, the components transform as 

iknkmimn aa σσ =' where† ija are the components of the matrix of axis transformation [15]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1a: Action of the components σij of 

the bulk stress tensor applied on the three 
front faces of the elementary cube. Each face 
normal to xj bears a triplet σ1j,σ2j,σ3j, the first 
index i=1,2,3 giving the direction xi where the 
stress acts. When i=j they are normal 
stresses, when i≠j they act in the face. On the 
back faces of that cube are acting identical 
stresses of opposite signs or slightly different 
ones for inhomogeneous stresses. 
 

 
When the elementary parallelepiped is in mechanical equilibrium that means when no 

resultant force or torque displaces or rotates it, the bulk stress tensor fulfils the following 
conditions [15] (see foot note) 

 

ikik fx =∂∂σ  and kiik σσ =              (1) 
 
where if  is the ith component of the bulk density of forces. Bulk density of forces generally 

comes from gravity and can often be neglected when considering nano-crystals. Owing to its 
diagonal property (1), the bulk stress tensor [σ] can also be written as a 6 dimensional vector 
with 135234 ;, σσσσσσ ≡≡≡ iii  and 126 σσ ≡ (Voigt notation). However mσ  

components transform differently than ijσ components under axis transformation [16]. 

 
1.1.2. Bulk strain tensor 

The symmetric bulk strain tensor components are defined by 
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are the components of the displacement field [13,15]. The artificial symmetrisation of the 
strain tensor avoids considering a simple rotation as a deformation [15]. The iiε  components 

describe the relative elongation of an infinitesimal length parallel to axis xi, whereas 

ikεπ 22/ −  with i≠k is the deformation angle measured between two straight lines initially 

parallel to axis xi and xk respectively. As for iiσ , the trace iiε  is rotation invariant as it should 

be obviously since it represents the bulk dilatation. 
As for the bulk stress tensor one can define a 6 dimensional strain vector as 

315234 2/,2/, εεεεεε ≡≡≡ iii  and 126 2 εε ≡  where the factor 2 is introduced for 

further simplifications. Let us note that ijε (resp mε ) components transform as ijσ (resp mσ ) 

components [15,16]. 

                                                 
† We use Einstein notation, thus summation has to be performed on repeated indices. 



 

 
1.1.3. Hooke’s law 

In the framework of linear elasticity, relationships between stress and strain can be written 
up to the first order as   
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              (2) 

 
where Cikmn and Sikmn are called stiffness and compliance coefficients respectively. These 
coefficients describe the elastic properties of the material. Since stiffness [C] and compliances  
[S] are fourth rank tensors, they contain in 3D, 81 components which transform under an axis 
transformation as opqrnrmqkpioikmn CaaaaC =' . In fact owing to stress and strain tensor intrinsic-

symmetry and energy invariance as well, these tensors only contain 21 independent 
components. Furthermore crystalline symmetries (extrinsic) reduce the number of 
independent components from 21 for triclinic crystals to 3 for cubic crystals [15]. Isotropic 
material (such as glass) are simply described by two elastic constants. 

Obviously, using the vectorial (or Voigt) notation of stress and strain tensors, Hooke’s law 
(2) can also be written  
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with i,k=1,2,3,4,5,6. ikC  and ikS thus are 6x6 matrices inverse each other. They are not tensors. 

Relationships between tensorial and matrix components are mnijkl CC =  with ii=m whatever 

i≠j, m=4 for ij=23, m=5 for ij=13 and m=6 for ij=12. In contrast mnijkl SS = for m and n 

=1,2,3; mnijkl SS =2  for m or n =4,5,6; mnijkl SS =4  for m and n =4,5,6 with as in section 2.1. 

ii=m whatever i, m=4 for ij=23, m=5 for ij=13 and m=6 for ij=12‡. Elastic constants values 
are generally given in this Voigt notation for some particular crystallographic orientation 
[17,18]. For other orientations the elastic constants have to be recalculated by the very lengthy 
transformation of the components of the fourth rank tensors [C] or [S]. Once the 
transformation has been performed the elastic tensors can be again written in Voigt’s notation. 
Some usual transformations can be found in [19,20], but for a very efficient and general 
matrix method see Angot [16]. 

 
1.1.4. Bulk elastic energy 

The elastic energy can be defined as the work of the forces per unit area (ikσ ) against the 

bulk deformation ( ikε ) and thus reads for a material of volume V [13] 

 

dVW ikik
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2

1
              (4) 

 

                                                 
‡ Let us warn that some authors use different definitions. 



 

For homogeneous stress and strain one thus can obtain with (2) or (3) the energy density (4) 
under the following equivalent forms 
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In most of the practical cases elastic energy may be roughly estimated by assuming the 

material to be isotropic and thus only described by two elastic constants C11 (S11) and C12 
(S12) in matrix notation or more currently the Young modulus D

isE3 and Poisson ratio D
is
3ν  

defined by [15] 
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For an isotropic material the elastic energy density (5) when isotropically strained ( εε =ii ) 

thus reads after development of (5) with (6) 
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For anisotropic crystals, relation (5) and corresponding elastic constants have to be used.  
For biaxially strained films things can nevertheless be simplified by introducing two 

dimensional Young modulus and Poisson ratio. For instance let us consider a (001) biaxially 
strained layer ( om== 2211 εε ) of a cubic crystal. Thus from appendix A there is: 
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121211

2
100 2 CCCCE D −+=  is the two dimensional Young modulus in the (100) face 

plane (see appendix A). Notice that in all the cases the elastic energy density is quadratic in 
respect to strain. For other crystallographic orientations elastic constants have to be 
transformed under axis rotation. However the elastic energy density of epitaxially strained 
layers can always be written (in absence of relaxation) under the form  
 

2
0Ymwel =                (8) 

 
where Y is a combination of elastic constants Cij or Sij. Usually Y ≈1012 erg.cm-3 =102 GJm-3 
the elastic energy density is of the order of the chemical bonding (2 eV/at.≈0.25GJm-3) for 
strain mo of roughly 5%. Obviously such important energy density cannot be neglected when 
formulating thermodynamic description of crystal growth, as we will see in section 3. 

 
1.2. Elastic description of ideal planar interfaces 

The elastic properties of surfaces can be described by surface stress and strain as excess 
quantities as first described by Gibbs [6], Shuttleworth [7] and Herring [5] (for surface stress) 



 

then Andreev and Kosevitch [8] and Nozières and Wolf [9,10] who furthermore introduced 
surface strain. In the following we will follow Nozières approach.  

 
1.2.1. Surface stress 

Let us consider an infinite coherent planar interface (whose normal is the axis x3) in between 
two bulk phases I and II both characterised by their own homogeneous stress tensor I

ikσ  and 
II
ikσ . Since in the infinite interface the stresses cannot depend on in-plane x1 and x2 

coordinates, the mechanical equilibrium condition (1), written in absence of bulk forces fi 
gives at the interface (x3=0); 033 =∂∂ xiσ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1b: Surface stress as an excess of 

bulk stress second rank tensor. Schematically 
for the surface X3=0 as a perspective view. It 
contains the σ22 and σ12 (or σ21 and σ11) 
components at different levels X3. At surface 
equilibrium σ33=σ13=σ23=0 and 
σ12(X3)=σ21(X3). The surface stress is thus the 
excess 

( ) )( 3333
)3( −∞→−= ∫∫ XdXdXXs ijijij σσ  

(i,j=1,2). Obviously it is an intrinsic material 
property independent of the external stresses 
applied on the body. 
 

 
Thus there is no interfacial excess of the 3iσ  components. In contrast, at the interface (x3=0) 

II
ij

I
ij σσ ≠ (i,j=1,2). The interfacial stress components sij are thus defined as the surface excess 

quantity of the components ijσ (i,j=1,2) of bulk stress tensor. Obviously ijs (i,j=1,2,3) with 

si3=0 when relaxed in respect to surface x3=0. In figure 1c it can be seen that sij at equilibrium 
is a degenerated 3D, second rank tensor or 2D second rank tensor. On figure 1b we sketch and 
precise surface stress excess at a vacuum-crystal interface. 

 
1.2.2. Surface strain 

Let us suppose that there is forced lattice coherence from bulk phase I to bulk phase II along 
x3=0. Then by definition of coherence at the interface there is III

i 33 εε =  with i,j=1,2. Thus one 

only can define the interfacial strain tensor ije  as the excess of the components II
ij

I
ij εε  ,  of the 

bulk strain tensors. When one bulk phase is a fluid or vacuum, the solid near x3=0 presents an 
intrinsic excess of εi3 depending on the symmetry. It is called: surface strain. As surface 
stress, surface strain also is a symmetric second rank tensor eij (i,j=1,2,3) with eij=0 (if i,j=1,2) 
(for the surface x3=0). In figure 1c we illustrate the complementary nature of surface stress 
and surface strain. Let us note as underlined by Nozières and Wolf [9,10] that if generally the 
e33 component is an elastic relaxation it can also correspond to a mass transfer across the 
interface. It is important to notice that surface stress and surface strain being surface excesses, 
in the framework of linear bulk elasticity and at mechanical equilibrium, surface stress and 

X3 
o

X1 

X2 σσσσ22(X3) 
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surface strain are independent quantities. In other words there is no Hooke law for the 
surface [8]. Furthermore they are bulk stress and strain independent. 

 
 

 
 
 
 
 
 
  Figure 1c: Illustration of the complementary nature for a given face (3) of the two intrinsic 
surface properties, sur(inter)face stress and strain at mechanical equilibrium. 
 
 
1.2.3. Surface elastic energy 

The surface (resp. interface) elastic energy can be defined as the work done to deform the 
surface n (resp. interface). It simply reads for the interface n=3 [9,10], 

( ) nij
n
ij

n
ii

Surf
el dSseW ∫ += εσ 33

. with i,j=1,2,3. 

When the bulk phase I is vacuum and the phase II a solid, the mechanical equilibrium (1) 
gives at the surface x3=0,  033 == I

i
II
i σσ . Then the surface elastic energy reduces to  

 

∫= nij
n
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el dSsW ε.

.               (9) 

 
The integral is performed over the non-deformed surface.    

  
In fact (9) is the original definition of surface stress of Gibbs [6]. The surface stress nijs of a 

face n is the work done to deform the surface n at a constant number of atoms. Surface stress 
thus must not be confused with the surface energy γn (the energy of creating a surface without 
deformation) of the face n, which is the work done to create this surface at constant strain. In 
fact for a free crystalline face there is [7] 
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where δij is the Kronecker symbol. Relation (10) known as Shuttleworth relation [7] shows 
that for a liquid (where a surface cannot be deformed at a constant number of atoms so that 

0=∂∂ ijn εγ ) surface stress and surface energy are numerically equal (see more complete 

discussion in [104]). In order to recall the physical difference between surface stress and 
surface energy it is common to express n

ijs  as a force per unit length and γn as energy per unit 

area. Notice that these two quantities have the same magnitude (0.5Jm-2). However γn is 
always a positive quantity nijs  can be positive (tensile component) or negative (compressive 

component). 
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In the following for the sake of simplicity we will mostly consider isotropic surfaces 
(symmetry greater than binary axis) where the surface stress tensor [sn] reduces to a scalar sn 
for a given orientation n but nevertheless varies with orientation in a cubic crystal. Only in 
amorphous materials s and γ are direction n-independent. 

 
1.3. Elastic description of real surfaces 

It is well known that surface defects such as adatoms or steps change the surface energy. For 
instance, foreign adsorption decreases the surface energy γ by a quantity Γ−=∂∂ µγ where µ 

is the chemical potential of the adsorbed species and Γ the adsorption density [6]. On the 
other hand the surface energy of a vicinal surface (angle α) can be written 

3
21 ppo ββγγ ++=  where γo is the surface energy of the terrace (reference face with a cusp 

in the γ-plot), p=tgα the macroscopic slope of the vicinal face and βi some coefficients 
depending on step energy (β1) and step-step interaction (β2) (for a review see [21]). 

In fact adatoms and steps also create a strain field in the otherwise flat surface and the 
underlying bulk substrate as well. Thus a complete elastic description of crystalline surfaces 
must include an elastic description of the defects. Indeed we will see (section 3.) that such 
elastic defects may have dramatic effects on crystal growth mechanisms. 

 
1.3.1. Elastic description of adatoms 

In 3D elasticity it is well known [22,13,14] that the field of elastic strain far away a bulk 
defect located at x=x(i) can in the solid be calculated by considering the action at x>x(i) of a 
point force F(x-x(i)) located at x=x(i). At mechanical equilibrium these forces reduce (up to the 
first order) to a localised force doublet. Its components can thus be written: 
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where δ(x) is the 3D dirac function, (α,β=1,2,3) and )(
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point force at (i) (11) produces in the planar solid a displacement field whose components )(iuα  
are  [9,13,23]: 
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where Dαβ(x’,x) is the 3D Green tensor given for isotropic elastic bodies in classical papers 
[13,22] when (i) is located at the surface [13] and given in [22] when located in the bulk.  

In a seminal paper Marchenko and Parshin [24] following Lau and Kohn [25] consider 
adatoms as true 2D elastic surface defects and thus model them by 2D point forces doublets. 
In other words they use relations (11) and (12) but only with α,β=1,2 [24,25] and use the 2D 
Green tensor [13] to calculate elastic displacements in the plane of the surface. In fact, as 
depicted by Kern and Krohn [26], adatoms produce a force distribution around them and thus 
distort also the underlying bulk substrate. Adatoms thus must be described as 3D defects 
(α,β=1,2,3 in (11) and (12)) and the displacement field calculated by means of 3D Green 
tensor [22]. The 3D dipole can only be reduced to a 2D one when the normal component of 



 

the force exerted by the adatom onto its underlying substrate can be neglected (see such a 
specific case in appendix I).  

 
1.3.2. Elastic description of steps 

* Step on a stress free body: 
As an adatom, a step is not a true surface defect and thus can be described as a row of 3D 

(and not 2D) dipoles. In the following we assume the steps (located at x1=0) parallel to the 
direction x2, furthermore we assume that the steps are infinite in this direction. Thus the point 
forces describing the displacement field due to a step can be generally written 
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Nevertheless as shown by Marchenko and Parshin [24], Andreev and Kosevich [8] and 

Nozières [27] a step has a non-vanishing moment. Indeed since a step divides the surface in 
two equivalent terraces, it is submitted to the surface stress s of the two neighbouring terraces 
which exert a torque of moment sh (h being the height of the step) and thus tends to twist the 
crystal. 

Obviously the force distribution (13) must restore the torque. For a high symmetry surface 
(sij=sδij), mechanical equilibrium conditions then lead to shAA =− 1331  where h is the height 

of the step. 
Notice that usually, following Marchenko et al. [24] and Andreev et al. [8] steps are 

described in a simpler way by defining a single force dipole F1 in the direction x1 completed 
by a vertical force dipole F3 restoring the moment sh. The point force distribution describing 
the step thus reads: 
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with shA =31 . Such a notation is justified in [26] (see section 3.1. of [26])  

It is important to notice that when a step separates two domains of different surface stress s1 
and s2 (it is for example the case of Si(100) face where monoatomic steps separate (2x1) and 
(1x2) reconstructed surfaces) the point forces distribution that describes the step must include 
a non-vanishing resulting force (s1-s2) near the step before relaxation. In this case an elastic 
monopole has to be added and thus (14) becomes 
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Obviously A11 and A31 values can only be obtained from atomistic calculations. 
* Step on a stressed body: 
Last but not least let us note that until now we have only considered elastic description of a 

step on a crystal free of any bulk stress. However there is an additional effect at the surface of 
a bulk stressed solid (or a non relaxed epitaxial layer). Indeed in this case there is a 
discontinuity of bulk stress in the surface height and the lateral force on one side of the solid 
is not compensated by an equal force on the other side. The result once more is a 
supplementary force monopole located at the steps. The intensity of this force naturally is the 
bulk stress σ (see 1.1.) times the step height h. 

Generally for such stressed solids the dipolar contribution can be neglected (upper order) 
and thus the step before relaxation is described by the following point force distribution: 

 
)(1 xhF δσ=                         (16) 

 
 
1.3.3. Elastic interaction of elastic defects 

Since surface defects create a displacement field in the underlying substrate, surface defects 
interact by way of the underlying deformation. The interaction energy between two defects is 
simply the work done by the force distribution )1(

αf  of the first defect due to the displacement 

field )2(
αu  generated by the other defect.  It reads [13,14,23] 
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A lot of literature on elastic interactions between point defects exists for many situations.  

For defects at the surface Rickman and Srolovitz have proposed a generalised approach [28]. 
Their results are summarized on table I (in absence of normal forces F3) where each surface 
defect is characterized by its dimension (D) and its multipole order (m). An adatom thus is 
characterized by D=0 and m=1(dipole), whereas a step (D=1) can be characterized by m=1 
(dipoles) or m=0 (monopoles) according to the nature of the step (step on a stress free surface 
or boundary in between two stressed domains) (see section 1.3.2. and figure 2). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Elastic interaction in between:  
a/ 2 adatoms considered as elastic dipoles 

(D=0,m=1),  
b/ 2 steps bearing dipoles (D=1,m=1) of 

same sign or (and) monopoles (D=1,m=0) of 
same sign when the solid is stressed;  

c/ 2 steps of opposite sign.  
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Table I: Elastic interaction dependence versus the distance d>0 or the abcissa -∞<x<+ ∞ in 
between some elastic defects when the normal force F3  is neglected. 

 
The so obtained results are easy to memorize if one admits the repulsive law d-3 between 

similar adatoms (see figure 2a). The interaction between a line of dipoles (step) and a dipole 
is thus simply obtained by integration along the line and leads to an interaction in d-2. (The 
elastic interaction between two steps on a stress free body (see figures 2b and 2c) is obtained 
by integration over the step of infinite length of the d-3 law then multiplied by the number of 
dipoles in the other step giving again a d-2 law). The interaction of adatoms (dipoles) with step 
of a stressed body (the step bears monopoles) gives an x-1 law interaction that means 
interaction changes sign with abscissa x. (Nevertheless the definite sign of the interaction 
depends upon the respective signs of monopoles and dipoles). This result is equivalent to the 
interaction of a dipole and a semi-infinite sheet of dipoles. Indeed as in electrostatics a semi-
infinite sheet of dipoles is equivalent to a distribution of monopoles located at the border of 
the sheet. Thus the interaction between a dipole and a step on a stressed body can thus be 
obtained by a supplementary integration of the d-2 law over the various rows of dipoles 
constituting the domain and thus give a x-1 interaction law. 

 At last the interaction between two parallel steps on a stressed body (two lines of 
monopoles of same sign. (Fig 2b)) gives an interaction law +ln(d). This attractive interaction 
can be also obtained from the electrostatic equivalence from a new integration of the x-1 law 
over the various rows of dipoles. Such steps of opposite sign (fig 2c) give a repulsive 
interaction –ln(d).  

From these results it is easy to see that the interaction between an adatom and a stressed 
island of lateral size L must vary from d-1 for large L (interaction between an adatom and a 
sheet of dipoles) to d-2 for weak L (interaction in between adatoms and a row of dipoles). 
Obviously the intensity of the interaction depends upon the detail of the calculation of the 
coefficients Aαβ but does not change nature and sign.  



 

In fact, for completeness we stress the fact that all these classical works [8,24,26 ,28] 
summarized in table I only hold for semi-infinite isotropic substrates where Green’s function 
formalism applies. This is no more the case for cubic crystals [29,30]. On the (001) or (111) 
faces of these crystals the interaction energy of identical adatoms become very anisotropic 
even with change of sign, however interaction of dipole rows remain with the same sign 
whatever their azimuth. More recently Peyla et al [31,32] showed that for very thin substrates 
things change too. For example identical adatoms deposited onto a true 2D isotropic layer 
may attract or repel each other according to the  in-plane direction. The local force 
distribution seems to be responsible. For thicker sheets this effect goes backwards to usual d-3 
repulsion valid for thick isotropic substrates. 

 
1.4. Morphology and surface stability of a stressed body 

A stressed body may become unstable against undulations or spontaneous formation of 
stressed domains. In this section we will only give some semi quantitative arguments for a  
better understanding of basic phenomena leading to such instabilities. In connection with 
growth mechanism we will examine another instability, the step bunching in section 4.3. 

 
1.4.1. Asaro-Tiller-Grienfeld  (ATG) instability 

Since Asaro and Tiller [33] then very later Grienfeld [34,35] it is known that a planar 
surface of a stressed solid is unstable against undulation. There is an abundant theoretical [33-
41] and some experimental facts [42,43] on this instability. In the framework of these lectures 
we will follow [33,36,39] most simplest arguments. For this purpose we consider the free 
energy change ∆F per unit area induced by a periodic one-dimensional surface undulation 

)cos()( xhxz ω=  of the surface of a uniaxially in-plane stressed solid σ=σxx (ω is the wave 

vector ω=2π/λ, h>0 the amplitude of the undulation, Oz pointing in the solid) (see figure 3). 
This free energy change per unit area contains two terms. The first one ∆F1 is the capillary 

energy change due to surface area increase (surface energy γ being isotropic):  
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where the last expression is valid for small slope 1<∂∂ xz  or 1<<λh  

The second term ∆F2 is the elastic energy change per unit area induced by the undulation. 
Even for isotropic elasticity it is difficult to calculate since it depends upon the detail of the 
elastic relaxation. We follow the original paper [36] with a simplified version of first order in 

λh where the approximation (trick) is to apply sinusoidal forces along a flat surface (The 
undulation is treated as a surface defect on a planar semi-infinite surface). In fact along a flat 
surface at z=0, as well as in the bulk (z>0), there is in the solid an in-plane constant stress 

σσ =),( zxxx  so that nowherexf  forces apply, gravity or other so-called body forces being 

excluded. But when some 1D undulation z(x) of some arbitrary amplitude h>0 at the surface 
and ω=2π/λ is created (fig.3), there develops at the surface some excess forces. When the 
amplitude is small in respect to λ, ( 1<<λh ) there may tentatively be a force density 
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d
xf x σσ ≈=)0,( , with 0)0,( =xf y of course and a normal force )0,(xf z  close to zero 

at second order of the slope dz/dx. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Azaro-Tiller-Grienfeld instability of a planar surface under an external uniaxially 

stress σσ =// . When the surface develops a 1D sinusoidal undulation hcosωx, h>0, Oz 

pointing in the bulk, the surface at first order develops a stress concentration either tensile 
(σ>0) or compressive (σ<0) in the valleys. 

 
Let us suppose that such a line of forces )0,(xf x  is applied on the surface of a planar semi-

infinite isotropic solid, according to Love [14] the stress in excess of σ is given by: 
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According to [36] and appendix B the principal value of this Cauchy integral is πcosωx so 
that  

 

( ) ( )[ ]2)(2)0,( λωσσσ hxzxxx Ο+=− ; 0)0,( =xyyσ                   (19) 

 
Thus at the surface an excess modulation of the in-plane stress appears. In figure 3 we 

observe for σ>0 that valleys bear maximum tensile stress, in figure 3 for σ<0 they bear 
maximum compressive stress. Crest at contrary, have smaller stress than the mean value σ, 
which is also the bulk value whatever tensile or compressive.  
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Hooke’s law under plane strain ( 0=yyε  when the solid is infinite along Oy), at the surface 

z=0, associates to the in-plane stress xx the only in-plane strain xx modulation from (19): 
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It follows the strain modulation around the mean in-plane strain σνε
E
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Poisson’s effect the normal strain modulates with opposite phase )(
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Along the undulated surface the lattice parameters vary as ( ))(1)(// xaxa xxo ε+= , 

( ))(1)( xaxa zzo ε+=⊥  where ao is the parameter of the stress free crystal. In the valleys 

x=nλ (fig 3): [ ] ( )λπελ haana oo 41)( //// +=−  there is strain concentration whereas on the 

crests x=(2n+1)λ: [ ] ( )λπελ haana oo 41))12(( //// −=−+  there is strain deficit. One says that 

the crests relax. 
Let us note that the strain-stress modulations penetrate in the bulk z>0. The more general 
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Re has to be used. The result for z>0 of (19) is then valid when its 

right side is multiplied by ( ) )2exp(1 λπλπ zz −− showing that the in-plane stress damps 

exponentially with a decay distance λ/2π independent of the amplitude h (at this degree of 
approximation). This result and others for σyy, σxz have been successively obtained by 
different methods by [33,34,36,39]. 

The matter is now to calculate the strain energy per unit area, of the undulated surface, that 

means the integral (4) ∫∫=
S

ik

V

ik
und dSdVF εσ

2

1
2  extended over all the semi-infinite solid z>0. 

This would be a cumbersome task since in the bulk Hookes’law gives several εik components 
for each σik. Fortunately Marchenko [44] showed how to reduce this volume integral in a 
surface integral where then the εxx component is connected to one σxx component (see 
appendix C) so that  
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where if  are the surface force density components inducing the surface displacement 

components ui. Since on the slightly undulated surface exists only, at first order, the 
( )dxdzxf x σω2)0,( = component and the corresponding in-plane displacement from (20)  
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We learn that the elastic energy density drops when an undulation develop on a in-plane 

σσ =xx  stressed solid irrespective stress is tensile or compressive. To this opposes the 

surface energy change (18) so that the total free energy change is  
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Instability occurs when ∆F<0 that means the applied stress, tensile or compressive, 

overpasses the critical value  
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In terms of critical strain (20) and wavelength (24) gives 
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values of a wide variety of materials [45] are among 10-2 nm, for usual strain ε//=10-2 as e.g. 
epitaxial strain, λ≈102 nm so that nanoscopic undulations may develop. The early time 
evolution of the surface profile is driven by the chemical potential gradient along the surface 
[33,38]. 

Obviously a more complete treatment must contain first real anisotropy γ behaviour, then  
surface stress and gravity as well. The surface stress effect on the instability has been studied 
by Grilhe [46] and Wu [44]. An interesting result [46] is that the symmetry between 
compression and tension is broken by surface stress since the σ2 dependence adds a σ 

contribution. If ε
γγ ∂

∂=− )(s  has same sign as the bulk stress σ the critical wavelength is 

reduced. When introducing gravity [27], a new stabilizing term may appear in ∆F when acting 
in a proper direction. The effective contribution to instability would start at sizes h of the 
order of the millimeter. More precisely the ATG instability is thus in between two critical 
wavelengths. Only a non-linear analysis can give the true final shape [48] 

Let us note that Spencer et al. [40,41] have studied the case of an epitaxial stressed layer on 
a lattice mismatched substrate but the same limitation of constant γ are used. The free surface 
also is unstable in respect to a sufficiently long wavelength but the critical wavelength now 
depends upon the thickness d of the strained film in the very special case the substrate is 
infinitely stiff. Such undulations have been interpretated as a possible origin of the Stranski 
Krastanov transition on kinked faces (diffuse faces) [35]. For F faces (singular faces) the 
origin of Stranski-Krastanov transition will be discussed in section 3.2.3.3. 

 
1.4.2. Spontaneous formation of stressed domains 

Marchenko [44] was the first to propose that elastic interaction between surface antiphase 
domains may lead to periodic patterns due to alternating surface stress discontinuities ±∆s 
(see figure 4a). A special case is for example the Si(100) surface that exhibits reconstructed 
(1x2) or (2x1) domains of surface stress s1 and s2 according to the level of the reconstructed 
terraces. Due to the anisotropy of the flat Si(100) surface, a vicinal Si(100) surface can be 



 

represented by a parallel line of alterning monopoles bearing the stress discontinuities ∆s=s1-
s2 (see (15) and figure 4b). Alerhand et al [49] took this over for this case and made the 
balance between the domain boundary creation energy and the elastic interaction that leads to 
a selection of the size of the domains.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4:  
a/ antiphase surface domains 

(D=1,m=0) bearing surface 
stress discontinuities(-∆s=s1-s2, 
+∆s=s1+s2);  

b/ case of the (001) Si vicinal 
face similar to a;  

c/ unstable flat face developing 
a vicinal of macrofacets, the 
arrows representing the non-
compensated surface stress of 
the macro-facets. 
 

More precisely for a surface with periodic (period d=dI+dII) alternating domains                 
of size dI and dII, the total energy per unit length reads [44,49] 
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where the first term is the boundary creation energy 

per unit length (χ) and the second term the elastic energy where one recognises the ln(d) 
dependence (see table I) and where the sinus comes from the periodicity. The minimisation of 
U in respect to dI gives the equilibrium size of each domain. Furthermore, stretching or 
compressing the crystal parallel to the surface and normally to the steps favours one type of 
domain over the other as found experimentally by Webb et al. [50]. More recently, B.Croset 
et al. [51] have completed Marchenko-Alerhand’s theory by taking into account the elastic 
self-energy of each domains so that epitaxial strain somewhat relaxed by dislocations of 
Frenkel-Kontorova type could be considered. For completeness notice that the Marchenko 
elastic interaction is also at the basis of spontaneous periodic faceting of unstable crystal 
surfaces (see figure 4c). For a review see [52,53]. 

 
 

2. MACROSCOPIC THERMODYNAMIC TREATMENT OF EPITAXIAL LY 
STRAINED CRYSTALS 

 
2.1. Wetting conditions versus elasticity 

Let us recall that three possible mechanisms of epitaxial growth of a crystal A onto a crystal 
B have been recognized: the 3D (or Volmer-Weber growth), the layer by layer (or Frank-van 
der Merwe growth) and the layer by layer growth followed by 3D growth (or Stranski 
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Krastanov growth). In absence of misfit Bauer [11,12,54] rationalised these growth modes by 
defining the so-called wetting factor  

 

BABAA γγγβγ −+=−=Φ∞ 2                      (25) 
 

In (25) we also use the Dupré relation [55] ABBA γγγβ −+=  with γB the surface energy of 

B, γAB the interfacial energy and β the adhesion energy of A on B. The wetting factor (25) in 
fact is connected to the capillary energy change ∆Wcap per unit area during the 
thermodynamical process in which a crystal A is created (volume 2

lh  with 2 basal faces of 

energy Aγ  and 4 lateral faces of energy A'γ  for a parallelepiped crystal) then stuck on a 

substrate B (adhesion energy –β) (see figure 5a): ll hWcap '42 Φ+Φ=∆ ∞  where A'' γ=Φ  

When ∞Φ <0 (more than perfect wetting) BABA γγγ <+   (or using Dupré relation βγ <A2 ) 
so that the minimum state of energy of the system is reached for an increasing interface that 
means a 2D film is more stable than a 3D crystal. When ∞Φ >0 (no perfect wetting) 

BABA γγγ >+  (or βγ >A2 ) so that the minimum state of energy is reached for a decreasing 
interface. A 3D crystal thus is more stable than a 2D film.  

Notice that from this thermodynamical point of view 2D and 3D growth are thus well 
differentiated and cannot occur simultaneously. The case of Stranski Krastanov growth mode 
is more complex since obviously§ the wetting energy must vary during the growth from 
negative values to positive values in such a manner 2D growth is relayed by 3D growth. Such 
dependence of wetting energy upon the number of deposited layers z can be justified by 
introducing long-range effect [56]. The wetting factor thus becomes )()( 0 zfz ∞Φ=Φ where 
f(z) is a decreasing function**  of z. We will come back to this point in section 2.2.2. 

 
Naturally arises the question of the modification of the wetting factor (25) when there is a 

misfit and thus incidentally the modification of the growth mode by elasticity. For this 
purpose we just consider a new thermodynamical process analogous to the one we just 
described (figure 5a) but where now the crystal A is homogeneously strained before coherent 
accommodation onto a lattice mismatched substrate B (figure 5b). For the sake of simplicity 
we will consider a semi-infinite planar substrate B. The crystals are cubic of crystallographic 
parameter a (for A) and b (for B) with a (100) as contact plane both having parallel axis. We 
define the misfit strain as 

 
( ) aabmo /2211 −=== εε            (26) 

 
 
 
 
 
 

                                                 
§ In this paper we exclude growth mode change due to structural change during crystal growth. 
**  Let’s mention that in the original paper of Stranski and Krastanov [57], ionic NaCl crystals have been 
considered so that normal to a (001) face there is an oscillating potential changing sign from a simple to a double 
layer. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Schematic thermodynamic process of formation: a/ in absence of misfit the 3D 

crystal A is created then accommodated onto a isomorphous substrate B. b/ In the presence of 
misfit the crystal A (parameter a) is homogeneously strained (from 2

ooo hV l=  to 2
lhV = ) 

before accommodation and adhesion onto the lattice mismatched substrate B (parameter b). 
 

The free energy change following the sequence (figure 5b) reads 
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where the first term is the energy of formation of the surfaces of the non-deformed crystal 
( 2

ooo hV l= ), the second term is the surface elastic work against surfaces deformation (from 
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∞Φ  thus is a generalised wetting factor that replaces the usual wetting factor ∞Φ  (25) when 
surface stress acts [58]. 

Owing to the Shuttleworth relation (10), relation (27) is nothing other than the expansion of 
the wetting factor (25) up to the first order in strain when β is the adhesion energy of the 
accommodated material A over B. 
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For usual epitaxial material mo=10-2 and for clean surfaces sA and γA roughly have the same 
order of magnitude so that the corrective term )(4 0 AAsm γ−  to the wetting energy remains 

weak. However surface stress contributes more to the wetting condition the smaller the 
wetting factor (25) is and surface stress differs from surface energy. It is the case of Si/Ge 
system (mo≈+4%) where 20   150 −

∞ =Φ cmerg  whereas 2  380 −
∞ =Φ cmergm  [58]. However for 

such a case of 3D growth (since 00 >Φ∞ ) the surface stress effect is overestimated. Indeed 

owing to the condition σiz=0, 3D crystals must relax by their free faces and thus the bulk 
strain is lowered from homogeneous misfit mo to non-homogeneous residual values 
ε(x1,x2,x3). Furthermore if both crystals remain coherent, the interfacial stress sAB also works 
during the relaxation from mo to ε(x1,x2,x3=0). The new wetting factor in presence of elastic 
relaxation mΦ  is easy to write formally. However it cannot be calculated in a simple way 
since the residual strain tensor components depend upon the precise shape of the 3D crystal 
and have to be calculated using some mechanical model. Furthermore interfacial stress values 
are poorly known.  

In fact we will only remember that in most usual cases surface and interfacial stress 
corrections to the wetting conditions remain weak.  

 
 

2.2. Equilibrium state versus elasticity 
 
2.2.1. Description of an epitaxial model system 

Our purpose in this section is to seek for the thermodynamical and mechanical equilibrium 
state of A/B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Schematic thermodynamic process of formation in the case of Stranski Krastanov 
growth. 1. formation, 2. homogeneous deformation for accommodation then adhesion, 3. 
inhomogeneous elastic relaxation. 
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Therefore we will only consider a thermodynamic process where the deposit A is obtained 
from the condensation of a perfect vapour onto a lattice mismatched semi-infinite crystal. 
Furthermore both crystals A and B are cubic and supposed not to mix. The epitaxy is with 
parallel axis on a (001) plane. The (001) surfaces of A and B are supposed to be stable, that 
means each having a cusp in their surface energy plot γA and γB. Furthermore the interface 
(001) has to be stable that means γAB >O and having a cusp. The crystallographic parameters 
are a and b respectively, the in-plane misfit being given by (26). 

We will consider the final state as a 3D crystal of volume V sitting on z pseudomorphic 
layers over B that means Stranski Krastanov case (see figure 6). Indeed such formulation will 
allow discussing the two other cases of Volmer-Weber and Frank-van der Merwe growth as 
limiting cases for z=0 and V=0 respectively. Furthermore for the purpose of this lecture we 
will only consider box shaped 3D crystals. Other shapes will be discussed on the basis of 
some other papers [59-65]. Since as abovementioned surface stress generally plays a minor 
role on the wetting condition, in the following we will neglect surface stress and consider bulk 
elasticity only. We will come back to surface stress effects in section 3.2.3.4. 

 
 

2.2.2. Free energy change of the SK condensation 
Considering the condensation process described in figure 6 where 3D islands and 2D layers 

are formed from a vapour, the free energy change is composed of three terms: 
*  ∆F1 is the chemical work to form (on an area L2) a 2D film of z layers and an island 

(volume 2
lhV = ) from an infinite reservoir of matter A defining the saturation pressure P∞. It 

reads 
 

( )22
1 lhzaLF +∆−=∆ µ                       (28) 

 

where ( )∞=∆ PP
a

kT
ln

3
µ  is called the supersaturation per unit volume of vapour  A at 

pressure ∞> PP  (supposed to be perfect) and a an atomic linear size. 

∗ ∆F2 corresponds to the formation of the surfaces of the crystal A followed by its adhesion 
on the bare substrate B. It reads: 

 
( )[ ] lll hhzfzfLF A

'222
2 4)()( γ+++−Φ=∆ ∞                     

 
where we consider the wetting energy∞Φ of (25) as being size dependent as mentioned in 
section 2.1. More precisely since surface and adhesion energies are excess quantities they are 
only well defined for semi-infinite solids. For a finite solid that only contains a few layers, 
surface and adhesion energy must depend on the number of layers z and thus read γA(z) and 
β(z). The evolution with z by a decreasing function f(z) is quite usual in 2D multiplayer 
condensation (see [66]) or surface melting [67,68]. In the following we choose an exponential 
behaviour as used and justified for semi-conductors. The wetting energy now reads [69,70]: 
 

( )( )ζzz −−Φ=Φ ∞ exp1)(                       (29) 
 
where ζ is a screening factor close to unity so that in the following we put ζ=1. 



 

Thus 2F∆  reads: 
 

( ) ( )( ) ( )( )[ ] lll hahzzLF A
'222

2 4)(exp1exp1 γ++−−+−−−Φ=∆ ∞                 (30) 
 

In the following since z+h/a>h/a and owing to the quick variation of the exponential we will 
neglect ( ))exp( ahz+−  against )exp( z− . Notice again that we have neglected surface stress 
work. 

 *  ∆F3 is the total elastic energy stored by the composite system A/B. It can be written 
as the sum of the elastic energies stored in the crystal A and in the substrate B respectively 
and thus reads: 

 
[ ]),(22

3 ll hRhzaLF o +=∆ E                       (31) 
 
where 2

oo Ym=E where Y is a combination of elastic constants (see section 1.1.4.). For micro 

or nano crystals naturally arises the question of the validity of bulk elastic constants. 
Nevertheless it seems [71] that surface stress considerations avoid using size dependent 
elastic constants (see appendix D).  The first term of relation (31), is the homogeneous energy 
stored by z pseudomorphous layers of thickness a and lateral size L. The second term is the 
elastic energy originating from the 3D upperlying crystal of volume 2lhV= . The factor 

0< ),( lhR <1 is a relaxation factor. Obviously in absence of 3D crystals V=0, one recovers 
2

3 zaLF oE=∆  the elastic energy of the pseudomorphous film. Let us note that the relaxation 

factor ),( lhR  has to be calculated for each specific case. It originates from the fact that the 

normal stress components σiz along the free surface has to vanish at mechanical equilibrium. 
It has not the same expression in case of 3D growth (z=0), SK growth (z≠0,V≠0) or 2D 
growth where it does not play any role (V=0) or more exactly a minor role since ah = and 

l/ar = . 
For a 3D crystal sitting on a bare substrate B (Volmer-Weber growth) the epitaxial contact 

in between the 3D deposit and its lattice mismatched substrate is supposed to be coherent and 
to remain coherent during the elastic relaxation of the 3D crystal. In this case, during the 
relaxation the crystal A drags the atoms of the contact area and produces a strain field in the 
substrate B which was initially strain free. This created strain field may be calculated by using 
point forces [59,72] or more properly by using a self-consistent approach [73,74]. After 
relaxation the 3D crystal and its substrate are inhomogeneously strained (see figure 6). This 
means that although the total energy density has been lowered by elastic relaxation, the elastic 
energy density in the substrate has increased.  

 The Stranski-Krastanov case is more complicate. Indeed before relaxation, deposit A (3D 
crystal A and the z pseudomorphous layers) is homogeneously strained whereas the substrate 
B is stress free. After relaxation the elastic energy density in the 3D crystal as well as the 
elastic energy density in the underlying film have been lowered in respect to the initial 
pseudomorphous strained layers (see figure 6). If the number of 2D layers is weak enough the 
inhomogeneous strain field induced in the 2D layers by the relaxation of the 3D crystal 
penetrates into the underlying foreign substrate B. The elastic energy density in the substrate 
B thus increases in respect to the initial stress free lattice mismatched substrate (see figure 7). 
If on contrary the number of layers increases the positive contribution of B vanishes. In other 
words the strain fields, induced by the elastic relaxation of 3D islands are not the same for a 



 

bare substrate and a composite (2D A layers + B) substrate. In the former VW case, the elastic 
strain density can be analytically evaluated in a self-consistent fashion (see figure 7), but to 
our best knowledge it is not the case up to now for a composite substrate. So in the discussion 
we will distinguish the relaxation factor in case of 3D growth ),(3

lhR D  and in case of 

Stranski Krastanov growth ),,( zhRSK
l . 

 
Figure 7: Elastic energy relaxation 

factor )(3 rR D versus shape ratio l/hr=  
for a 3D box shaped crystal calculated 
from [74,87] when the deposit and the 
substrate have the same elastic 
properties. RA and RB are the relaxation 
factors of the deposit A and substrate B 
respectively. R=RA+RB. Multiplied by 

2
oo Ym=E , ( )ν−= 1EY  each gives the 

corresponding elastic energy density. 
 
 

 

Finally it is very convenient to write the total energy change 321 FFFF ∆+∆+∆=∆  as a 

function of the volume of the 3D island 2
lhV = , of the aspect ratio lhr = , the number of 

underlying layers z, and the film area L2 containing one island, using equations (28) to (31) 
∆F can be written  
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where a is an atomic size and where for a box shaped crystal the relaxation factor only 
depends upon the aspect ratio lhr = and upon z for Stranski-Krastanov case. 

 Notice that if 2D layers have to be formed A must wet B and thus ∞Φ must be negative (see 
(25)) Thus if ∞Φ <0 and V>0, ∆F given by (32) is the free energy change due to SK 
condensation. The free energy change for single 2D condensation (Frank van der Merwe 
growth) is thus simply obtained by taking V=0 with ∞Φ <0 in (32). On the contrary the free 
energy change due to 3D growth onto a bare substrate (Volmer Weber growth) is obtained by 
taking ∞Φ >0 in (32) with z=0. 

Globally in all cases condensation takes place for ∆F<0. To this can contribute the first two 
terms of (32): ∆µ when positive and wetting ∞Φ when negative. In the following, we will 
distinguish the growth of 2D layers and the subsequent growth of the 3D crystals. 

 
2.2.3. Equilibrium state  

The equilibrium state is found by minimisation of the total energy change ∆F, the zeros of 

the partial derivatives 
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of (32) giving the equilibrium values of 

z, V and r noted z*, V* and r* respectively. In the following, supersaturation ∆µ as well as  



 

 

( )2Ll=θ                         (33) 
 
the fraction of the film surface covered by 3D crystals are considered as constant parameters. 
According to the sign of the wetting energy ∞Φ  the three previous partial derivatives give the 
following relations given in table II where we distinguish )(3 rR D  from ),( zrRSK . We also 
put: 
 

,2 Aor γ∞Φ=                         (34) 

 
We will show in section 3.2.3.2. that ro is the aspect ratio of a deposited crystal in absence 

of misfit. 
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Table II:  equilibrium values z*,V*,r* according to growth conditions 

 
On the basis of these results, let us discuss the elasticity effects on the equilibrium state. In 

the three cases under study (2D, 3D, Stranski-Krastanov growth mode) we will consider 
growth conditions, then equilibrium properties and at last plastic-elastic interplay. 

  
2.2.3.1. Layer by layer growth 

*  Here we are only concerned with Frank-van der Merwe growth that means ∞Φ <0 for 

having 2D condensation (see at the end of section 3.2.2.) with V=0 and thus θ=0 so that from 
formula (a) of table II there is 
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From (35), since z must be positive, the z layers can only exist for  
 



 

oE<∆<∞− µ                        (36) 

 
 Thus for having 2D growth, the supersaturation cannot overpass the bulk elastic energy 

density stored in the strained layers. In absence of misfit (mo=0) the usual condition for 2D 
growth ∆µ<0 is recovered. 

 For such layer by layer growth the free energy density of relation (32) reads with V=0, r=0, 
L2→∞ 
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Figure 8:  
a/ Free energy density change 

∆F/L2 for layer growth as a function 
of the number of layers z for different 
chemical potentials oE<∆µ . ∆F/L2 

only has minimum for oE<∆µ .  

b/ number of equilibrium layers z* 
versus the chemical potential ∆µ. 
For oE=∆µ , z* tends towards 

infinity. 
 

 
In figure 8a we plot the free energy density ∆F/L2 as a function of z for different chemical 

potentials ∆µ.  ∆F/L2 shows minima, at z=z*, for oE<∆µ . In this case since ( ) 0/ *
2 <∆ zLF  

2D layers form spontaneously. Notice again that this spontaneous layer formation is 
precluded for 0>Φ∞ .  

*  When relation (36) is fulfilled provided Φ∞<0, each layer z is a 2D phase, built at a given 
undersaturation )exp( zaoz −Φ−=∆ ∞Eµ  obtained from (35). Up to saturation µ∆ =0 there 

builds up a finite number of layers zo (see fig 8b) which for a non covered film θ=0 is given 
by: 
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This number only depends on the wetting over strain energy 
ratio [ ]22 oAo Yma βγ −=Φ∞ E  (see (25) and (8)). This result is largely experimentally 

supported on very different pairs A/B: reversible multilayers adsorption measurements (see 
[76-79]). The result is remarkable so that it has to be illustrated with a striking picture: 
provided 02 <−βγ A  a piece of material A put in the vicinity of a crystal B exposing a (001) 
face, placed in a box of uniform temperature sublimates spontaneously on B up to zo epitaxial 
layers. The only driving force to oppose to strain energy of the created A layers is due to 

02 <−+=− BABAA γγγβγ . For Ge onto Si(111) one obtains 4<zo<5 [56] in agreement with 
experimental data.  

In fact (38) is only valid for the exponential behaviour of the long-range inter-layer potential 
we have chosen. More generally the equilibrium number of wetting layers depends upon the 
form of the long-range inter-layer potential. For instance if no such long range interactions is 
accounted for and only short range interactions are supposed to act as in first neighbours 
model, there is a cut-off for z=1 that means ∞Φ==Φ )1(z  but 0)1( =>Φ z . Then it results 
only one equilibrium wetting layer z=1 (see appendix E). This is however an extreme 
prevision since to such short-range forces adds some long-range contribution. 

In the case of long range contribution and of finite misfit it is seen that when oE=∆µ  the 

number of equilibrium layers z* given by (35) becomes infinite (see fig. 7). In the case of a 
vanishing misfit mo→0 the number of layers zSK given by (35) tends towards infinity too, 
even at  ∆µ=0. Obviously latter layer-by-layer growth is quite normal but in the mo≠0 case the 
elastic energy stored increases with the number of layers z so that the system has to relax 
either by plastic deformation or islanding. 

*  Let us first consider relaxation by interfacial dislocation insertion. The critical number of 
layers beyond which dislocations may appear can be obtained following a simple treatment of 
Matthews [80]. From a thermodynamical point of view the number of interfacial dislocations 
may pass from N to N+1 when the total elastic energy change due to the introduction of the 
(N+1)th dislocation is negative. It is easy to show (see end of appendix F with K=1 and b=a) 
that the critical number of layers zdisl beyond which dislocations may thermodynamically 
insert roughly is the solution of the following equation 

 

o

disl
disl

m
zz ln1

4
1 +≈ π                        (39) 

 
Conversely this relation tells that for z>zdisl, the misfit mo or the mean strain in the layers 

decreases roughly as the inverse of the number of deposited layers and thus reduces the elastic 
energy and therefore the equilibrium number of layers given by (35) for fixed ∆µ. Obviously 
owing to kinetic reasons dislocations may only enter for greater thicknesses. 

* The case of elastic relaxation by islanding concerns the Stranski-Krastanov transition and 
will be treated in section 2.2.3.3. At this stage we will only notice that beyond some new 
critical number of layers we will call zSK, 3D islanding may occur. Thus according to the 
relative values of zdisl (varying as 1/m0 see (39) and zSK  (varying as )/1ln( 2

om  see formula (a) 
table II) relaxation takes place, at thermodynamical equilibrium, either by islanding or 
dislocation entrance. Furthermore since activation energies for dislocation entrance and 3D 
islanding behave as 2−

om and 4−
om  respectively [81] there is really also a kinetics competition 

between these two modes of relaxation. 



 

As a partial conclusion at equilibrium, elasticity modifies the chemical potential of each 
layer and fixes the number of layers at ∆µ=0 (see (38)). However since elastic energy 
diverges with z, beyond some critical number of layers elastic relaxation by dislocation 
entrance or islanding occurs.  

 
2.2.3.2. 3D growth on a bare substrate (z=0, ΦΦΦΦ∞∞∞∞>0): Volmer-Weber case  

*  In this case the relation (d) in table II gives the equilibrium volume V* of the island. This 
relation says: 

(1) The value of the chemical potential µ∆  selects the volume of the crystal. More 
precisely the greaterµ∆ , the smaller the size of the equilibrium crystal. Typically this effect is 
the usual Gibbs Thomson behaviour for first order phase transitions. 

(2) However here 3D crystals can only exist when V*(r)>0 , that means when  
 

)(3 rR D
oE>∆µ .                       (40) 

 
If the elastic relaxation effect is neglected, 1)(3 =rR D , the 3D crystal can only exist at 

oE>∆µ  [87]. 

*  Relation (e) in table II describing the equilibrium shape ratio of the 3D crystal is more 
interesting. It can be rewritten as a parametric system in r with h* and l * the equilibrium 
height and length of the 3D crystal [65,79,87] 
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Where ro is given by (34)(25). For mo=0 the system gives the usual Wulf-Kaishew theorem 

[82-86]  
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whose principal meaning is that the aspect ratio r=ro is size independent (for a discussion see 
[65,87]). 

In the presence of misfit, ,0≠oE  the system (41) only has a solution for r>ro. This means 

that epitaxially box shaped strained crystals must have greater aspect ratio than the strain-
free crystal. More precisely, (1) epitaxial strain acts against wetting (adhesion) so that 
globally it leads to a thickening of the equilibrium shape; (2) owing to strain this equilibrium 
shape becomes size dependent. 

Obviously relation (41) can only be used practically when the relaxation factor for Volmer 
Weber growth has been calculated for the shape family r under study. For a box shaped 
crystal an analytical form of )(3 rR D has been calculated [65,87]. In figure 7 we plot from [65] 



 

the relaxation factor of a box shaped crystal when deposit and substrate have the same elastic 
properties. It is seen that when r=0, a uniform coherent film is not relaxed ( 1)0(3 =DR ). 
However as the deposit becomes a rectangular box (finite r) it relaxes from its borders so that 

1)(3 <rR D  and therefore it stresses the underlying substrate (for a more complete discussion 

about relaxation factors for various shapes see [88]). Let us note that for 5<1/r<50 )(3 rR D  

can be roughly fitted by 2/13 14.0)( −≈ rrR D . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9: Half equilibrium shape of a 3D 

box shaped crystal (discontinuous lines) h: 
height, 2l : half basis in atomic units. 
Continuous curves are the corner 
trajectories calculated for ro=0.1, mo=0 
(straight line) or mo=4% (squares). The 
epitaxial misfit leads to a thickening of the 
ES. Furthermore similarity is lost. 
 

Calculating then dR/dr from figure 7 we can plot from (41) )( eqeqeq hh l=  for a given 

wetting factor ro and γ///E value, a so-called elasto-capillary length where E is Young’s 
modulus in an isotropic surface of surface energy γ. This length scales 81010 −≈Yγ cm that 

means with the size of an atom as mentioned by F.C.Frank [45]. We will use it in the 
following discussion. The result of the resolution of (41) is shown in figure 9 for ro=0.1, for 
mo=0 and mo=4%. Each curve figures the trajectory of the edge of the half equilibrium shape 
(ES) with size.  

For mo=0 the usual Wulf-Kaishew theorem still holds and the equilibrium aspect ratio r=ro 
is size independent (ES are obtained from the straight line on figure 8) or more generally they 
have similarity. For mo≠0 the ES ratio increases with size so that similarity is no more 
preserved. A more complete discussion about wetting and relative stiffness can be found in 
[65,87]. 

 Thus as a partial conclusion, in presence of elasticity 3D growth takes place when 
supersaturation overpasses the bulk elastic energy (see (40)) and the ES of the growing 
crystal is modified in such a manner the greater the misfit, the higher the equilibrium shape. 
For other polyhedral shapes the relaxation factor can be calculated by numerical methods [61-
65]. Elastic effects on truncated pyramids [60,62,79,87], 2D cylinders [63] or 3D spheres [64] 
have been considered. Nevertheless the main effect is the same (excepted when the island 
shape has been fixed as in [64]): a thickening of the ES but furthermore the various facets 
extension changes with size, some facets decreasing, other increasing  [65,87]. 

*  Obviously this scenario cannot be valid whatever the size. Indeed as for 2D film (see 
section 3.2.3.1.) the growing crystal accumulates elastic energy, in spite of elastic relaxation 
which can become prohibitive so that plastic relaxation occurs. The treatment is similar as in 
section 3.2.3.1. One finds (see appendix F) that a first dislocation orthogonal pair may 



 

thermodynamically enter in the island interface as soon as a critical height hC is reached. It is 
obtained as a solution of: 
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 Each supplementary dislocation entrance abruptly drops the strain from mo to 

No Nbmm l/' −= (see appendix F) where b is the Burgers vector modulus of the interfacial 
dislocation and Nl the lateral size of the crystal in which enters the Nth dislocation. Then since 
we have seen that the equilibrium shape is strain dependent, each dislocation entrance 
abruptly modifies the equilibrium shape [65,87,88,89] (see figure 10 and its caption). More 
precisely since the smaller the misfit, the flatter the crystal, the main effect of dislocation 
entrance thus is a back flattening of the equilibrium shape. Such a quick variation of the 
equilibrium shape at each dislocation entrance has been experimentally shown by F.Legoues 
et al. [90,91]. For shapes more complex than box shaped crystals there is a jerky modification 
of the various facets extension [65,88]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Effect of dislocation entrance on the ES. The box shaped crystal accumulates 
strain energy when growing along the )2(lh curve with an arrow until it reaches some 

critical size (here for ro=0.1 and mo=4%, h0=61, 0l =155) where a first dislocation may 

thermodynamically enter (dotted curves represent the thermodynamic criterion for the first 
(N=0) dislocation entrance (eq. iii appendix F). If the dislocation effectively enters for this 
size, according to equation (ii) appendix F the misfit passes from mo to oom l/1− . The ES of 

the growing crystal thus must follow a new ES trajectory re-calculated from (41) but with the 
new misfit .If it is assumed that the island changes its shape at constant number of atoms, the 
crystal abruptly flattens. The same thing occurs for the second (N=1), third (N=2), and fourth 
(N=3) dislocation entrance where in the case under study the misfit passes respectively from 
3.4 % to 2.9% then 2.6%.   
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2.2.3.3. 2D relayed by 3D growth (ΦΦΦΦ∞∞∞∞<0): Stranski-Krastanov case 

*  From the condition of existence of z*>0 and V* >0 obtained from equations (b) and (c) in 
table II Stranski Krastanov growth can only occur, in near equilibrium conditions, when the 
following relation is fulfilled: 
 

o
SK

o zrR EE <∆< µ),(          (44) 

 
that means in a finite domain of chemical potential µ∆ where now ),( zrRSK <1 describes the 
elastic relaxation of a 3D crystal sitting on z pseudomorphic layers covering the lattice 
mismatched substrate. In absence of elastic relaxation ( ),( zrRSK =1) according to (44) there is 
no more place for Stranski Krastanov mode in near equilibrium conditions. Elastic relaxation 
thus is a prerequisite for the simultaneous existence of 2D layers and 3D crystals.  
 
 
 
 
 

Figure 11: Number of equilibrium layers 
z* versus the chemical potential ∆µ in case 
of SK growth. For mo≠0, 3D islands may 
appear as soon as RoE>∆µ . corresponding 

to z>zSK.  
 
 
 

 

 
In figure 11 we schematically plot the number of 2D layers as a function of the chemical 

potential µ∆ . To each layer formation z* corresponds a constant value of µ∆  given by 

)1(*)( * θµ −Φ−=∆ ∞
−z

o ez E . For mo=0 the number of steps becomes infinite at saturation 

0==∆ oEµ (fig.7b). For mo≠0 3D islands may appear as soon as ),( zrRSk
oE>∆µ . Therefore 

in figure 11 for increasing µ∆  there is a cut-off at ),( zrRSK
oE=∆µ  where 3D crystals may 

appear on the zSK underlying layers. Beyond oE=∆µ  the representation does not make sense, 

exactly as when mo=0 for 0=>∆ oEµ  (see fig. 7b). Let us remark that because of the 

limitation oE≤∆µ  the smallest volume a 3D crystal can reach is obtained by injecting 

oE=∆µ  in the expression of V* in table II. For a given aspect ratio r and for z→∞ this 

minimum volume reads: 
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 Here again we see that elastic relaxation 1),( <zrRSK is a prerequisite for Stranski 

Krastanov mode. Indeed for 1),( =zrRSK , relation (45) says that the 3D crystal must have an 
infinite volume! However, because of the fact that the usual activation barrier for 3D 
nucleation is proportional to the one third of the total surface energy of the nucleus [6,92], 
nucleation of such large crystals should be difficult. But since SK mode exists the true growth 
mechanism must minimize this activation energy. We will come back to this point in section 
3.2.3.5. 

In fact, at equilibrium the chemical potential µ∆  must be the same for the 2D layers and the 
3D crystal. Combining thus z* and V* expressions (a) and (b) of table II, µ∆ -independent 
equilibrium values z* and V* can be easily obtained. Thus for each value of *z  there exists 
an aspect ratio r which minimises the crystal volume V*(r) which can co-exist on z* layers.  

At this stage we can summarise the conditions of Stranski-Krastanov transition onto a 
dislocation free 2D film: 
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* Concerning the equilibrium shape the main differences between Volmer-Weber and 
Stranski-Krastanov cases are: 

(1) In the expression of the equilibrium shape ratio r* the factor rro−1  which appear in 

formula  (41) in case of Volmer Weber (VW) growth has to be be replaced by rer z
o

−+1  in 

case of Stranski-Krastanov growth. This originates in the now negative wetting energy 

∞Φ (necessary to build z pseudomorphous layers) which decreases with the film thickness z. 

Owing to this difference, positive height VWh*  can only exist for r>ro in the VW case whereas 

crystal flatter than r=ro can exist in the SK case. 
(2) The relaxation factors )(3 rR D  and ),( zrRSK appearing in table II are not the same. 

As still mentioned relaxation factor ),(zrRSK for 3D crystals onto z pseudomorphic layers 
have not been calculated. Nevertheless if the number of underlying layers is great enough, it 
can be considered that the 3D crystal grows onto a homogeneously strained semi-infinite 
substrate of A. In this case it must be )(),( 3 rRzrR DSK =  and thus the equilibrium shape can 

be obtained (for z→∞) from the following parametric equations 
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Thus since for box shaped crystals an analytical form of )(3 rR D  has been found [87] (see 

also 2.2.3.2.) it is possible to plot the equilibrium shape of the SK 3D crystal. 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 12a: Corner trajectory of the ES 

)2/(lfh=  for Stranski Krastanov case 
(ro=0) calculated for mo=4%. 

 
 
 

Figure 12b: Free energy change 
(32) as a function of the aspect ratio 
of the growing crystal for 

)(*
min rVV <  where there is no 

minimum (excepted in r=0) and for 
)(*

min rVV >  where the minimum 
defines the equilibrium aspect ratio, 
the maximum a labile state to 
overpass. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
We plot on figure 12a such an ES, the graph h*( *l ) having now two branches which 

correspond to the extrema of ∆F(r) (32) and define two equilibrium aspect ratios rg (great) and 
rs (small) or two equilibrium heights hg and hs provided the volume V is greater than *minV  

(45). The lower branch (flat crystals with r= rmin) is the locus of the maximum of ∆F(r) (crest) 
(see figure12b) and thus describes a labile equilibrium whereas the upper branch (thick crystal 
with r= rg) is the locus of the minimum of ∆F(r) (valley) and thus describes the stable 
equilibrium analogous to what we depicted for Volmer Weber growth (see section 3.2.3.2.). 
Obviously (see figure 12b) the transformation at constant volume from labile equilibrium 
(crest) to stable equilibrium (valley) is spontaneous [56,65]. 

From a theoretical point of view we have seen that since for SK growth z* depends upon the 

3D islands coverage ( )2Ll=θ (see z* for SK growth in table II) the greater the volume of the 
3D crystal the smaller the number of underlying layers at equilibrium. Most experiments  
agree with this description since they clearly show that Stranski-Krastanov transition can 
occur at a constant number of deposited atoms and that 3D growth occurs at the expense of 
the 2D layers. In other words owing to the elastic relaxation of 3D crystals, some of the upper 
layers of a metastable 2D strained-film (thickness z’) can transform into stable 3D islands 
leading to the Stranski-Krastanov situation where the remaining z* layers support these 3D 



 

islands. In a paper we have shown how owing to strain relaxation sufficiently large 2D islands 
of simple height double their height and start the SK transition [56]. 

* Obviously, once more the stored elastic energy increases with the number of deposited 
atoms so that beyond some critical size dislocations may enter the system. If zDisl<zSK the 
dislocations may enter in the film before Stranski-Krastanov transition takes place. Thus since 
dislocation entrance decreases the misfit, Stranski-Krastanov transition can no more occur 
even for further growth. Since on one hand the greater the wetting the greater zSK whereas on 
the other hand the smaller the relative rigidity K (see appendix F) the smaller zDisl, for weak 
wetting and sufficiently soft substrate there can also be zDisl>zSK. Obviously as for Volmer-
Weber growth kinetics may modify this condition. When zDisl>zSK, naturally arises the 
question of the localisation of the dislocations. Are they at the bottom of the layers or at the 
bottom of the deposited crystals? The question remains open and the answer must depend, at 
equilibrium, upon the shape and the density of islands  (in section 4. we will say some words 
on interacting crystals) as well as on the relative substrate to deposit rigidity since dislocations 
always go towards the softer material. 

 
2.2.3.4. Comments on surface stress effects 

Until now we have not considered surface stress effects in the just foregoing discussion. 
When such effects are included in the formulation of ∆F of (32) by means of the surface work 
during accommodation and relaxation, elastic relaxation and equilibrium shape calculations 
can no longer be explicitly solved (see for example [93]). Nevertheless surface stress has 
several predictable main effects 

(1) For 2D growth, since the surface stress modifies the wetting factor from ∞Φ  to 
om

∞Φ (see (25) and (27)) it modifies the number of equilibrium layers. Surface stress also plays 
a role on the critical number of layers beyond which dislocations may thermodynamically 
appear. However since in this case the film relaxes by dislocation entrance the interfacial 
stress sAB

†† also works [93]. It is thus easy to show (see appendix G) that for positive natural 
misfit mo a positive ABBA ssss −+=∆ ∞  value (where sA and sB are the surface stresses of 
deposited crystal A and substrate B respectively) lowers the critical thickness hc. On the 
contrary a negative ∞∆s  increases the critical thickness beyond which dislocations may 
appear. For Ge/Si(100) (mo =-4%) Floro et al. [94] give ∞∆s =2.3 Jm-2. In this case mo ∞∆s <0 
so that the critical thickness hc is decreased by surface and interface stresses from 5.4 
monolayers to 2.6 monolayers (see figure 13 where we plot the equilibrium strain versus the 
deposit height h for ∞∆s =0 and ∞∆s =±2.3 Jm-2). Nevertheless such a reversible critical 
thickness dependence with misfit and surface stress is difficult to put in evidence since 
dislocation formation is an activated process so that the kinetic critical thickness beyond 
which dislocations effectively occur generally is greater than the predicted thermodynamical 
value. 

(2) For 3D growth let us recall that taking into account surface stress work against surface 
deformation is equivalent to taking into account the first order development with strain of the 
surface energy (see comments just after (27)). Thus the gamma plot of the strain free 
equilibrium shape is modified by strain. Nevertheless since in most cases the surface energy 

                                                 
†† In fact for semi coherent interface composed of a grid of dislocations one needs to distinguish two interfacial 
stresses. Indeed the usual interfacial stress is defined as the work done to deform both facing phases by the same 
amount, whereas in the presence of dislocations changing the in plane parameter of the substrate needs 
dislocation introduction (See [95]) 



 

change versus strain remains weak (of the order of (s-γ)ε see (27)) surface stress is not really 
effective when elastic relaxation operates (see for example [96]). Nevertheless things can be 
different when new surface phases can be stabilized by external stress. Indeed in this case 
stress-induced changes of surface structures (first order transition) may lead to a 
discontinuous change of surface energy and surface stress and thus of the gamma plot. In this 
case new cusps could appear on the gamma plot and thus new stress-stabilized faces may 
appear on the equilibrium shape. We believe [89] that this happens for the well defined {105} 
facets of the so called “huts” appearing during the first stages of the growth of Ge/Si(100) 
[97,98]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Residual misfit m’ versus the film thickness h calculated for mo=-4% and 
∆s∞=0±2.3 Jm-2 (see appendix G). The growing film remains pseudomorphous to its substrate 
up to h= hc. Beyond this critical thickness hc the misfit is partially accommodated by 
dislocation entrance and the residual elastic misfit decreases with the thickness h>hc of the 
film.  For ∆s∞=0 and mo=-4%, hc≈5.4 ML. A positive surface stress change ∆s∞=2.3 Jm-2 
decreases hc to 2.6 ML whereas negative surface stress change ∆s∞=-2.3Jm-2 increase hc to 
hc≈7.5 ML. The case Ge/Si (100) corresponds to mo=-4%, ∆s∞=2.3 Jm-2 [94] and thus hc≈2.6 
ML. 
 

It was found in Molecular Beam Epitaxial growth that some foreign adsorption plays a role 
on the equilibrium state. In the case of 2D growth, such additives can modify the number of 
equilibrium layers z [99,100], whereas for 3D growth they can modify the equilibrium shape 
of the growing crystal [101]. Such additives are known to lower the surface energy [5] 
without bulk incorporation and thus were called surfactants by the semiconductor community. 
Nevertheless since surface energy γ is lowered by adsorption, and since Shuttleworth relation 
(10) connects surface energy to surface stress, consequently surface stress changes with 
adsorption. More precisely since there is Γ−=∂∂ µγ where µ is the chemical potential of the 

adsorbed species and Γ the adsorption density (generally positive see section 1.4.) there is 
εµ ∂Γ∂−Γ−=∂∂s . The adsorption may thus reduce or enhance the surface stress. Such 



 

surface stress changes with adsorption have been reported (for example see the important 
review paper by Ibach [102] its erratum [103] and [104]). Therefore surfactants not only play 
on the surface energy but also change the mechanical state of the crystal. 

 
 

3. ELASTIC EFFECTS ON ATOMISTIC MECHANISMS 
 
We recall some well-known facts for non-stressed crystals.  
In the case of a flat (F) defect-free surface‡‡ the rate of growth is determined by the 

frequency of formation of 2D or 3D nuclei. The nuclei formation requires overpassing an 
activation barrier. Supersaturation decreasing this barrier, a critical supersaturation has to be 
overcome for the growth to take place. We will see in section 3.1 how elasticity can influence 
the 2D and 3D nucleation process. For a stepped face (S) with an orientation along an inward 
cusped valley, the growth may occur by step flow mechanism as first depicted by Burton 
Cabrera and Frank (BCF) [105]. In their seminal paper the authors consider kinetics of growth 
of a vicinal surface as a balance between adatom deposition, adatom diffusion and adatom 
attachment to steps (for a review see [92,106]). If the sticking probabilities of adatoms from 
the upper terrace and lower terrace are equal, all the steps have the same velocity. Such 
growth mode is known as step flow and occurs at small supersaturation. In fact at higher 
supersaturation there is a transition from this step flow mode to 2D nucleation mechanism in 
between the steps. When no reevaporation takes place, or the diffusion length onto the terrace 
is much greater than the distance between steps, 2D nucleation on the terrace is more 
favourable. When the nucleus only contains one atom (very high supersaturation, see 
appendix H) this transition occurs when (D/F)1/6≈L where L is the step to step distance, D the 
surface diffusion constant and F the impinging flux [106,107]. Such transition from step flow 
to 2D nucleation is easy to detect experimentally. Indeed in presence of 2D nucleation birth 
and spread of 2D islands give oscillations of the RHEED intensity at each completion of layer 
whereas in step flow mode there are no oscillations [108,109]. In the case of a flat (F) face but 
with screw dislocations 2D nucleation is shunted at low supersaturation [105] and steps with 
high Burgers modulus b⊥ propagate laterally each anchored at the dislocation so that 
equidistant steps are winded as helices. This gives very flat growth pyramids around each 
non-cooperating screw dislocation. Their slope is proportional to 1/∆µ [105]. 

Obviously elasticity may influence some of these elementary processes involved in step 
flow. In the framework of these lectures the various elastic effects on adatom detachment rate 
and surface diffusion will be discussed separately (section 3.2. and 3.3.). In each case we will 
not give the details of the calculations but only try to capture the essential physics for simple 
cubic material ( ,

AA γγ = ).  
 

3.1. Nucleation barrier  
*  On a flat perfect surface (F), crystal growth takes place after 2D or 3D nucleation. On 

average, clusters smaller than the so-called critical nucleus spontaneously disappears whereas 
clusters larger than the critical nucleus spontaneously grow. The critical nucleus size depends 
on supersaturation ∆µ and its formation requires overpassing an activation barrier. In 
principle the activation barrier ∆F* is obtained by injecting the equilibrium nucleus 
parameters **, lh  or V* r* (table II) in the free energy change ∆F (32) due to the nucleus 

                                                 
‡‡ An F face is a face having an inward cusp in its gamma-plot. 



 

formation. However this cannot be done explicitly here in the epitaxial case. Furthermore we 
have to distinguish the Volmer-Weber (VW) and Stranski-Krastanov (SK) cases having very 
different behaviour.  

*  For the Volmer-Weber case (Φ∞>0 or ro>0) with table II and (32) the nucleation barrier 
can be factorised [87] as three terms of distinct physical meaning 
 

( ) ( )oKrooVW rkTFkTF EF µ∆∆=∆ ,
*

hom
*         (48) 

 
The first and leading factor is the well known so called homogeneous nucleation barrier 

(without surface β→0 ((Φ∞=0, ro=1) (see appendix H) which is reduced by the second one ro, 
(0<ro≤1) (34) due to substrate wetting. The last term due to epitaxial strain at contrary 
opposes to the former one since 1Kro, <F  is a function of ∆µ which becomes very close to 1 

for oEµ∆ ≈10. Homogeneous nucleation in vapour phase can be estimated to be effective at 

30*
hom ≈∆ kTF (see appendix H) with a critical number of atoms 15<N*<60 and driven by 

supersaturation much higher then oE (see (40)), 106 <∆< oEµ . The function Kro,F  for these 

ratios is very close to unity so that the activation barrier for classical nucleation is not 
influenced by misfit strain!   

* In contrast, elasticity is the driving force of the Stranski-Krastanov transition (Φ∞<0) as 
underlined before. Let us demonstrate it by the following process. The free energy change of 
the transformation of z’ 2D layers into a 3D island (volume V) sitting on z layers ∆F’ is that 
one of (32) ∆F(z,V) minus ∆F(z’,0) where the 3D crystals are absent. At constant volume of 
material A there is for 122 <<= ahaLV θ  that means for a small fraction of the film surface 
covered by 3D islands : 
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The activation energy for Stranski-Krastanov transition )'*(rF∆ can thus be obtained by 

injecting the equilibrium values V* and r* of the table I for 0<Φ∞  in the previous relation. 

For 0→Φ −
∞

ze  (that makes sense at the SK transition) the barrier reads  
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As usually ([92] and appendix H) the activation barrier )'*(rF∆   is   proportional to 3'

Aγ  

but *))(1( rRo −E obviously plays the role of a driving force. On one hand )'*(rF∆  is 

proportional to 2−
oE  that means to 4−

om , on the other hand inhomogeneous relaxation )(rR →0 

pushes it §§.  (The lowest value of )'*(rF∆  is roughly reached for r*=0.05 that gives for 
                                                 
§§ Let us note that in absence of elastic relaxation (R(r)=1 in (50)) the barrier becomes infinite. Thus clearly 
again it appears that the inhomogeneous relaxation of the 3D islands is the driving force for Stranski-Krastanov 
transition. 



 

Cu(111) where γ≈1300 ergcm-2 [110] and 2
oo mE =2.310-12 ergcm-3 [17]  so that ∆F*/kT≈100 

for m0=1%, ∆F*/kT≈30 for m0=2% but ∆F*/kT≈2 for m0=8%). Thus generally Stranski 
Krastanov transition can only occur for a sufficiently high misfit om >2%. Nevertheless some 

cases of SK growth are well known for misfit of the order of 1.10-2 where activation barrier 
calculated from the previous relation seems to be too high. Nevertheless ∆F* could be 
lowered by other mechanisms. Furthermore our box shaped model is not the most flexible 
one. When considering truncated pyramids (see [65]) the A'γ  in (50) is reduced by some 
factor, vanishing when the summital facet disappears. This is however also the sign of non-
stability of this face even in absence of stress. Furthermore since the true ES is that which 
minimises the activation barrier, the activation barrier could be lowered by other specific 
shapes. Last but not least SK transition could start on some point defects so that 2D or 3D 
nucleation activation barriers are lowered. This is however only possible at very high 
supersaturation on a F face [92] that means nuclei of several atoms. In fact the problem of the 
real amount of the activation barrier remains widely an open question. 

 
3.2. Strain effects in irreversible condensation by growth simulation  

Equilibrium thermodynamics describes statistically nucleation and growth at low 
supersaturation. Far from equilibrium or really irreversible growth studies are only possible 
by numerical resolution of kinetical systems [111-113] in the mean field approximation or by 
simulation catching more or less the collective nature. Latter studies started in their most 
simplest form by Monte Carlo technics in the 71th [114-116] bringing the now classical and 
eventually fascinating images of birth, spread and coalescence of islands on a growing 
compact crystal face, leading to the surface roughening divergence at some critical 
temperature.  

Introduction of elastic strain started only in the 90th. Let’s report about some studies of 
Ratsch and Zangwill [117-119] who took a very simple scheme. Atoms are randomly put on 
the nodes of a quadratic grid with a rate of F atoms per second per site. When accumulating, 
eventually at different levels, there is applied the prescription to avoid overhangs and holes in 
the so generated cubic 3D lattice (solid on solid or SOS model). By this simple scheme 
column clusters of various shapes and random diverging heights are generated (see [106]). 
However atoms can move away from the landing site, except to go back to the vapour phase, 
in the extreme case of complete condensation (in fact the vapour phase is reduced to a 
“directed beam” so that the lateral faces of the columns don’t receive atoms, since no 
overhangs have to be created). Single atoms migrate to next neighbours sites at the highest 
rate say D per second (short range surface diffusion). Usually D/F>>1 so that surface 
diffusion is very active. Clusters are not allowed to migrate but they loose single atoms to 
neighbouring sites with a smaller rate ( )kTnD ϕ−exp , depending on the number n=1,2,3,4 
of lateral bonds of strength ϕ  which have to be broken (ϕ  stays for an activation energy). 
This so generated atoms migrate with rate D and fall by chance in traps of n=1,2,3,4 bondsϕ  
where they reside thus longer thus stronger they are bonded. When all the atoms are bonded 
vertically by Es=ϕ  it results normal crystal growth (homoepitaxy) of a flat face (F) that 
means a new layer starts when the other comes to completion. However single atoms settle 
also on higher levels thus more F/D is high and multilayer growth may occur. Very flat 
pyramids (up to 3 layers) may form. Rough kinetics estimations [106,107,113] confirm the 

mean nucleation density 2−
l  and the mean coalescence size ( ) 4/1FDa =l . 



 

Formulating epitaxial growth there is to choice (i) the bond energy Es≠ϕ , either Es<ϕ  for 

VW growth (equivalent to Φ∞>0) or Es>ϕ  for Frank-van der Merwe and SK growth 

(equivalent to Φ∞<0); (ii)  strain energy has to be accounted too. The studies [117,118] 
considered SK growth Es>>ϕ  and due to the model of first neighbours interactions, only one 
SK wetting layer A is grown on the substrate B (see also our analysis close to (38) and 
appendix E). The atoms in the second layer are vertically bonded with Es=ϕ  so that lateral 
layer-by-layer growth should follow. Due to misfit however the SK layer is strained and strain 
weakening of lateral bond energies is taken as guiding principle by the authors: 

 

oE−→ ϕϕ 24
2

1
          (51) 

 
However 3D box shaped clusters are elastically relaxed by ( ) 2/1)( hhR ll ∝  (a crude 

approximation of figure 7) so that the frequency prescription for the growth simulation is 
( )[ ]2)(exp rRnD oE−− ϕ  for detaching an atom on a summital layer of a cluster [119]. 

Atoms thus detach more frequently a cluster is flat, so that taller cluster are favoured during 
the evolution; this trend being thus stronger the misfit square is high. Simulated images 
[117,118] show slightly dispersed rectangular near quadratic based clusters with mostly 
complete layers. At increasing total coverage above the SK layer of Ft=1/4, ½ ¾ monolayers, 
single and double layered clusters appear progressively. At Ft=1, 2D islands of 2,3, and 4 
layers are formed so that only some half of the SK layer is covered. This thickening of the 
clusters is clearly due to the strain relaxationRoE  even if somehow exaggerated by the type 

of simulation. 
The authors observed that thickening starts only at “some critical misfit“ of 3%. This 

surprising result may not be general and needs our comments. Consider a distribution of box 
shaped crystals above their SK wetting layers so that the energy to spent is in average, that to 
create lateral faces plus the elastic energy written in the former mentioned approximation 

( rrR D /14.0)(3 ≈ see 2.2.3.2.) 
 

314.0414.04 llll VVhVhF oAoA EE +≡+=∆ γγ      (52) 

 
At constant volume 2

lhV =  for spontaneous thickening there must be 0<∂∆∂
V

hF . This is 

realised when for this volume [ ] ( ) 3/13/219 ahaa oA Eγ>l . Doubling the height of a 2D 

island occurs when its size exceeds [ ] 3/2

1
19 aa oA Eγ>l . Clearly it has to be smaller than 

the coalescence size ( ) 4/1FDa
c

=l (if not the single height islands annihilate mutually) the 

authors simulations took D/F=106 so that 30≈
c

al atomic units. There is according to 

Frank’s rule [45] Eγ ≈10-9 cm for clean crystal faces, but 2D edges being thermally 

roughened we take E1γ ≈1/3.10-9 cm so that with a=3Å there is a critical size ≈
c

al 170 (for 

mo=1%), 40(3%), 26 (4%), 15 (6%). Thus doubling can only start for misfit greater than 
roughly 3% which corresponds to what the authors “observed”. Conversely it can be foreseen 
that “SK roughening“ can be avoided when 1ll <c that means by decreasing the coalescence 



 

size or increasing the density of critical nuclei. This can be done by increasing the reduced 
flux F/D >60 3/16

om or by increasing the nuclei density by other means. Lets add that these 

simulations have been done on a flat F face. When done on a vicinal with terraces width L, 
the coalescence size has an upper limit for 2D islands <L. 

 
3.3 Growth instability induced by strain on vicinal faces 
 
3.3.1 Growth of a vicinal face without strain 

Growth instabilities are very frequent in bulk growth when diffusion-convexion of matter-
heat are involved. In vapour growth, even outside any strain considerations, surface diffusion 
coupled with interfacial kinetics leads to instabilities we have to mention first. In the pioneer 
work of BCF [105] a vicinal face receives (or looses) adatoms from the terraces where they 
migrate towards (or away) the steps making them to advance or to recede. In any case, steps 
exchange (from their kinks) their atoms with the two adjacent terraces from the top side (+) 
and from the low side (-) with frequencies D+ and D- leading to a very quiet step flow when 
D+=D-≤D. Disymmetric step kinetics may result from adsorption of impurities in the kinks 
[105] D+≠D-≤D. But there exists also some intrinsic effects for clean steps with D+<D-≤D due 
to some activation barrier near the upper ledge, the so-called Schwoebel [120]- Erhlich [121] 
barrier*** .  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: a/ Adatom sticking is easier onto an upper step (D->D+). Then since the number 
of atoms that reach a terrace is proportional to the terrace area, a terrace larger than its 
neighbours becomes smaller, thus all terraces reach the same size, each step reaches the 
same velocity and step flow mechanism occurs.  

b/ Adatom sticking is easier onto a lower step (D-<D+), a terrace larger than its neighbours 
becomes larger and larger and step bunching occurs. The opposite scenarios are valid for 
evaporation. This concerns a non-strained solid. 

 
In BCF’s theory the lateral step velocity is an increasing function of the size of the adjacent 

upper and lower terraces: )()(v −−++ += LfDLfD †††. Suppose a given step (figure 14) in a 

                                                 
***  When atoms approach or leave an upper ledge second attractive neighbour bonds have to be cut, but those 
from the lower ledge not. 
††† In fact v depends upon the normalised distances L/2xs, where xs is the mean diffusion distance before 
desorption of an atom. 

D- > D+ 

D- < D+ 

a) 

b) 



 

regular train L+=L-=L, during growth the mean speed 0v>  fluctuates, say ∆L>0 so that the 
lower terrace becomes smaller, the upper one wider. The velocity of this step is  

 

( ) L
dL

df
DDLfDDLLfDLLf

L

∆−++≈∆−+∆+=∆+= −+−+−+ )()()()(Dvvv   (53) 

 
 The symmetric case D+=D- doesn’t change the velocity from the mean value of the train,  

D+<D- slows down the step, D+>D- boosts it and may lead to instability. For evaporation,0v< , 
the opposite happens. 

P.Bennema and G.H.Gilmer [122] showed that the governing differential equation is similar 
to that of a chain of masses connected by springs, having for growth (evaporation) an 
exponential damping regime for D+<D- (D+>D-) and an exponentially increasing perturbation 
for D+>D- (D+<D-) leading to step bunching (see also [106]). In summary ordinary (usual) 
Schwoebel-Ehrlich effect renders, fortunately, normal crystal growth stable. 

  
The case of strained layers of vicinal nature has been studied by Duport et al. in 1994 

[123,124] and Tersoff in 1995 [125]. Because of the height h discontinuities, the border of 
these strained layers bear elastic monopoles in excess (see (16)) with the elastic dipoles 
existing without strain (see 2.). There is first to study the thermodynamic stability of such a 
train, secondly its stability versus growth or evaporation. 

 
3.3.2. Tersoff’s step bunching driven by step-step interaction due to bulk strain 

(i) We have seen (1.3.2.) that a step on a vicinal surface can be described as a line of 
dipoles at which adds a line of monopoles. The interaction energy per unit length of a pair of 
identical, L-apart, steps (h=a) can thus be separated in four terms. Each of these terms and its 
physical origin are described in table III when surface stress is neglected (F3=0 in (14)) 
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Table III: Sketch of the various interactions in between elastic monopoles (mo) and dipoles 

(di), with the analytical expressions of the interaction energies in column 3. Here mo<0 and 
A>0 

 
In the given analytical expressions of the four terms (see third and fourth column of table 

III) let us recall that A is a dipole moment as in I32. Here A>0 describes a dilatation centre. 
Identical monopoles are said long range attractive (lnL) whereas the identical dipoles, 
whatever their sign, are said short-range repulsive (L-2). The medium range monopoles-



 

dipoles interaction depends on the sign of Amo, but for the pair of steps the total interaction is 
zero. In appendix J we derive these interactions. 

Consider now a step m at position xm in between two others steps (of same sign) at xm-1 and 
xm+1, with xm+1-xm-1=2L  (xm is the deviation of step m from its middle position taken as 
origin see figure 15). The step-step interaction per unit length versus the deviation xm from 
table III thus reads 
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and is drawn as a full line on figure 15. The step m at xm=0 thus is mechanically unstable 
since by some fluctuation it is attracted either on one side or the other side and finally trapped 
in the left or right minimum due to the repulsive potential. For figure 15 we took usual values 
of the various ingredients E=5.1011 erg cm-3, ν=1/3, a=2.10-8 cm. For the dipole moment 
A=0.7eV=1.10-12 erg consistent with E and a (see appendix I). With a misfit mo=2.10-2 one 
thus obtains α1=2.10-8 erg cm-1, α2=1.10-5 erg cm-1 and α2/α3=1/3.103. From figure 15 where 
L/a=100 the pairing distance is seen to be (L-xm)/a=23 atomic units. A good approximation is 

( ) ( )omEaA 32/1
12 22 ≈αα =25. From latter result one understands that epitaxial strain mo 

whatever its sign compresses the pair. Adding to α2 a α2(T) term‡‡‡, a temperature increase 
may further separate the pair. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 15: Interaction energy of a 

step of a strained solid Us-s (54) versus 
its the position in between two others, 
U1 attracting part due to elastic 
monopoles, U2 repulsive part due to 
elastic dipoles (units: erg cm-1).  
 

 
 
 

                                                 
‡‡‡ The elastic interactions as all elastic properties are slightly decreasing with temperature. An independent 
dipole-dipole repulsion ( )2

2 )( LaTα exists for T≠0 due to kink formation [105] so that the steps meander and due 

to their mutual confinement there results [126] an exponentially increase of α2(T) with T. Obviously these 
“dipoles” don’t couple with elastic monopoles or dipoles. 
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0 xm 

m 
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(ii)  How does this mechanical instability lead to step bunching? This is a matter of 
cooperative kinetics of transport of atoms by surface diffusion in between steps. Tersoff  
[125] considers the adatoms coming from exchange with the kinks on the steps and eventually 
from an incoming flux Fsec-1 per site. No atom leaves the crystal, complete condensation is 
thus supposed so that the time dependant adatom density θ is governed by the simplified BCF 
[106] diffusion equation. The boundary conditions at the steps are simplified too: (1) The 
transfert of atoms from or to the kinks and nearest adatoms positions xm±a has no kinetical 
barrier (at least that of the usual surface diffusion coefficient D). There is no interfacial 
kinetics, no Schwoebel or other retardation effects. (2) The local adatom density at the steps is 
that of thermodynamical equilibrium 
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where ∆E is the bond energy of a kink atom minus that one of the adjacent adatom at ±a (in 
fact the adatom creation energy from a kink atom). This quantity is however modified by the 
elastic field where the kink is located at xm inside the train of steps L as quoted in (55) by the 
indices xm and L . A kink atom at xm≠0 is submitted to a net attractive force 
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atom the kink goes ahead by ∆xm=a so that its energy changes by 
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where now 

L
E

,0
∆  is the adatom creation energy from a kink when this force vanishes. From 

(55) and (56) there is 
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which means that these elastic interactions due to epitaxial strain boost the equilibrium 
adatom density at the step when the step deviates from its middle position. This is a simple 
way to formulate how a mechanical effect is transformed in a chemical one. 

For testing stability let us consider at the time t=0 a regular train of steps of mean 
distanceL . Let us assume a small displacement of every N steps by ( )Nmoum /2cos)( π∆= , 

at a small time t>0 the following time evolution (58) is found to be valid [125] 
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§§§ In fact this is only true when each step site is a kink site. When the kink density is 0<ε<1, the local 
displacement is reduced to ∆xm=aε 



 

 
The exponent is given in (59) for widely spaced steps (L/a>α2/α1) and since positive, leads 

to an amplification of the bunching rate r we factorise: 
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First there is the “driving energy” of epitaxial strain per atom, then the “kinetic resistance” 

due to the material transport. Appears the mass diffusion coefficient 
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composed of the adatom creation energy 

Lmx
E

,
∆  usually greater than the activation barrier 

E* for surface diffusion of atoms. 
Lmx

E
,

∆  is able to freeze this rate process when temperature 

is not high enough, e.g. when T<2/3Tmelting . The last term in (59) shows that bunching starts 
for N=2, that puts in evidence the cooperative nature of the process. N=2 is the most efficient 
mode, the amplification slows down rapidly for modes N>2. This initial bunching rate is flux 
independent. At F=0 (but zero evaporation is prescribed) numerical resolution [125] showed, 
starting with a random train, the development of the bunches with time. The bunch size (mean 
number of steps in a bunch) varies monotonously as <n>αt1/4.  Atomically flat zones can be 
obtained separated by bundles of many steps. Curiously it was observed (but not 
systematically studied) that when flux is put on, maintaining the same other conditions (1) 
bunching progresses less rapidly <n>∝t1/6 (2) bunching saturates at some small value <n>sat=3 
for F=25. Such simulations should be reactivated in parallel with in situ experiments similar 
to those of Métois et al. [127] under well controlled flux F<0, F=0 or F>0. 

 
3.3.3. Duport’s strain driven surface diffusion instability 

The Grenoble group [123,124] predicted first in 1994 an other instability we are now able to 
qualify more precisely. The phenomenon concerns strained vicinal faces under biaxial misfit 
mo with an incoming flux F>0 but without re evaporation (complete condensation) as in 3.3.2. 

The authors considered the elastic interaction of an adsorbed atom on a terrace in-between 
two consecutive L apart steps (see figure 16) described as a dipole Aad located in-between two 
lines of identical  monopoles  m on the right and m-1 on the left. Taking the middle point as 
origin of xad, the interaction energy per atom reads in absence of surface stress  and thus with 
F3=0 in (14) (see table III) 
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where ( )ν
π

α +−= 1'3 a

mA o
ad

 [123,124]****  for the dipole-monopoles interaction and 

( )3
2 2' EaAAad πα =  for the dipole-dipoles interaction (see table III). In principle Aad≠A but 

are of same sign so this interaction again is repulsive. Mostly  |Aad|<|A|. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 16: Interaction energy Uad-s of (61) 

erg cm-1 of an adatom (dipole) and two steps 
of same sign of a strained body. U2 repulsive 
part due to the two dipole–lines with the ad-
dipole interaction, U3 attractive part due to 
the two monopole-lines and the ad-dipole 
 

 
In figure 16 we draw (61) as a full line taking the same numerical values as in figure 15 of 

E, ν, a, mo, L/a and A, furthermore we put Aad=A (making therefore an underevaluation). 
Thus 3'α =8.4.10-15, 2'α =2.10-13 erg per adatom. For Aadmo>0 the adatom is attracted to the 
lower terrace of the steps the short range repulsion creating a single well located near the 
lower terrace of the step, (specifically here xad/(L/2)=-20 atomic units). When Aadmo changes 
sign, the well switches to the symmetrical position. The stationary adatom density at the 
position x along the terrace is given by the resolution of  
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where )(xJm is the net current proportional to the gradient of adatom density )(xθ to which is 

added a drift term due to the elastic force xUf sad
ad ∂∂−= − acting on the adatoms: 
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where D/kT is the so-called Einstein mobility of the adatoms when submitted to the force 

)(xfad . 

The Einstein-Focker-Planck equation (63) thus gives a purely kinetics effect as can be easily 
seen since when this force derives from the equilibrium distribution [ ]kTUx sad−−= exp)(θ  

                                                 
****  We put here minus sign since our misfit convention is of opposite sign of Duport’s  δa/a=-mo. 

m-1 
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there will be no current on the terraces. Putting (63) in (62) and integrating along a terrace 
gives 
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The constant C is obtained from boundary conditions at the step. Obviously they have to be 

non-equilibrium conditions: for the left step (m-1), 2/)2/( FLCL
a

D −=
−

θ ; for the right step 

2/)2/( FLCL
a

D +=
+

θ . The condition for a step m to collect from its front and its back 

terrace leads again to a differential equation very similar to (59) with a stability exponent r  
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Physically however the result is very different. (i) The oscillation of the train suffers 

damping or amplification only when a flux F≠0 exists (clearly only an incoming flux since 
evaporation was precluded). (ii)  The shortest mode, even N=1, is the most efficient one. (iii)  
For mo=0, an asymmetric adatom integration (D+<D-<D) is stabilising (similar to Schwoebel 
effect). For Aadmo>0 (for self-adsorption Aad>0 it means mo>0) stability is increased even for 
symmetric integration (D+=D-). (iV)  For the opposite case Aadmo<0  (that means mo<0 for self 
adsorption) and with still D+<D-<D, the epitaxial strain drives so much the adatoms 
downward the step that they overcome easily the Schwoebel barrier. However this only 
happens provided the mean step distance L/a overpasses a critical value depending on the 
height of the barrier.†††† 

 
From our discussion here and the one in III32 it is clear that Duport’s and Tersoff’s 

instabilities are not of the same nature. The Tersoff’s one is misfit square dependent, exists at 
zero flux and slows down for increasing flux. The Duport’s one is misfit sign dependent, does 
not exist for mo>0 and when exists (mo<0) is boosted by increasing flux. This gives a 
contradictory feeling about both effects. Furthermore in Tersoff’s theory the adatoms have not 
been supposed subjected to the elastic field of the steps and thus are not dragged towards the 
steps. In Duport’s theory the steps are supposed do not interact by their elastic field as of 
course they should. The situation is however not so bad since Tersoff’s and Duport’s 
instabilities in fact occur in different temperature ranges. Indeed in Tersoff’s formula (59) 
appears the mass diffusion coefficient kTEkTE

oM eeDD ∆−−= * , which is very temperature 

dependent through ∆E/kT, and thus only works at very high temperature. On the contrary, in 
Duport’s formula (65) appears the surface diffusion coefficient kTE

oeDD *−= . Thus since 

E*/∆E≈1/5 for stable faces the Duport instability works at low temperature where kinks can’t 
produce adatoms by their own (Adatoms in this case are only provided by the incoming flux). 

 

                                                 
†††† Thus wafers with very small miscuts and the use of very weak flux would be helpful for avoiding this 
instability. 



 

3.3.4. Miscellaneous kinetics effects 
* In the previous section we have seen that strain can modify surface diffusion by way of 

the supplementary elastic forces along the steps acting on adatoms. Nevertheless strain can 
also have an effect on the diffusion coefficient itself as shown by Schroeder and Wolf [128] 
who calculated activation barriers for diffusion on strained high symmetry plane surfaces 
(without steps) of simple cubic, fcc and bcc crystals. For this purpose they described pair-wise 
interactions by means of an anisotropic Lennard-Jones potential with a strain-modified 
distance in between atoms; then they placed an adatom on a binding site and moved it by 
small steps. The activation energy for surface diffusion is calculated by a conventional 
minimal energy path saddle point. The main result is that generally for tensile stress (σ>0) 
the diffusion barrier is increased whereas compressive stress (σ<0) decreases the barrier. 
(see figure 17). The diffusion barrier change is mainly due to a change of the saddle point 
energy whereas the minima are shifted only very little. As said by the authors this behaviour 
can be naïvely understood on the basis of limiting cases. Indeed in the limit of large 
compressive stress (σ<0) the surface becomes continuous and thus there is no longer a 
diffusion barrier. On the contrary, within the limit of large tensile stress (σ>0) the surface 
consists of isolated atoms and diffusion becomes equivalent to breaking a pair of atoms and 
building a new pair‡‡‡‡. In the same paper the authors have also studied theoretically diffusion 
on top of a stressed island. In this case, since the finite size island can elastically relax by its 
free edge the strain along the top surface of the island becomes inhomogeneous and thus 
diffusion may vary from the centre of the island towards its edges. For compressive strain the 
diffusion is faster near the island centre whereas for tensile stress it is faster towards the 
edges. Thus it should be easier to nucleate on top of a tensile strained island than on top of a 
compressive strained island§§§§.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17: Diffusion barrier path for an 

adatom on an homogeneously strained cubic 
lattice (parameter a) calculated by [128]. 
Upper curve: tensile strain (5%), middle 
curve mo=0, lower curve: compressive strain 
(-5%). In fact for a homogeneous strained 
(001) surface of a simple cubic crystal the 
diffusion barrier depends linearly upon strain 
which can be easily shown by a simple first 
order development of pair-wise potential in 
respect to strain [128]. 
 

 
These two effects are second order effects in comparison to elastic interaction in between 

adatoms and steps as described in the previous section. Furthermore the simple surface 
diffusion change cannot modify the growth mechanism. More precisely since adatom density 
essentially depends upon the ratio D/F a strain-induced increase (decrease) of the surface 
                                                 
‡‡‡‡ In other words in this latter case the diffusion barrier becomes equal to the pair-binding energy 
§§§§ More precisely for an inhomogeneous strained surface the saddle point energy and the binding energy may 
vary as well. The saddle point energy change leads to an inhomogeneous nucleation whereas the binding energy 
change leads to a drift term in the diffusion current. Nevertheless for cubic crystals the binding energy change 
remains weak [128]. 



 

diffusion constant (D) is exactly equivalent to an appropriate increase (decrease) of flux (F) 
and thus may only weakly shift the transition between step flow and 2D nucleation or change 
the nucleation density. At the same since the taller a crystal, the more relaxed its top face, this 
kind of elasticity-induced Schwoebel barrier thus can only help the first stages of the 
thickening of tensile islands. 

 
* We avoided in these lectures to treat alloy formation and especially the effect of strain. 

Let’s fisrt mention some facts. 
(i) Deposition of A pure on a B pure substrate forming either 3D crystals (VW) or thin 

epitaxial layers (F-vdM). In the absence of epitaxial misfit and defects the interface in both 
cases moves, in a planar way in the first case, rebuilding the substrate in the vicinity of the 3D 
crystals for the second case. One speaks about compositional strain due to the different atomic 
radius of A and B. 

(ii)  Deposition of an alloy AxB1-x on a substrate B. Interface diffusion is common for 
planar Ge/Si or Si/Ge systems and starts at temperature higher than 650°C but is difficult to 
follow. Some other systems are more accessible and much more brilliant for demonstration. It 
is the case of epitaxial deposit BaTiO3 film deposited on MgO buffered sapphire substrate: 
BaTiO3(100)//MgO(100)Al2O3( 0211 ) [129] where the interface BaTiO3/MgO is very abrupt 
whereas MgAl3O4 layers appear at the interface MgO/Al2O3 (see figure 18). This alloy layer 
thickness depends on the subsequent deposition time of BaTiO3 deposited at 1100°C, the 
MgO layer having been deposited on Al2O3 at 650°C only. 
 

 
Figure 18: BaTiO3(100)//MgO(100)Al2O3( 0211 ): Lattice image of the MgAl2O4 spinel 
reaction layer between the MgO buffer layer and the sapphire substrate (courtesy of C.H. Lei 
et al [129]) 



 

(iii)  Interesting to study is the surface of a strained alloy where compositional and 
morphological instabilities occur both [130-141]. Undulations become totally unstable for all 
wavelengths. Islands nucleate at different composition than the alloy layer, stress induced 
nucleation rate is drastically increased. Experiments are far behind theory. 

Last but no least lets mention very important practical but trivial effects: misfit changes that 
occur at the end of a growth process when temperature comes back to normal temperature and 
the different dilatation coefficient are not adjusted. 

 
 

4. A FEW REMARKS ABOUT INTERACTING CRYSTALS 
 

Up to now we have only described isolated epitaxial crystals. Generally one has to do with a 
collection of crystals so that when their mean distance L  approaches their mean sizel, these 
crystals may interact. We will distinguish two types of interactions. Even when the crystals 
are far one from another, l<< L , they may exchange atoms by surface diffusion on the 
substrate provided the surface diffusivity is high enough. At smaller distances l≈ L , there is 
furthermore to consider elastic interaction of the crystals via the substrate.  

*  When the equilibrium shape of a 3D crystal (Volmer Weber case) is realised putting 
equation (d) in equation (e) of table II it follows the generalised Gibbs Thomson equation 
[87]: 
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Relation (66) says that an equilibrium crystal of finite size l eq has an excess chemical 

potential ∆µ with respect to a bulk and non-strained crystal. The first term of (58) corresponds 
to a hyperbolical decrease of ∆µ with size l eq as in the classical Gibbs-Thomson equation. 

The second term represents the contribution to chemical potential of the strained but relaxed 
crystal at its equilibrium shape ratio req. For usual elasto-capillar length Y/γ  (see section 
3.2.3.2.) this term contributes to less than 5% for misfits as high as mo=5.10-2. Thus the 
smaller the equilibrium shape leq , the higher the chemical overpotential. So at 

thermodynamic equilibrium, the usual Ostwald ripening still holds: small crystals loose 
molecules in favour of the bigger ones***** . However kinetics when limited by surface 
diffusion may oppose to this thermodynamic tendency towards Ostwald ripening.  

For coherent epitaxies a continuous layer is fully strained at its natural misfit om  (see 

section 3.2.3.1.). Thus a collection of islands initially relaxed, when coalescing, have to strain 

back to om  at layer completion. This was first mentioned by Cabrera [141] who said that this 

proceeds by the overlapping of the substrate strain fields when the island borders come closer. 
This means that, when close enough, two islands communicate by the substrate. This must 
affect the equilibrium shape of each crystal since the greater the coverage, the greater the 

                                                 
*****  This may be different when the various crystals have different shapes.  In this case, owing to its specific 
shape, a great crystal should have a greater chemical potential than a small one. In this case there could be a size 
selection.   



 

elastic energy. In [87] we have studied the equilibrium shape ratio of interacting box shaped 
crystals (Volmer Weber growth) and shown that interacting crystals have a shape ratio r 
which deviates from that of isolated crystals. More precisely, the near equilibrium growing 
crystals prefer to thicken rather than to come closer to the borders and finally to coalesce. 
Obviously the harder the substrate, the smaller the deviation from the equilibrium shape of 
isolated crystals. Nevertheless these elastic interactions should also affect Ostwald ripening 
since now the mean elastic energy per atom that contributes to the total energy becomes 
coverage dependant. Floro et al. [142] tried to introduce such a contribution to the mean 
energy per atom by writing the usual chemical potential as [ ])(/14 , θγµ peqA +=∆ l . The mean 
field term )(θp  they introduced was obtained by finite elements calculations and found to be 

proportional to ( ) 1exp 2 −θ  where θ is the surface fraction covered by the islands. In this case 
the authors found that Ostwald ripening is enhanced by elastic repulsion as soon as elastic 
interaction in between deposited islands plays a role, that means for high coverage close to 
coalescence. The results thus obtained are compatible with their experiments [142]. 

• Such elastic interactions have also been proposed to be the driving force for self-
organised growth [143,144]. Indeed, if in an array of islands one of the island deviates in size 
or shape, its neighbouring islands feel the change. It therefore installs a driving force for 
material transport restoring a uniform size and shape distribution, if temperature is high 
enough.  

In the case of multilayers films, the repeated deposition of layers enhances the self-
organisation, so 3D islands may organise progressively in a uniform and regular pattern [150]. 
The theoretical description of such organisation in multilayers has been given by Xie et al. 
[143] then Tersoff [145], and called vertically self-organised growth.  
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APPENDIX A 
 

In the case of a (001) biaxially strained (ε1=ε2=m0) layer (σ3=0 at the free surface) of a cubic 
material, the relation (3) can be written: 
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where we use the Cij matrix for a cubic material (x1,x2,x3 being the fourfold axis). The 
compliance matrix has the same form. For cubic material Sij and Cij are connected via the 
following relations [15]: 
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Notice that Cij and Sij  coefficients can be inverted. 
The previous relations between σ and ε thus give  
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The elastic energy density (5) thus reads  
2
0

2 mEw D
cubel =  
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CCE D −=−+= ν  define the two dimensional 

Young’s modulus and Poisson’s ratio for this orientation [19,20]. 
 
In the case of  (111) strained layer one obtains ( ) ( )441211121144 4226 CCCCCCY +++= . 
 For less simple cubic orientations see [146].  
 

 
 

APPENDIX B 
 
The mathematical definition of the principal value (vp) is: 
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APPENDIX C 
 

By writing the strain tensor in terms of displacement: 

dV
x

u

x

u
dV

i

k

k

i

V

ikik

V

ik 








∂
∂

+
∂
∂

= ∫∫ 2

1

2

1

2

1 σεσ  

Integration by parts transforms the second member in a surface integral: 
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The last integral is zero since in the bulk of the solid the bulk density of force components 
(1), kiki xf ∂∂= σ  have to be zero when no body forces as gravity or others are acting. In the 

first integral kn  are the components of the unit vector normal to the surface so that ikik fn =σ  

are surface force density components creating the displacement dSufw i

S

iel ∫=
2

1
. 

 
 

APPENDIX D 
 
For semi-conductor films, the situation may appear simple since it seems that a film of 

roughly 1 to 3 monolayers can already be considered as an elastic continuum where bulk 
constants are roughly valid [147,148]. This may come from the short-range potential 
describing semi conductor bondings. For other materials the situation is more complex since 
now the bulk elastic properties must be size dependent. However a simple model of size 
dependence of the biaxial modulus of thin film has been published [71]. In this paper Streitz 
et al. have calculated the thickness-dependent biaxial modulus Y(h) of thin metal films 
(thickness h) as the second derivative of the total energy ∆U per unit volume with respect to 
strain. They show that for Co, Ni, Ag and Au with (001) or (111) orientations,  size dependent 
biaxial moduli obtained from atomistic simulations are perfectly fitted by a simple analytical 
model where ∆U= ∆UB + ∆US  with ∆UB the volume strain density energy of an infinite 
material (characterised by the usual bulk biaxial modulus) and ∆US  the work done against 
surface and interface stress. More precisely using their relation (18) the biaxial modulus of a 
thin supported film reads in the framework of the assumptions herein (linear elasticity, strain 

independent surface stress) ( )[ ]321)( // −−= ∞ ηεYhY  with   
A

ABA

A

A

h

ss

E

+−−= νε 1
//  and where 

xxzz εεη −=  is a function of the Poisson ratio. Thus the biaxial modulus Y(h) of a thin film 

scales with the reciprocal of the film thickness and reaches the usual bulk value Y∞ for 
increasing thickness. Thus in the framework of linear elasticity it seems that it is formally 
equivalent to use size-dependent bulk elastic constants or to properly consider surface stress. 

 
 

 
 
 
 
 



 

APPENDIX E 

 The proof is: the short range behaviour reads ∏ −Φ=Φ ∞

z

zz
0

)1()( , ∏ the Heaviside 

function and from (32) with θ=0, V=0 
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so that now in table II for 0<Φ∞  there is 
∞Φ

−∆
=−

-
Eoz

µδ )1( . Since oE<∆µ  the ratio is 

positive so that the solution is z*=1 and also for ∆µ=0, zo=1. 
 
APPENDIX F 

From a thermodynamical point of view the number of interfacial dislocations may pass from 
N to N+1 when the total energy change due to the introduction of the (N+1)th dislocation is 
negative. The elastic energy stored by the system of 2xN orthogonal dislocations exist can be 
roughly written [80] for isotropic solids 

VRYmS
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b
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22 ')ln1(
2

'
2 ++−= λ

π
      (i) 

where the first term is the energy of a double array of perpendicular non interacting 
dislocations with 1/EAB=1/EA+1/EB the reciprocal “interfacial modulus” (EA=YA/(1-νA) and 
EB=YB/(1-νB) are the elastic modulus of A and B respectively), b the Burgers vector 
component in the interface, m0-m’ the part of the misfit accommodated by the (N+1)th 
dislocation pair and λ a cut off. When h<d where d is the equidistance in between dislocations 
there is λ=h, if not there is λ=d/2. When there are N interfacial dislocations the released 
elastic misfit is obtained from Vernier considerations. It reads  

NABSNbmm /' 0 −=           (ii) 

where 
NABS is the interfacial area for a crystal having N interfacial dislocations. The 

thermodynamical criterion for the (N+1)th dislocation entrance is thus obtained from 
01 <−+ NN EE  that means when  
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Where K=EB/EA is the relative rigidity, and R the relaxation factor. For a thin 
pseudomorphous infinite film there is R=1, ∞→ABS and λ=h/a so that the previous relation 
reads  
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         (iv) 

which is nothing other than the usual Matthews relation giving the critical height beyond 
which dislocations may appear in a pseudomorphous film [80]. Let us note that more precise 
expressions of h have been given in literature (for a review see [149]) but above relations 
roughly give the good order for reasonable misfits (a few %). 

 
 



 

APPENDIX G 
The elastic energy of a film in presence of surface stress can be written  

( )ζahsmhmmE AAfilm /exp(1'2')'( 2
0 −−∆+= ∞E  

The first term is the bulk elastic energy stored by the film of height hA. The second term is 
the work against surface and interface stresses corrected for long range exponential inter 
layers forces [69,70]. In this latter term ∞∞∞∞ −+=∆ BABA ssss  is the surface stress change due to 

the film. The value of m’ which minimises Efilm+Edisl is:   
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 where AB EEK =  is the relative rigidity of the 

substrate with respect to deposit and where we put for the cut off distance λ=hA in the 
expression of Edisl.  

The film thickness hc beyond which the first dislocation entrance becomes energetically 
favourable is then obtained by setting m’=mo in the previous relation. Thus there is:  
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The critical thickness is therefore amended (compare with last equation in appendix F) by 
the surface stress effect. 

 
 

APPENDIX H 
 

As known [6,92] homogeneous classical nucleation barrier amounts to 1/3 of the total 
surface energy of the nucleus : 
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The nucleation rate reads [ ]kTFdtdN *exp* ∆−≈ν  with ν=1013 sec-1 an attempt 

frequency. Thus a nucleation rate 1* ≈dtdN  which is quite reasonable gives 

30* ≈∆ kTF           (iii) 

Since ( ) 522 2 << kTaAγ  is a quite usual surface energy at evaporating temperature the 
operative critical nucleus contains 

15<N*<60           (iv) 
molecules. From (ii) it results the supersaturation range 22 53 akTakT <∆< µ or compared 

to oE , ( )2
oo Yamµµ ∆=∆ E , oE =1012 erg cm-3, mo=2.10-2 gives at T≈103K  
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µ

           (v) 



 

Non-classical nucleation is that one where the nucleus size N* is so small (N*=1,2,3…) that 
the macroscopic concepts of surface energy no more holds. Then additive bond energies are 
convenient to define each cluster (see Walton’s simple theory in [92, 106] or papers as [113]. 

 
 

APPENDIX I 
Exact calculations of the dipole moment Aij of adsorbed atoms on a substrate can be done 

precisely when the interactions in-between two ions (i) and (j), jix ,   apart, are well 
represented by a pair potential ( )jix ,Φ . Indeed, using the concept of point forces the 

components of the force of an atom (i) acting at jix , is : ( )jiji xxf ,, rr −δα  with 
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the total distribution of forces thus reads( ) ( ) ( )
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mechanical equilibrium the first term of the development vanishes  and there is 
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In [26] appendix IV one can find for an ion self adsorbed, but non relaxed on the (001) face of 
the NaCl-structure type : Aii=0.10 e2/a±2%, i=1,2 with a the shortest equilibrium distance 
between opposite ions, e2=1.5 10-7 eVcm  per ion so that for a= 2 10-8 cm Aii=0.75 eV (i=1,2). 
More generally, comparing with the cohesion energy of this structure type 
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. with M=1.7486±0.05 % the Madelung number per ion, m the Born 

repulsion exponent (8<m<12). Therefore 
1
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−
=

m

m

M
WA cohii , i=1,2 or the narrow 

estimation valid for all the alkali-halide series, 0.12< .cohii WA <0.13 (i=1,2). Notice the 

peculiarity of the (001) faces .33 cohWA <10-3. 

More crude estimations have been done with Lennard-Jones (6-12) interactions. [25] gives 
A=4.5 eV for Xe on (111)Au, [23] gives A=0.23 eV for Ar/(111)Ar. Finally Duport et al. (see 
[124] appendix A2) scaled .11 cohWA =0.17 and .22 cohWA =0.07  for the self adsorbed atom on 

the border of a hypothetic compact two-dimensional crystal.  
 
 

 
 
 
 
 
 



 

APPENDIX J 
 
Using (12), the expression (17) of the elastic interaction of 2 elastic defects (1) and (2)  

(located at the surface z=0) reads: 
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and ( ) ( ) ( )[ ] 2/1222 2'' ayyxxr +−+−=  the in-plane distance in between the two defects. A cut off 
distance 2a is introduced to avoid local divergences. 

For our purpose the step on a stressed body is described by an elastic monopole whose x 
component (perpendicular to the step and directed towards the lowest terrace) reads 

)()( xFxF mo
x

rr δ=  with am
Ea

F o21 ν−
== whereas the elastic dipole is described by 
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rδ is the Dirac function. Thus injecting these expressions in (i) 

one obtains easily by using substitution properties of the Dirac function: 
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The interaction in between a lines of defects and a single defect located at a distance x=L of 
the line is thus obtained by integrating (ii) along the line y with x=L. Then the interaction in 
between two lines of defects is obtained by multiplying the previous result by the number of 
defects in the second line. The expressions of table III are the first order development of these 
expressions for y→∞. 
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