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ABSTRACT

These lectures deal with some elastic effectsyistal growth. We recall some basics results
about the elastic description of a bulk solid atsdsurface, then we emphasize on surface
stress and surface strain quantities and on thaigiésn of surface defects in terms of point
forces. Then we focus on the morphological stabiht a stressed surface and epitaxially
strained crystal as well. We will show how surfateess modifies wetting conditions and
how bulk stress modifies the equilibrium state. Bbr growth (perfect wetting) bulk strain
modifies the chemical potential of each layer and tb finite size wetting we introduce, it
results a number of equilibrium layers for eachasgr undersaturation.

For 3D growth (no perfect wetting) the epitaxialess acts against wetting and leads to a
global thickening of the equilibrium shape. We alsoow how elastic relaxation is a
prerequisite for the simultaneous existence of &is and 3D crystals (Stranski Krastanov
or SK growth). In the three cases of 2D, 3D or Siked mode, beyond some critical size,
plastic relaxation may occur. In a last part wesitder elastic effects on growth mechanisms.
We show that, except for Stranski Krastanov grovwtk, activation barrier for nucleation is
not significantly influenced by strain. In contrastain plays a role on the detachment rate of
atoms (strain lowers the barrier to detachmentaa from laterally large islands in respect
to laterally small islands) and then on kinetickeit we focus on strain effects on step flow
growth and show how step-step and/or adatom-stgiielinteractions may give birth to a
supplementary net force on each adatom. This foragifies the net current of adatoms and
thus leads to some new growth instabilities. Théase diffusion coefficient itself may also
be modified by strain but without noticeable mazhfion of growth mechanisms. At last we
mention some collective effects.

"Associé aux Universités Aix-Marseille Il et I11.



INTRODUCTION

Since Royer [1] the regular oriented over-growthaofrystalline material A onto a single
crystal surface B is called epitaxy. Two latticar@s of A and B and at least two lattice rows
come in contact and in case @fherent epitaxyaccommodate their two dimensional (2D)
misfit. By this means the couple A/B stores a d¢eréanount of elastic energy. The so-stored
elastic energy has been recognised so far as a&esair mechanical problems such as
cracking, blistering, peeling... Then for many yetirs main problem of crystal growers was
to avoid strain by choosing very low-mismatchedteryss. Nevertheless it has also been
recognised that stress can modify some crystalgoties. This is the case of the functional
performance of devices such as the possibility aridsgap engineering involving strained
structures [2] or the correlation between mechargtress and magnetic anisotropy in ultra
thin films [3]. These technological consideratidras/e stimulated crystal growers to consider
also crystal growth properties induced by stressvetheless the problem of formation of a
strained crystal on a single crystal is complexe dltificulties basically have three origins.

The first difficulty arises from the fact that sendhe equilibrium shape of a crystal
essentially depends upon surface energy considesaf4,5], a good description of the
thermodynamic state of a strained crystal needscturately define the role of stress and
strain on specific surface energies. This can beedxy properly defining surface stress and
strain quantities as partially done by Gibbs [6huleworth [7], Herring [5] and others
[8,9,10].

The second difficulty arises from the fact that madrains are anisotropic and
inhomogeneous. Indeed on one hand because of tegoReffect the in-plane strain due to
misfit accommodation is accompanied by a vertigadasite strain. Furthermore on the other
hand, islands or nuclei can relax by their edgdssi@usly this elastic relaxation depends on
the shape of the island and therefore cannot beogeneous! Thus a good description of the
bulk elastic energy needs to calculate accuratabtie relaxation.

The third difficulty arises from the fact that, evereak, the elastic effects dominate at long
range. Thus elasticity may also affect long-rangdhdviour usually driven by surface
diffusion considerations. In other words not one tenergetics of crystal growth may be
altered by elasticity but kinetics behaviour magodbe altered.

Our purpose in these lectures is to describe sdastieeffects on crystal growth. For the
sake of simplicity we will only consider pure culbmaterials A over B and furthermore do not
consider alloy composition, especially changes ¢eduby strain (except briefly in section
3.3.4.). Furthermore as in most of the analyticaimulations we will use macroscopic and
linear elasticity. For too high misfits (>1%) limég may fail, for studying the first stages of
growth as nuclei the macroscopic treatment mayuastipnable too. The main advantage of
linear elasticity is the possible analytic formtloé results (even when complex) that gives the
basic tendencies. Obviously in a specific treatnteeses results have to be compared with
atomistic (if better) calculations.

Last but not least, though kinetics may more es lglow down the realization of the final
state, thermodynamics remains the primer way tb w#lat is possible so that in the
framework of these lectures we first focus on thrmatymamic properties then on kinetics. The
lectures are divided into three parts correspondapgroximately to the three above-
mentioned difficulties.

In the first part (section 1.) we will recall sofasic results of the classical elasticity theory.
Since considering crystal growth and thus surfasenpmena, we will focus on the accurate



description of elastic properties of surfaces. thas purpose we will introduce surface stress
and surface strain as surface excess quantitiegefoore since crystal growth often starts
on surface defects (such as steps) we will alsordbeselastic fields induced by such surface
defects (adatoms, steps, domains...)

In the second part (section 2.) we will focus oasgtity effects on the macroscopic
thermodynamic state. For this purpose we will nevBauer’'s thermodynamic analysis of
epitaxial growth [11,12] by taking into account stla energy of bulk and surface as well.
More precisely we will consider elastic effects two dimensional (2D), three dimensional
(3D) and mixed 3D/2D (or Stranski-Krastanov) growtbdes. We will see that, even weak,
elasticity may play a major role on the equilibriypnoperties such as the number of
equilibrium layers of 2D film or the equilibrium @ect ratio of 3D crystals. More exciting is
the fact that, if in absence of elastic relaxatibare is no place for the Stranski-Krastanov
growth mode in equilibrium conditions (except irseaf some exotic structure change or for
Kinetics reasons) elasticity considerations opeplaae for equilibrium Stranski-Krastanov
transition.

The third part (section 3.) concerns elasticityeetif on microscopic or elementary growth
mechanisms. For this purpose we will see how elasteractions may influence nucleation
and step flow. In the first case we only have tosider the role of the elastic interactions on
the nucleation activation energy. In fact it wik lvery weak. In the second case we will
reconsider usual kinetics formulation of step flavith as a new ingredient an elastic
contribution to the net current of adatoms duetép-step or adatom-step elastic interactions.
The main effect of elasticity is then to favour thppearance of new kind of surface
instabilities.

At last in a short conclusion we will mention soslastic effects we do not take up in detail
in these lectures.

1. ELASTIC DESCRIPTION OF A SOLID AND ITS SURFACE

1.1.Elastic description of bulk phases

When a bulk material is stressed (resp. strairto@comes strained (resp. stressed). Stress
and strain are connected by the elastic constdnfseomaterial. Many textbooks deal with
elastic properties of solids, fundamental aspegeven in [13,14] whereas [15] essentially
focus on anisotropic properties.

In this first section we only recall some fundana¢cbncepts.

1.1.1. Bulk stress tensor

Let us consider an elementary parallelepiped (veldivi=dxdx;dx,) centred on a point xn
a stressed solid (see figure 1a). Each of its fgae=sa dxdx) normal to the x(i,j,k=1,2,3)
direction is submitted to a force per unit are@r@ssure when negative) whoSecbmponent
readss, in the homogeneous case oy, +1/2(da, /0x )dx, up to the first order in the
inhomogeneous case (independent @f Xkhe bulk stress thus is defined by a third order
tensor of rank two d]. The three g, components describe normal stress whereas

o, components with#k define shearing stresses. The componentsf [o] are not invariant
under axis rotation (only the trace of the tensbpse mean value equals the mean negative



pressure is invariant). As for all symmetric secoaick tensors, the components transform as
o' =a_a o, wherd a; are the components of the matrix of axis transféiongd15].

mi —n

Figure la: Action of the components; of
the bulk stress tensor applied on the three
front faces of the elementary cube. Each face
normal to xbears a tripletay;, 05,03, the first
index i=1,2,3 giving the direction where the
stress acts. When i=j they are normal
stresses, wher¥j they act in the face. On the
back faces of that cube are acting identical
stresses of opposite signs or slightly different
ones for inhomogeneous stresses.

When the elementary parallelepiped is in mechangzplilibrium that means when no
resultant force or torque displaces or rotateshi, bulk stress tensor fulfils the following
conditions [15] (see foot note)

00, /ox, = f, and gy =0, 1)

wheref; is the " component of the bulk density of forces. Bulk dsnef forces generally
comes from gravity and can often be neglected wdosmsidering nano-crystals. Owing to its
diagonal property (1), the bulk stress tensjrdan also be written as a 6 dimensional vector
with o, =0,, 0,=0,, 0,=0, and o,=0,(Voigt notation). However g,

components transform differently thar) components under axis transformation [16].

1.1.2. Bulk strain tensor

. . . 1(0u, OJu
The symmetric bulk strain tensor components arsmeéfby &, ZE(O_I +6_kj where y
X, X

are the components of the displacement field [13,IBe artificial symmetrisation of the
strain tensor avoids considering a simple rotaéisra deformation [15]. The, components
describe the relative elongation of an infinitedinhength parallel to axis x whereas
ml2-2¢, with izk is the deformation angle measured between twagsir lines initially

parallel to axis xand x respectively. As fow; , the traceg; is rotation invariant as it should

be obviously since it represents the bulk dilatatio
As for the bulk stress tensor one can define a ®edsional strain vector as

=g, ¢&12=¢, &I12=¢, and ¢,/2=¢,, where the factor 2 is introduced for
further simplifications. Let us note tha (resp £,,) components transform as, (resp g,,)
components [15,16].

T We use Einstein notation, thus summation has teebformed on repeated indices.



1.1.3. Hooke’s law
In the framework of linear elasticity, relationstipetween stress and strain can be written
up to the first order as

{O-ik = Cikmn‘gmn
gik = S Jmn

Ikmn

(2)

where Gwn and Smn are called stiffness and compliance coefficiemspectively. These
coefficients describe the elastic properties ofrttagerial. Since stiffness [C] and compliances
[S] are fourth rank tensors, they contain in 3D cBinponents which transform under an axis
transformation a<C' = @,,8,,8,,,8,,C In fact owing to stress and strain tensor isign

mqg—nr opqr *
symmetry and energy invariance as well, these tensmly contain 21 independent
components. Furthermore crystalline symmetries rifesit) reduce the number of
independent components from 21 for triclinic crist® 3 for cubic crystals [15]. Isotropic
material (such as glass) are simply described lyetastic constants.
Obviously, using the vectorial (or Voigt) notatioh stress and strain tensors, Hooke’s law
(2) can also be written

o, =Cy &
_ (3)

gi - Slk Jk
with i,k=1,2,3,4,5,6 C,, andS«thus are 6x6 matrices inverse each other. Thegyareensors.
Relationships between tensorial and matrix comptsnare C;,; =C,, with ii=m whatever
i#), m=4 for ij=23, m=5 for ij=13 and m=6 for ij=12n contrastS,, =S, for m and n
=1,2,3; 2S5, =S, for m or n =4,5,645,, =S, for m and n =4,5,6 with as in section 2.1.
ii=m whatever i, m=4 for ij=23, m=5 for ij=13 and=® for ij=12*. Elastic constants values
are generally given in this Voigt notation for somparticular crystallographic orientation
[17,18]. For other orientations the elastic constdnave to be recalculated by the very lengthy
transformation of the components of the fourth raeksors [C] or [S]. Once the
transformation has been performed the elastic terc@m be again written in Voigt’'s notation.

Some usual transformations can be found in [19,B0}, for a very efficient and general
matrix method see Angot [16].

1.1.4. Bulk elastic energy
The elastic energy can be defined as the work effahces per unit areast ) against the
bulk deformation €, ) and thus reads for a material of volume V [13]

" 1
W2 =, 5,dv @)

* Let us warn that some authors use different degfims.



For homogeneous stress and strain one thus caim @bth (2) or (3) the energy density (4)
under the following equivalent forms

aw™ 1 1 1 1
Wi = d\I/ 2C|kmn‘9|k‘9 = SkmnaikamnzacikgigkZESkJiUk (5)

In most of the practical cases elastic energy maydughly estimated by assuming the
material to be isotropic and thus only describediviy elastic constants:C(S;;) and G»

(S12) in matrix notation or more currently the Young dotus E2° and Poisson ratios>”
defined by [15]

3D _ (Cll _ClZ)(Cll + 2C12) _1

E- C12

=1 and =G o S ©6)
Cll + C12 S.l.l Cll + C12 S.l.l

For an isotropic material the elastic energy dgn@&j when isotropically strainede( =¢)
thus reads after development of (5) with (6)

3D
W, =g 7)
a-v) )

For anisotropic crystals, relation (5) and corregfiog elastic constants have to be used.
For biaxially strained films things can nevertheldse simplified by introducing two
dimensional Young modulus and Poisson ratio. Fstaimce let us consider a (001) biaxially
strained layer £, = £,, =m,) of acubic crystal Thus from appendix A there is:

0oy _—

Wl = Efo (001 r‘no

2
withEZo, =C,, +C,, _oCn and V2 212 C
(00 C (001) C

11 11

whereEZ =C,, +C,, —2C2/C,, is the two dimensional Young modulus in the (1&®e

plane (see appendix A). Notice that in all the sabe elastic energy density is quadratic in
respect to strain. For other crystallographic degons elastic constants have to be
transformed under axis rotation. Howevke elastic energy density of epitaxially strained
layers can always be writtgim absence of relaxatioander the form

w, =Yng (8)

where Y is a combination of elastic constanfso€S;. UsuallyY =10'* erg.cm?® =10°F GJm®
the elastic energy density is of the order of thengical bonding (2 eV/a0.25GJnT) for
strain my of roughly 5%. Obviously such important energy dignsannot be neglected when
formulating thermodynamic description of crystabgth, as we will see in section 3.

1.2. Elastic description of ideal planar interfaces
The elastic properties of surfaces can be desciilyesurface stress and strain as excess
guantities as first described by Gibbs [6], Shuttgh [7] and Herring [5] (for surface stress)



then Andreev and Kosevitch [8] and Nozieres and fW8L0] who furthermore introduced
surface strain. In the following we will follow N@zes approach.

1.2.1. Surface stress
Let us consider an infinite coherent planar integf@vhose normal is the axig)*n between
two bulk phases | and Il both characterised byrtbein homogeneous stress tensgr and

aiu. Since in the infinite interface the stresses oantepend on in-plane;xand X%

coordinates, the mechanical equilibrium conditid, (vritten in absence of bulk forces f
gives at the interface £x0);00.,/0x, =0.

Figure 1b: Surface stress as an excess of
X, bulk stress second rank tensor. Schematically
for the surface ¥0 as a perspective view. It
contains theo,, and o1, (or o1 and oiy)
components at different levels. At surface

equilibrium O33= 013= 0>5=0 and
012(X3)= 021(X3). The surface stress is thus the
excess

5P = [0, (X5)dX, /[ dXs =0y (X5 ~e)
(1,j=1,2). Obviously it is an intrinsic material
property independent of the external stresses
applied on the body.

Thus there is no interfacial excess of the components. In contrast, at the interfacgQx
0'"! % ai}' (,j=1,2). The interfacial stress componensage thus defined as the surface excess

quantity of the componentd;; (i,j=1,2) of bulk stress tensor. Obviousdy (i,j=1,2,3) with

s3=0 when relaxed in respect to surfage In figure 1c it can be seen thags equilibrium
is a degenerated 3D, second rank tensor or 2D degaok tensor. On figure 1b we sketch and
precise surface stress excess at a vacuum-crytaeiice.

1.2.2. Surface strain
Let us suppose that there is forced lattice colverémom bulk phase | to bulk phase Il along

x3=0. Then by definition of coherence at the integféere iss', = &) with i,j=1,2. Thus one
only can define the interfacial strain tenspras the excess of the componeafse;' of the

bulk strain tensors. When one bulk phase is a thuidacuum, the solid neag=0 presents an
intrinsic excess otj3 depending on the symmetry. It is called: surfagairs As surface
stress, surface strain also is a symmetric secamkdtensor g(i,j=1,2,3) with =0 (if i,j=1,2)

(for the surface 30). In figure 1c we illustrate the complementagature of surface stress
and surface strain. Let us note as underlined tgié¥es and Wolf [9,10] that if generally the
€33 component is an elastic relaxation it can alsoesmond to a mass transfer across the
interface. It is important to notice that surfatess and surface strain being surface excesses,
in the framework of linear bulk elasticity and aechanical equilibriumsurface stress and



surface strain are independent quantities. In otkards there is no Hooke law for the
surface[8]. Furthermore they are bulk stress and straidependent.

S; S, O 0 0 e,
s]=ls: s 0| ; [e]=|0 0 e,
0 0 0 €& ©; €

Figure 1c:lllustration of the complementary nature for a givace (3) of the two intrinsic
surface properties, sur(inter)face stress andhsatanechanical equilibrium.

1.2.3. Surface elastic energy

The surface (resp. interface) elastic energy caddb@ed as the work done to deform the
surface n (resp. interface). It simply reads ferititerface n=3 [9,10],
W :J'(aigq’; +57'€; hshwith i,j=1,2,3.

When the bulk phase | is vacuum and the phasesdlid, the mechanical equilibrium (1)
gives at the surfacex0, g3 =0/, = 0. Then the surface elastic energy reduces to

W = [s)g,dS, 9)
The integral is performed over the non-deformedieser.

In fact (9) is the original definition of surfactresss of Gibbs [6]The surface stress] of a

face n is the work done to deform the surface @ @nstant number of atomSurface stress
thus must not be confused with the surface engr@ie energy of creating a surface without
deformation) of the face n, which is the work doaereate this surface at constant strain. In
fact for a free crystalline face there is [7]

oy,.S 0S 0
S?z (yn n)=yn n+Sn yn_
¢, o¢; os;

ay
=y, 0, +—" 10
TThO T (10)

whered; is the Kronecker symbol. Relation (10) known asit8éworth relation [7] shows
that for a liquid (where a surface cannot be deéatrat a constant number of atoms so that
dy,/0g; =0) surface stress and surface energy are numerieglial (see more complete
discussion in [104]). In order to recall the phgsidifference between surface stress and
surface energy it is common to expressas a force per unit length agdas energy per unit
area. Notice that these two quantities have theesamagnitude (0.5JR). Howevery, is
always a positive quantitg] can be positive (tensile component) or negativenfaressive
component).



In the following for the sake of simplicity we wilnostly consider isotropic surfaces
(symmetry greater than binary axis) where the serfidress tensor'|sreduces to a scalal s
for a given orientation n but nevertheless varié wrientation in a cubic crystal. Only in
amorphous materials s agp@re direction n-independent.

1.3. Elastic description of real surfaces
It is well known that surface defects such as adator steps change the surface energy. For

instance, foreign adsorption decreases the sueiaeryyy by a quantitydy/du = - wherep

is the chemical potential of the adsorbed speamsliathe adsorption density [6]. On the
other hand the surface energy of a vicinal surfdemgle a) can be written
y=y,+B,p+ B,p° wherey, is the surface energy of the terrace (reference féth a cusp

in the y-plot), p=tgx the macroscopic slope of the vicinal face gidome coefficients
depending on step enerdd) and step-step interactiof.] (for a review see [21]).

In fact adatoms and steps also create a straid iirekhe otherwise flat surface and the
underlying bulk substrate as well. Thus a compéddstic description of crystalline surfaces
must include an elastic description of the defekttdeed we will see (section 3.) that such
elastic defects may have dramatic effects on drgstavth mechanisms.

1.3.1. Elastic description of adatoms

In 3D elasticity it is well known [22,13,14] thétd field of elastic strain far away a bulk
defect located at x%k can in the solid be calculated by consideringabiion at x>¥ of a
point force F(x-¥) located at x=X. At mechanical equilibrium these forces reducetuthe
first order) to a localised force doublet. Its campnts can thus be written:

Fa(x—x“))=Aaﬁ£5(x—x(”) (11)
4

(M)
i Xg,

;Xz;a 3D tensor withf, |

J

whered(x) is the 3D dirac functiono(f=1,2,3) andA,, = Z f,
j

thea™ force component in between the defect i and ajoi]% (componentsxy) apart. The

point force at (i) (11) produces in the planaraalidisplacement field whose componeuits
are [9,13,23]:

u ==y j D,; (X', \)F 5 (x—x)dx® (12)
B

where Qg(X’,x) is the 3D Green tensor given for isotroplastic bodies in classical papers
[13,22] when (i) is located at the surface [13] aneen in [22] when located in the bulk.

In a seminal paper Marchenko and Parshin [24] walig Lau and Kohn [25] consider
adatoms as true 2D elastic surface defects andntledel them by 2D point forces doublets.
In other words they use relations (11) and (12)dny with a,$=1,2 [24,25] and use the 2D
Green tensor [13] to calculate elastic displacem@mtthe plane of the surface. In fact, as
depicted by Kern and Krohn [26], adatoms produéaree distribution around them and thus
distort also the underlying bulk substrate. Adataimss must be described as 3D defects
(a,=1,2,3 in (11) and (12)) and the displacement figddtulated by means of 3D Green
tensor [22]. The 3D dipole can only be reduced gaone when the normal component of



the force exerted by the adatom onto its underh@ngstrate can be neglected (see such a
specific case in appendix I).

1.3.2. Elastic description of steps

* Step on a stress free body:

As an adatom, a step is not a true surface defettraus can be described as a row of 3D
(and not 2D) dipoles. In the following we assume steps (located at=x0) parallel to the
direction %, furthermore we assume that the steps are infimiteis direction. Thus the point
forces describing the displacement field due ttep san be generally written

R 0
F=A, agl o(r)+ A, 633 o(r) 13
Fs :A“EJUHA”G_)%JU)

Nevertheless as shown by Marchenko and Parshin BR4dreev and Kosevich [8] and
Nozieres [27] a step has a non-vanishing momededd since a step divides the surface in
two equivalentterraces, it is submitted to the surface stredstisectwo neighbouring terraces
which exert a torque of moment sh (h being the litedd the step) and thus tends to twist the
crystal.

Obviously the force distribution (13) must resttine torque. For a high symmetry surface
(sj=s%;), mechanical equilibrium conditions then leadAq — A ; = sh where h is the height

of the step.

Notice that usually, following Marchenko et al. [2d4nd Andreev et al. [8] steps are
described in a simpler way by defining a singlecéodipole F in the direction x completed
by a vertical force dipolegHestoring the moment sh. The point force distidutescribing
the step thus reads:

F = Allia—(r)
% (14)
Fy = A310_X15(r))

with A, = sh. Such a notation is justified in [26] (see sectsoh. of [26])

It is important to notice that when a step separat® domains of different surface stress s
and s (it is for example the case of Si(100) face whamnoatomic steps separate (2x1) and
(1x2) reconstructed surfaces) the point forcegidigion that describes the step must include
a non-vanishing resulting force;{$) near the step before relaxation. In this caselastic
monopole has to be added and thus (14) becomes

F = (8- 5,)000 + A, - 8(0)
, ™ (15)
F3 = Aala_a-(r))
Xl



Obviously A; and A values can only be obtained from atomistic catooe.

* Step on a stressed bady

Last but not least let us note that until now weehanly considered elastic description of a
step on a crystal free of any bulk stress. Howévere is an additional effect at the surface of
a bulk stressed solid (or a non relaxed epitaxagkel). Indeed in this case there is a
discontinuity of bulk stress in the surface heightl the lateral force on one side of the solid
is not compensated by an equal force on the othd. SThe result once more is a
supplementary force monopole located at the sips.intensity of this force naturally is the
bulk stressy (see 1.1.) times the step height h.

Generally for such stressed solids the dipolar rdmution can be neglected (upper order)
and thus the step before relaxation is describettidyollowing point force distribution:

F, = ohd(X) (16)

1.3.3. Elastic interaction of elastic defects
Since surface defects create a displacement fiellde underlying substrate, surface defects
interact by way of the underlying deformation. Tiheeraction energy between two defects is

simply the work done by the force distributide® of the first defect due to the displacement
field u¥ generated by the other defect. It reads [13,14,23

U it =%I f O (x=x")u® (RdV +%J’ £ @ (x-x")u® (Ydv (17)

A lot of literature on elastic interactions betwegmnint defects exists for many situations.
For defects at the surface Rickman and Srolovitzhmoposed a generalised approach [28].
Their results are summarized on table | (in absericermal forces § where each surface
defect is characterized by its dimension (D) asdmiultipole order (m). An adatom thus is
characterized by D=0 and m=1(dipole), whereas p @e1) can be characterized by m=1
(dipoles) or m=0 (monopoles) according to the retfrthe step (step on a stress free surface
or boundary in between two stressed domains) @e@s 1.3.2. and figure 2).

Q@ «—m 0
a) 000000000000 0O0O

00000000000 000O0 . . L
Figure 2: Elastic interaction in between:

a/ 2 adatoms considered as elastic dipoles
00000 «——— d (D=0,m=1),
b) 0000000000 «—m— b/ 2 steps bearing dipoles (D=1,m=1) of
000000000000000 same sign or (and) monopoles (D=1,m=0) of
same sign when the solid is stressed;
c/ 2 steps of opposite sign.

C) OOOOO'A)IOOOOO

000000000000000



Adatom Step Step
dipole on astress free body |  on a stressed body
line of dipoles line of monopoles or
(semi infinite sheet of
— — dipoles)
(D=0, m=1) (D=1,m=1)
(D=1,m=0)
Adatom +d° +d*
dipole (repulsion if same sign) (repulsion if same sign) +xt
(D=0, m=1)
Step
on a stress free body d'2 d‘2
line of dipoles (repulsion if samesign) " "
(D=1,m=1)
Step
on a stressed body In(d)
line of monopoles or +x1 | (attraction if same sign)
(semi infinite sheet of
dipoles)
(D=1,m=0)

Table I: Elastic interaction dependence versus the distal¥®or the abcissac<x<+ win
between some elastic defects when the normal Farég neglected.

The so obtained results are easy to memorize ifanimeits the repulsive law dbetween
similar adatoms (see figure 2a). The interactiotwben a line of dipoles (step) and a dipole
is thus simply obtained by integration along theeland leads to an interaction ifi. dThe
elastic interaction between two steps on a stregstfody (see figures 2b and 2c) is obtained
by integration over the step of infinite lengthtbé d* law then multiplied by the number of
dipoles in the other step giving againalaw). The interaction of adatoms (dipoles) witépst
of a stressed body (the step bears monopoles) gimes' law interaction that means
interaction changes sign with abscissa x. (Nevkatisethe definite sign of the interaction
depends upon the respective signs of monopolesligotes). This result is equivalent to the
interaction of a dipole and a semi-infinite shefetlipoles. Indeed as in electrostatics a semi-
infinite sheet of dipoles is equivalent to a diatition of monopoles located at the border of
the sheet. Thus the interaction between a dipoteaastep on a stressed body can thus be
obtained by a supplementary integration of tifelaw over the various rows of dipoles
constituting the domain and thus give hirteraction law.

At last the interaction between two parallel steps a stressed body (two lines of
monopoles of same sign. (Fig 2b)) gives an intesadaw +In(d). Thisattractive interaction
can be also obtained from the electrostatic eqened from a new integration of thé Jaw
over the various rows of dipoles. Such steps ofosie sign (fig 2c) give a repulsive
interaction —In(d).

From these results it is easy to see that theadtien between an adatom and a stressed
island of lateral size L must vary frontdor large L (interaction between an adatom and a
sheet of dipoles) todfor weak L (interaction in between adatoms andw of dipoles).
Obviously the intensity of the interaction depengi®n the detail of the calculation of the
coefficients Ag but does not change nature and sign.



In fact, for completeness we stress the fact thlathase classical works [8,24,26 ,28]
summarized in table | only hold for semi-infini®otropic substrates where Green’s function
formalism applies. This is no more the case foricebystals [29,30]. On the (001) or (111)
faces of these crystals the interaction energydehtical adatoms become very anisotropic
even with change of sign, however interaction gfotk rows remain with the same sign
whatever their azimuth. More recently Peyla et34],32] showed that for very thin substrates
things change too. For example identical adatonp®sieed onto a true 2D isotropic layer
may attract or repel each other according to the-plane direction. The local force
distribution seems to be responsible. For thickeess this effect goes backwards to usifal d
repulsion valid for thick isotropic substrates.

1.4. Morphology and surface stability of a stressedody

A stressed body may become unstable against umghdabr spontaneous formation of
stressed domains. In this section we will only gbeene semi quantitative arguments for a
better understanding of basic phenomena leadingutd instabilities. In connection with
growth mechanism we will examine another instapitite step bunching in section 4.3.

1.4.1. Asaro-Tiller-Grienfeld (ATG) instability

Since Asaro and Tiller [33] then very later Griddf¢34,35] it is known that a planar
surface of a stressed solid is unstable againsilation. There is an abundant theoretical [33-
41] and some experimental facts [42,43] on thisaim#ty. In the framework of these lectures
we will follow [33,36,39] most simplest argumentor this purpose we consider the free
energy chang@F per unit areainduced by a periodic one-dimensional surfacéulation
Z(xX) =hcos@x) of the surface of a uniaxially in-plane stresselidso=0yx (w is the wave

vectorw=217A, h>0 the amplitude of the undulation, Oz pointimghe solid) (see figure 3).
This free energy change per unit area containstéwuos. The first onéF; is the capillary
energy change due to surface area increase (swf@cgyy being isotropic):

”{ 1+(Z)Zj —1}dxdy

J. j dxdy

I J' [Z)Z(jzdxdy

AFl — Flund. _ Flﬂat =y J.J- dXdy

=Y =Y h2gy (18)
2 4

where the last expression is valid for small slog@®x <1 or h/A <<1

The second termF; is the elastic energy change per unit area indbgetthe undulation.
Even for isotropic elasticity it is difficult to éaulate since it depends upon the detail of the
elastic relaxation. We follow the original pape6]3vith a simplified version of first order in
h/A where the approximation (trick) is to apply sinasdiforces along a flat surface (The
undulation is treated as a surface defect on aaplsemi-infinite surface). In fact along a flat
surface at z=0, as well as in the bulk (z>0), ther the solid an in-plane constant stress
0,,(xz) =0 so that nowheré, forces apply, gravity or other so-called body &xdeing
excluded. But when some 1D undulation z(x) of s@ri@trary amplitude h>0 at the surface
and w=217A is created (fig.3), there develops at the surlsmme excess forces. When the
amplitude is small in respect %9, (h/A<<1) there may tentatively be a force density



f (x,0) :%(az)z aj—j , with f, (x,0) = Oof course and a normal forck (x,0) close to zero

at second order of the slope dz/dx.
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Figure 3. Azaro-Tiller-Grienfeld instability of a planar siace under an external uniaxially
stress g, =o. When the surface develops a 1D sinusoidal undulabcoswx, h>0, Oz
pointing in the bulk, the surface at first ordervé®ps a stress concentration either tensile
(0>0) or compressived<0) in the valleys.

Let us suppose that such a line of fordesx (isOxpplied on the surface of a planar semi-
infinite isotropic solid, according to Love [14]dlstress in excess ofis given by:
+o0 f 1 . 1
o (x0) —U:—EI X(.X 0) dx = 20hw S|rl1a»<
T X=X s X'=X
According to [36] and appendix B the principal \&lof this Cauchy integral igcoswx so
that

dx

(0, (x0) ~0)/7 = 22(x) + 0|y AV |; &, (x0) =0 (19)

Thus at the surface an excess modulation of thdamepstress appears. In figure 3 we
observe foro>0 that valleys bear maximum tensile stress, inrég3 foro<O they bear
maximum compressive stress. Crest at contrary, Bmadler stress than the mean vatye
which is also the bulk value whatever tensile anpcessive.



Hooke’s law under plane strai( = \When the solid is infinite along Oy), at the suda
z=0, associates to the in-plane stress xx theiaAtane strain xx modulation from (19):

1-v?
E

£,(X)= 0, (X) = &, 1+ 2awz(x)) (20)

2
%
o. Due to

, . , . 1
It follows the strain modulation around the mearplane straing, =

. . . : %
Poisson’s effect the normal strain modulates wigipasite phasegzz(x):—l—sxx(x).
-V

Along the undulated surface the lattice parametessy as a,(x)=a,(l+£,(x)),
a,(x)=a,(1+&,,(x)) where g is the parameter of the stress free crystal. i \hlleys
x=nA (fig 3): [a,,(nA)—ao]/ao =g, (1+ 4nh/)l) there is strain concentration whereas on the
crests x=(2n+1: [a,, (2n +1)/1)—ao]/ao =¢,(1-47h/A) there is strain deficit. One says that

the crests relax.
Let us note that the strain-stress modulations tpateein the bulk z>0. The more general

Green's kerneR{%} has to be used. The result for z>0 of (19) is th&lidwvhen its
X'-Z

right side is multiplied by(1-7z/A)exp(27z/A) showing that the in-plane stress damps

exponentially with a decay distanaé&rmtindependent of the amplitude h (at this degree of

approximation). This result and others foy, ox, have been successively obtained by

different methods by [33,34,36,39].

The matter is now to calculate the strain energyupérarea, of the undulated surface, that

means the integral (4, :;J'aikeikdv/jds extended over all the semi-infinite solid z>0.
\% S

This would be a cumbersome task since in the buldkdslaw gives several, components

for eachoy. Fortunately Marchenko [44] showed how to reduus tolume integral in a

surface integral where then tlgg, component is connected to ok, component (see
appendix C) so that

[ und :% £ fyds / £ ds (21)

where f, are the surface force density components indutireg surface displacement
components ju Since on the slightly undulated surface existéy,oat first order, the
f, (x,0) = Zaa)(dddx) component and the corresponding in-plane displanefr@m (20)

1-v?

u, (x,0) = jgxx (x,0)dx= J[X+ 2hsina»<] where we puu, (x,0) = Gy convention. From

(21) with these functions:
Fym = -4{1-1?)o’h’w/E so that for the flat surfack,” = abd



AF, = F —F = —41-v?)o?he/E (22)

We learn that the elastic energy density drops wdrerundulation develop on a in-plane
o,, =0 stressed solid irrespective stress is tensile aonpressive. To this opposes the

surface energy change (18) so that the total ineegy change is
2
AF = AF, +AF, = hz{l—z’w—ﬁlE—")aﬂ (23)

Instability occurs whenAF<0 that means the applied stress, tensile or cesspe,
overpasses the critical value

E 1/2

2 1/2
In terms of critical strain (20) and wavelength )(2dves &, 2{%} . Sincey/E

values of a wide variety of materials [45] are amd®* nm, for usual strails;,=107 as e.g.
epitaxial strain,A=10° nm so that nanoscopic undulations may develop. &4y time
evolution of the surface profile is driven by theemical potential gradient along the surface
[33,38].

Obviously a more complete treatment must contast fieal anisotropy behaviour, then
surface stress and gravity as well. The surfaces&#ect on the instability has been studied
by Grilhe [46] and Wu [44]. An interesting resuldg] is that the symmetry between
compression and tension is broken by surface ssgs® theo® dependence adds @

contribution. If (s-) :Gyag has same sign as the bulk stresthe critical wavelength is

reduced. When introducing gravity [27], a new dtainig term may appear iAF when acting
in a proper direction. The effective contributian ibstability would start at sizes h of the
order of the millimeter. More precisely the ATG isility is thus in between two critical
wavelengths. Only a non-linear analysis can gieetthe final shape [48]

Let us note that Spencer et al. [40,41] have stutie case of an epitaxial stressed layer on
a lattice mismatched substrate but the same lilmitatf constant are used. The free surface
also is unstable in respect to a sufficiently lomavelength but the critical wavelength now
depends upon the thickness d of the strained fiinthe very special case the substrate is
infinitely stiff. Such undulations have been intefjated as a possible origin of the Stranski
Krastanov transition on kinked faces (diffuse fad@s]. For F faces (singular faces) the
origin of Stranski-Krastanov transition will be dissed in section 3.2.3.3.

1.4.2.Spontaneous formation of stressed domains

Marchenko [44] was the first to propose that etastteraction between surface antiphase
domains may lead to periodic patterns due to atarg surface stress discontinuiti#As
(see figure 4a). A special case is for exampleSi{£00) surface that exhibits reconstructed
(1x2) or (2x1) domains of surface stregssasd g according to the level of the reconstructed
terraces. Due to the anisotropy of the flat Si(18@face, a vicinal Si(100) surface can be



represented by a parallel line of alterning monepdiearing the stress discontinuitles-g-

S (see (15) and figure 4b). Alerhand et al [49] tdbks over for this case and made the
balance between the domain boundary creation ersrdyhe elastic interaction that leads to
a selection of the size of the domains.

d, -As
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b) 000000000000 c/ unstable flat face developing
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More precisely for a surface with periodic (periatkd+d,) alternating domains
of size d and q, the total energy per unit length reads [44,49]

_xh 1-v? z[d : d,j . : :
Uu==2—- As” Inf —sinr—- |where the first term is the boundary creation eyerg
d TE 2| d

per unit length X) and the second term the elastic energy whererecagnises the In(d)
dependence (see table I) and where the sinus doomeghe periodicity. The minimisation of
U in respect to dgives the equilibrium size of each domain. Fumiane, stretching or
compressing the crystal parallel to the surface raorthally to the steps favours one type of
domain over the other as found experimentally byblVet al. [50]. More recently, B.Croset
et al. [51] have completed Marchenko-Alerhand’sotlgeby taking into account the elastic
self-energy of each domains so that epitaxial stsimewnhat relaxed by dislocations of
Frenkel-Kontorova type could be considered. For mleteness notice that the Marchenko
elastic interaction is also at the basis of spastas periodic faceting of unstable crystal
surfaces (see figure 4c). For a review see [52,53].

2. MACROSCOPIC THERMODYNAMIC TREATMENT OF EPITAXIAL LY
STRAINED CRYSTALS

2.1. Wetting conditions versus elasticity

Let us recall that three possible mechanisms déxiail growth of a crystal A onto a crystal
B have been recognized: the 3D (or Volmer-Webewtty the layer by layer (or Frank-van
der Merwe growth) and the layer by layer growthideled by 3D growth (or Stranski



Krastanov growth). In absence of misfit Bauer [R]5%] rationalised these growth modes by
defining the so-called wetting factor

D, =2, = B=Vr+Vas Ve (25)

In (25) we also use the Dupré relation [S8F y, + Vs — Vag With yg the surface energy of
B, yas the interfacial energy arfgithe adhesion energy of A on B. The wetting fac®®) (in
fact is connected to the capillary energy chamyé/.., per unit area during the
thermodynamical process in which a crystal A isated (volumeh/® with 2 basal faces of

energy ya and 4 lateral faces of energy, for a parallelepiped crystal) then stuck on a
substrate B (adhesion enerd3){see figure SapW,,, = ®_ 0% +4D'h whered'=y',

When ®_ <0 (more than perfect wetting), + y/,s <y (0r using Dupré relatic2ya<f3)
so that the minimum state of energy of the systemeached for an increasing interface that
means a 2D film is more stable than a 3D crystahed/®. >0 (no perfect wetting)
YatVas>Vs (Or 2y, > ) so that the minimum state of energy is reachedfdecreasing
interface. A 3D crystal thus is more stable th&Ddafilm.

Notice that from this thermodynamical point of viédd and 3D growth are thus well
differentiated and cannot occur simultaneously. Gése of Stranski Krastanov growth mode
is more complex since obviouslyhe wetting energy must vary during the growthnfro
negative values to positive values in such a magbegrowth is relayed by 3D growth. Such
dependence of wetting energy upon the number obsitgul layers z can be justified by
introducing long-range effect [56]. The wetting facthus becomesb(z) =d? f z(where
f(z) is a decreasing functionof z. We will come back to this point in sectio2 2.

Naturally arises the question of the modificatidrthee wetting factor (25) when there is a
misfit and thus incidentally the modification ofettgrowth mode by elasticity. For this
purpose we just consider a new thermodynamical gg®a@nalogous to the one we just
described (figure 5a) but where now the crystas Aoamogeneously strained before coherent
accommodation onto a lattice mismatched substrafegBre 5b). For the sake of simplicity
we will consider a semi-infinite planar substrateTBe crystals are cubic of crystallographic
parameter a (for A) and b (for B) with a (100) astact plane both having parallel axis. We
define the misfit strain as

£,=&,=m,=(b-a)/a (26)

8 In this paper we exclude growth mode change dsértitural change during crystal growth.

Let's mention that in the original paper of Stil@nand Krastanov [57], ionic NaCl crystals have ibee
considered so that normal to a (001) face theaa isscillating potential changing sign from a sienyg a double
layer.
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Figure 5: Schematic thermodynamic process of formatann absence of misfit the 3D
crystal A is created then accommodated onto a isphwars substrate B/ In the presence of

misfit the crystal A (parameter a) is homogeneossigined (fromV, =h_¢2 to V =h¢?)
before accommodation and adhesion onto the lattisgnatched substrate B (parameter b).

The free energy change following the sequence @idln) reads
AW =[2y 02 + 4y, b |+[2s, (02 - 02 )+ s, (eh -2 1, )| - Br?
where the first term is the energy of formationtloé surfaces of thaon-deformecdcrystal
(V, =h,?), the second term is the surface elastic workregaiurfaces deformation (from

V, to V =h¢?) (see (9)) and the last term the adhesion endrgyealeformedcrystal on the
substrate. Then using=/ (1+m,) andh= ho(l—lz—vmoj one obtains
-V

AW = P02 + 40" h¢
with up to the second order in,m

1-3v

q):,b :2yA_:8+4mo(SA_yA) and cbloo:ylA-l-mo(SlA_ylA 1-v (27)

®™ thus is a generalised wetting factor that repldlesusual wetting facto®  (25) when
surface stress acts [58].

Owing to the Shuttleworth relation (10), relati®¥) is nothing other than the expansion of
the wetting factor (25) up to the first order imagt whenf3 is the adhesion energy of the
accommodated material A over B.



For usual epitaxial materialgnl0? and for clean surfaces andya roughly have the same
order of magnitude so that the corrective tedm,(s, -y, to the wetting energy remains
weak. However surface stress contributes more ¢owhtting condition the smaller the
wetting factor (25) is and surface stress diffemsf surface energy. It is the case of Si/Ge
system (rg=+4%) where®? =150ergcm™® whereas®™ = 380ergcm™ [58]. However for

such a case of 3D growth (since? > ) the surface stress effect is overestimated. thdee

owing to the conditioroi;=0, 3D crystals must relax by their free faces #ngs the bulk
strain is lowered from homogeneous misfit, o non-homogeneous residual values
€(X1,X2,X3). Furthermore if both crystals remain coherer, ititerfacial stressag also works
during the relaxation from #to €(x1,X2,x3=0). The new wetting factor in presence of elastic
relaxation ®m is easy to write formally. However it cannot bdcoéated in a simple way
since the residual strain tensor components deppod the precise shape of the 3D crystal
and have to be calculated using some mechanicatlmiedrthermore interfacial stress values
are poorly known.

In fact we will only remember that in most usuakes surface and interfacial stress
corrections to the wetting conditions remain weak.

2.2. Equilibrium state versus elasticity
2.2.1. Description of an epitaxial model system

Our purpose in this section is to seek for thertteetynamical and mechanical equilibrium
state of A/B.
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Figure 6: Schematic thermodynamic process of formationenctise of Stranski Krastanov
growth. 1. formation, 2. homogeneous deformation for accommodation theresadh, 3.
inhomogeneous elastic relaxation.



Therefore we will only consider a thermodynamic psxwhere the deposit A is obtained
from the condensation of a perfect vapour ontotécéa mismatched semi-infinite crystal.
Furthermore both crystals A and B are cubic angss@d not to mix. The epitaxy is with
parallel axis on a (001) plane. The (001) surfade& and B are supposed to be stable, that
means each having a cusp in their surface enemyplandys. Furthermore the interface
(001) has to be stable that megrs >O and having a cusp. The crystallographic paramete
are a and b respectively, the in-plane misfit begjivgn by (26).

We will consider the final state as a 3D crystalvofume V sitting on z pseudomorphic
layers over B that means Stranski Krastanov ¢aee figure 6). Indeed such formulation will
allow discussing the two other cases of Volmer-Welyel Frank-van der Merwe growth as
limiting cases for z=0 and V=0 respectively. Furthere for the purpose of this lecture we
will only consider box shaped 3D crystals. Otheapds will be discussed on the basis of
some other papers [59-65]. Since as abovementisaddce stress generally plays a minor
role on the wetting condition, in the following wwll neglect surface stress and consider bulk
elasticity only. We will come back to surface streffects in section 3.2.3.4.

2.2.2. Free energy change of the SK condensation
Considering the condensation process describedunef6 where 3D islands and 2D layers
are formed from a vapour, the free energy changerigposed of three terms:

* AF, is the chemical work to form (on an ared & 2D film of z layers and an island

(volumeV =h¢?) from an infinite reservoir of matter A defininet saturation pressure.Rt
reads

AF, = -Au(zal? +he?) (28)

where Ay:k—l-ln(P/Pm) is called the supersaturation per unit volume apour A at
a

pressureP > P, (supposed to be perfect) and a an atomic linear si

OAF, corresponds to the formation of the surfaces efcttystal A followed by its adhesion
on the bare substrate B. It reads:

AF, = & _|(L? - ¢2)f(2) + 2 f(z+ h)| + 4y, he

where we consider the wetting enefiggyof (25) as being size dependent as mentioned in
section 2.1. More precisely since surface and adheergies are excess quantities they are
only well defined for semi-infinite solids. For aite solid that only contains a few layers,
surface and adhesion energy must depend on theemnuwhhlayers z and thus regg(z) and
B(z). The evolution with z by a decreasing functidn) fis quite usual in 2D multiplayer
condensation (see [66]) or surface melting [67,68the following we choose an exponential
behaviour as used and justified for semi-conducitine wetting energy now reads [69,70]:

®(2) =, (1-exq~2/¢)) (29)

where( is a screening factor close to unity so that eaftllowing we put{=1.



Thus AF, reads:
AF, = @ _|(L? - 12 J1-exp(- 2))+ £2(1- exp(- (z+ W/ a)))| + 4y he (30)

In the following since z+h/a>h/a and owing to thacyf variation of the exponential we will
neglectexp(—(z+ h/a)) againstexp(-z ) Notice again that we have neglected surfacesstres
work.

* AF3 is the total elastic energy stored by the compasjstem A/B. It can be written
as the sum of the elastic energies stored in tystadrA and in the substrate B respectively
and thus reads:

AF, =E |zal® + he?R(h, 1) (31)

where E, =Ynfwhere Y is a combination of elastic constants @msion 1.1.4.). For micro

or nano crystals naturally arises the question h&f validity of bulk elastic constants.

Nevertheless it seems [71] that surface stressidemasions avoid using size dependent
elastic constants (see appendix D). The first rnelation (31), is the homogeneous energy
stored by z pseudomorphous layers of thicknessldateral size L. The second term is the
elastic energy originating from the 3D upperlyingystal of volumeV=h¢2. The factor

0<R(h,/)<1 is a relaxation factor. Obviously in absence3Df crystals V=0, one recovers
AF,= E zal® the elastic energy of the pseudomorphous film.usenhote that the relaxation

factor R,/ ) has to be calculated for each specific case.idir@tes from the fact that the

normal stress components along the free surface has to vanish at mechaagualibrium.
It has not the same expression in case of 3D grqe#b), SK growth (20,V£0) or 2D
growth where it does not play any role (V=0) or mexactly a minor role sinck =aand
r=all.

For a 3D crystal sitting on a bare substrate B ifvatWeber growth) the epitaxial contact
in between the 3D deposit and its lattice mismatchebstrate is supposed to be coherent and
to remain coherent during the elastic relaxatiorth&f 3D crystal. In this case, during the
relaxation the crystal A drags the atoms of thetattnarea and produces a strain field in the
substrate B which was initially strain free. Thisated strain field may be calculated by using
point forces [59,72] or more properly by using df-sensistent approach [73,74]. After
relaxation the 3D crystal and its substrate arenmbgeneously strained (see figure 6). This
means that although the total energy density has lmavered by elastic relaxation, the elastic
energy density in the substrate has increased.

The Stranski-Krastanov case is more complicatéedd before relaxation, deposit A (3D
crystal A and the z pseudomorphous layers) is hemegusly strained whereas the substrate
B is stress free. After relaxation the elastic ggedensity in the 3D crystal as well as the
elastic energy density in the underlying film hdveen lowered in respect to the initial
pseudomorphous strained layers (see figure ehelhumber of 2D layers is weak enough the
inhomogeneous strain field induced in the 2D layeysthe relaxation of the 3D crystal
penetrates into the underlying foreign substrat@li elastic energy density in the substrate
B thus increases in respect to the initial stress fattice mismatched substrate (see figure 7).
If on contrary the number of layers increases th&tive contribution of B vanishes. In other
words the strain fields, induced by the elastiexation of 3D islands are not the same for a



bare substrate and a composite (2D A layers + B3tsate. In the former VW case, the elastic
strain density can be analytically evaluated ire-consistent fashion (see figure 7), but to
our best knowledge it is not the case up to novafoomposite substrate. So in the discussion

we will distinguish the relaxation factor in casé 3D growth R*® fi/) and in case of
Stranski Krastanov growtR> h(/ z,.)

Figure 7: Elastic energy relaxation 19

factor R®° (r) versus shape ratio=h//

for a 3D box shaped crystal calculated
from [74,87] when the deposit and the |
substrate have the same elastic
properties. R and R are the relaxation |
factors of the deposit A and substrate B
respectively. R=R+Rg. Multiplied by 4]
E =Ynf, Y=E/(1-v) each gives the .
corresponding elastic energy density. 0,00'

Finally it is very convenient to write the totalergy changeAF = AF, +AF, +AF,; as a

function of the volume of the 3D island = h¢?, of the aspect ratio = h/¢, the number of
underlying layers z, and the film areé ¢ontaining one island, using equations (28) t9 (31
AF can be written

oF =ty + Lzzg)m{(s —(\?/JZ/SJ(l—e‘Z){%Tj+4V/;V e EURN+zaE)  (@32)

where a is an atomic size and where for a box shapgstal the relaxation factor only
depends upon the aspect ratis h// and upon z for Stranski-Krastanov case.

Notice that if 2D layers have to be formed A mustt Bvand thusb. must be negative (see
(25)) Thus if®_<0 and V>0, 4F given by (32) is the free energy change due to SK
condensation. The free energy change for singlec@8bdensation (Frank van der Merwe
growth) is thus simply obtained by taking V=0 with <0 in (32). On the contrary the free
energy change due to 3D growth onto a bare sulesip@blmer Weber growth) is obtained by
taking ®« >0 in (32) with z=0.

Globally in all cases condensation takes placé\fe+0. To this can contribute the first two
terms of (32):Apn when positive and wetting.. when negative. In the following, we will
distinguish the growth of 2D layers and the subseatigrowth of the 3D crystals.

2.2.3. Equilibrium state
The equilibrium state is found by minimisation bettotal energy changsF, the zeros of

the partial derivativesém:| ; dAF| anddA—F of (32) giving the equilibrium values of

|V,r W |z,r d( v
z, V and r noted z*, V* and r* respectively. In tf@lowing, supersaturatioap as well as




o= (L) (33)

the fraction of the film surface covered by 3D tajs are considered as constant parameters.
According to the sign of the wetting ener@y the three previous partial derivatives give the
following relations given in table Il where we digjuishR®® ¢ ) from R®¢(r,z). We also
put:

r, =[®.|/2y, (34)

We will show in section 3.2.3.2. thatis the aspect ratio of a deposited crystal in abse
of misfit.

®_<0 ®,>0
(2D or SK growth) (3D growth)
oF 7 =| @] (1 9)_
— =In - a
a ‘ ED—A,uia (@)
ANF Sy —2|¢°°|6’Z—3 % 2o T
Oy L=l Oy -
N ve(r)=|3—3 I r (b) Ve =|2—3 L 1 (d)
zr Au— ER™(r,2) Ap— ER™(r)
Jd\F : — : p\*
N =Wy 1-To gyf o) dr (©) | r2=-Haysg4fo arR” (€)
zv 3E r dr 3E r\ dr

Tablell: equilibrium values z*,V*r* according to growtlonditions

On the basis of these results, let us discussléiséia@ty effects on the equilibrium state. In
the three cases under study (2D, 3D, Stranski-Enast growth mode) we will consider
growth conditions, then equilibrium properties atdiast plastic-elastic interplay.

2.2.3.1. Layer by layer growth
* Here we are only concerned with Frank-van der Megrowth that means_ <0 for

having 2D condensation (see at the end of sect®2.3 with V=0 and thu8=0 so that from
formula (a) of table Il there is

z =In{ |CD°°|

35
(& -azk (35)

From (35), since z must be positive, the z layarsanly exist for



—0<Au< E (36)

Thusfor having 2D growth, the supersaturation cannoempass the bulk elastic energy
density stored in the strained layeta absence of misfit (ga0) the usual condition for 2D
growthAp<O0 is recovered.

For such layer by layer growth the free energysdgrof relation (32) reads with V=0, r=0,
|_2—> o

AF /12 =—(Au- E Jza—|®, |(L-exp(-2)) (37)

Figure8:

a/ Free energy density change
AF/L? for layer growth as a function
of the number of layers z for different
chemical potentialdy<E,. AF/L?

only has minimum foAu< E, .

b/ number of equilibrium layers z*
versus the chemical potentiady.
For Au=E, z* tends towards

infinity.

In figure 8a we plot the free energy dendify/L? as a function of z for different chemical
potentialsAp. AF/L® shows minima, at z=z*, foAu< E,. In this case sincéAF/Lz)zk <0

2D layers form spontaneously. Notice again thas thpontaneous layer formation is
precluded ford  >0.

* When relation (36) is fulfilled provided..<0, each layer z is a 2D phase, built at a given
undersaturatiomd\u,= E —|q>w/a|exp(—z) obtained from (35). Up to saturatiaku =0 there

builds up a finite number of layerg (Bee fig 8b) which for a non covered filB=0 is given
by:

z, = In{M} (38)



This  number only depends on the wetting over straienergy
ratio|®,,|/a E, :|2yA—,[>’|/[Ynf] (see (25) and (8)). This result is largely experitally
supported on very different pairs A/B: reversibleltilayers adsorption measurements (see
[76-79]). The result is remarkable so that it hasbe illustrated with a striking picture:
provided 2ya — <0 a piece of material A put in the vicinity of a dglsB exposing a (001)
face, placed in a box of uniform temperature suétea spontaneously on B up toepitaxial
layers The only driving force to oppose to strain eneofythe created A layers is due to
2V, —B=VrtVas — Vs <0.For Ge onto Si(111) one obtains 4<% [56] in agreement with
experimental data.

In fact (38) is only valid for the exponential bglaur of the long-range inter-layer potential
we have chosen. More generally the equilibrium neindd wetting layers depends upon the
form of the long-range inter-layer potential. Fostance if no such long range interactions is
accounted for and only short range interactionssaigposed to act as in first neighbours
model, there is a cut-off for z=1 that mea®éz=1) =®_ but ®(z>1) = 0. Then it results
only one equilibrium wetting layer z=1 (see app&n#i). This is however an extreme
prevision since to such short-range forces addedong-range contribution.

In the case of long range contribution and of &mtisfit it is seen that wheAAu = E the

number of equilibrium layers z* given by (35) beamsrinfinite (see fig. 7). In the case of a
vanishing misfit g~ 0 the number of layerssz given by (35) tends towards infinity too,
even atAp=0. Obviously latter layer-by-layer growth is quitermal but in the g#0 case the
elastic energy stored increases with the numbdayars z so that the system has to relax
either by plastic deformation or islanding.

* et us first considerelaxation by interfacial dislocation insertioifhe critical number of
layers beyond which dislocations may appear caobt&ined following a simple treatment of
Matthews [80]. From a thermodynamical point of viktve number of interfacial dislocations
may pass from N to N+1 when the total elastic epettange due to the introduction of the
(N+1)" dislocation is negative. It is easy to show (see @ appendix F with K=1 and b=a)
that the critical number of layers;s beyond which dislocations may thermodynamically
insert roughly is the solution of the following exqion

~ 1 1+Inziisi
Zdisl 477—|Tb (39)

Conversely this relation tells that for zzg the misfit my or the mean strain in the layers
decreases roughly as the inverse of the numbegpigited layers and thus reduces the elastic
energy and therefore the equilibrium number of iaygven by (35) for fixed\y. Obviously
owing to kinetic reasons dislocations may only efdegreater thicknesses.

* The case otlastic relaxation by islandingoncerns the Stranski-Krastanov transition and
will be treated in section 2.2.3.3. At this stage will only notice that beyond some new
critical number of layers we will callsg, 3D islanding may occur. Thus according to the
relative values of g, (varying as 1/msee (39) andsz (varying asin(/ms) see formula (a)
table Il) relaxation takes place, at thermodynammguilibrium, either by islanding or
dislocation entrance. Furthermore since activagoargies for dislocation entrance and 3D
islanding behave ass?and ne* respectively [81] there is really also a kinetozsmpetition
between these two modes of relaxation.



As a partial conclusion at equilibrium, elasticityodifies the chemical potential of each
layer and fixes the number of layers At=0 (see (38)). However since elastic energy
diverges with z, beyond some critical number okilayelastic relaxation by dislocation
entrance or islanding occurs.

2.2.3.2. 3D growth on a bare substrate (z=@.>0): Volmer-Weber case

* In this case the relation (d) in table I gives #quilibrium volume V* of the island. This
relation says:
(1) The value of the chemical potentidyu selects the volume of the crystal. More

precisely the greatéy , the smaller the size of the equilibrium crystalpically this effect is

the usual Gibbs Thomson behaviour for first ordeage transitions.
(2) However here 3D crystals can only exist when V*Qr)%that means when

N> ER®(r). (40)

If the elastic relaxation effect is neglected®® (r)= , the 3D crystal can only exist at
Ap> E, [87].

* Relation (e) in table Il describing the equilibrishape ratio of the 3D crystal is more
interesting. It can be rewritten as a parametrgtesy in r with h* and/* the equilibrium
height and length of the 3D crystal [65,79,87]

e = ﬂ[l_}(ﬁj
3 E r dr

* =h*/r

(41)

Where g is given by (34)(25). For ga0 the system gives the usual Wulf-Kaishew theorem
[82-86]

he/x=p, = Yo =P (42)

2y,
whose principal meaning is that the aspect ratig is=size independent (for a discussion see
[65,87]).

In the presence of misfig, # @he system (41) only has a solution for,rfhis means

that epitaxially box shaped strained crystals must hgresater aspect ratio than the strain-
free crystal More precisely, (1) epitaxial strain acts againstting (adhesion) so that
globally it leads to a thickening of the equilibmiushape; (2) owing to strain this equilibrium
shape becomes size dependent.

Obviously relation (41) can only be used practicathen the relaxation factor for Volmer
Weber growth has been calculated for the shapelyfaminder study. For a box shaped

crystal an analytical form oR®*® r (Has been calculated [65,87]. In figure 7 we plotrfi{65]



the relaxation factor of a box shaped crystal wiheposit and substrate have the same elastic
properties. It is seen that when r=0, a uniformeegeht film is not relaxed R*° (0) = )1
However as the deposit becomes a rectangular bate(f) it relaxes from its borders so that
R*P(r) <1 and therefore it stresses the underlying subsfatea more complete discussion
about relaxation factors for various shapes sep).[88t us note that for 5<1/r<5R*"(r)

can be roughly fitted bg*° (r) = 014r 2.

504
s m=0.04 . o
a0d L Figure 9: Half equilibrium shape of a 3D
box shaped crystal (discontinuous lines) h:
30- height,//2: half basis in atomic units.
h | ;o Continuous curves are the corner
204 _." m = trajectories calculated for o=0.1, my=0
Y S H g (straight line) or my=4% (squares). The
' S epitaxial misfit leads to a thickening of the
10'»——————;.-'— ————— . : ES. Furthermore similarity is lost.
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Calculating then dR/dr from figure 7 we can plabrir (41) h,, =h, (7., ) for a given

wetting factor § and y,/E value, a so-called elasto-capillary length whEres Young's
modulus in an isotropic surface of surface engrghhis length scaleﬂ;Oy/ Y =107°cm that

means with the size of an atom as mentioned byFra@k [45]. We will use it in the
following discussion. The result of the resolutmin(41) is shown in figure 9 for*0.1, for
m,=0 and g=4%. Each curve figures the trajectory of the edlighe half equilibrium shape
(ES) with size.

For m=0 the usual Wulf-Kaishew theorem still holds ahd equilibrium aspect ratio rzr
is size independent (ES are obtained from thegtirdine on figure 8) or more generally they
have similarity. For ¢0 the ES ratio increases with size so that sinylas no more
preserved. A more complete discussion about wetimd) relative stiffness can be found in
[65,87].

Thus as a partial conclusion, in presence of etagti3D growth takes place when
supersaturation overpasses the bulk elastic ené€sgg (40)) and the ES of the growing
crystal is modified in such a manner the greater mhisfit, the higher the equilibrium shape.
For other polyhedral shapes the relaxation facorlee calculated by numerical methods [61-
65]. Elastic effects on truncated pyramids [60,8687], 2D cylinders [63] or 3D spheres [64]
have been considered. Nevertheless the main effdbie same (excepted when the island
shape has been fixed as in [64]): a thickeninghef ES but furthermore the various facets
extension changes with size, some facets decreagimgy increasing [65,87].

* Obviously this scenario cannot be valid whatever size. Indeed as for 2D film (see
section 3.2.3.1.) the growing crystal accumulatastie energy, in spite of elastic relaxation
which can become prohibitive so that plastic refimxaoccurs. The treatment is similar as in
section 3.2.3.1. One finds (see appendix F) thditsa dislocation orthogonal pair may



thermodynamically enter in the island interfacesasn as a critical heighths reached. It is
obtained as a solution of:

h= 1 I+Inh 4
477(my—2/ )R (r) (43)

Each supplementary dislocation entrance abruptigpgl the strain from g to
m=m—NDb//n (see appendix F) where b is the Burgers vector tosdaf the interfacial
dislocation and/n the lateral size of the crystal in which enters{edislocation Then since
we have seen that the equilibrium shape is strapeddent, each dislocation entrance
abruptly modifies the equilibrium shape [65,87,88,8ee figure 10 and its caption). More
precisely since the smaller the misfit, the flattiee crystal, the main effect of dislocation
entrance thus is a back flattening of the equilibmi shape. Such a quick variation of the
equilibrium shape at each dislocation entrance hasn experimentally shown by F.Legoues
et al. [90,91].For shapes more complex than box shaped crystis th a jerky modification
of the various facets extension [65,88].
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Figure 10: Effect of dislocation entrance on the ES. The $lweped crystal accumulates
strain energy when growing along th®//2) curve with an arrow until it reaches some
critical size (here for ¢=0.1 and m=4%, hy=61, ¢,=155) where a first dislocation may
thermodynamically enter (dotted curves represeatttitermodynamic criterion for the first
(N=0) dislocation entrance (eq. iii appendix F).tlfe dislocation effectively enters for this
size, according to equation (ii) appendix F thefihgasses from pto m, -1//,. The ES of
the growing crystal thus must follow a new ES ttgey re-calculated from (41) but with the
new misfit .If it is assumed that the island chanige shape at constant number of atoms, the
crystal abruptly flattens. The same thing occursttie second (N=1), third (N=2), and fourth
(N=3) dislocation entrance where in the case unstedy the misfit passes respectively from
3.4 % to 2.9% then 2.6%.



2.2.3.3. 2D relayed by 3D growthd®.<0): Stranski-Krastanov case

* From the condition of existence of z*>0 and V* offtained from equations (b) and (c) in
table 1l Stranski Krastanov growth can only ocaarnear equilibrium conditions, when the
following relation is fulfilled:

ER%(r,2) <Au< E, (44)

that means in a finite domain of chemical potenfiglwhere nowR> ¢ z X1 describes the
elastic relaxation of a 3D crystal sitting on z ym@morphic layers covering the lattice
mismatched substrate. In absence of elastic rétaxéR®" (r,z)=1) according to (44) there is

no more place for Stranski Krastanov mode in ngarlierium conditions Elastic relaxation
thus is a prerequisite for the simultaneous existenf 2D layers and 3D crystals

Figure 11: Number of equilibrium layers ZSK
z* versus the chemical potentidls in case

of SK growth. Form,z0, 3D islands may

appear as soon aAy> E, .Rorresponding :

to z>Zx. .
- -
&, Au

In figure 11 we schematically plot the number of Ryers as a function of the chemical
potential Ai. To each layer formation z* corresponds a constahie of Ay given by

MM Z)= E —e“®_(1-6). For m=0 the number of steps becomes infinite at satmati
Ap= E, =0(fig.7b). For mz0 3D islands may appear as soom\as> E R%(r,2) . Therefore

in figure 11 for increasing\u there is a cut-off afu= E R®(r,z) where 3D crystals may
appear on thesz underlying layers. Beyondy= E, the representation does not make sense,
exactly as when p¥0 for Ax> E =0 (see fig. 7b). Let us remark that because of the
limitation Au< E, the smallest volume a 3D crystal can reach isiobthby injecting

Au= E in the expression of V* in table Il. For a givespact ratio r and for -z this
minimum volume reads:

8y.
x(r) = 3"
Vmin (r) - E)(l_ RSK(r, Z))

(45)



Here again we see that elastic relaxatiBi“(r,z)< is & prerequisite for Stranski

Krastanov mode. Indeed f&>“(r,z) = , lelation (45) says that the 3D crystal must have

infinite volume! However, because of the fact thlhé usual activation barrier for 3D
nucleation is proportional to the one third of toéal surface energy of the nucleus [6,92],
nucleation of such large crystals should be diffidBut since SK mode exists the true growth
mechanism must minimize this activation energy. Wlecome back to this point in section
3.2.3.5.

In fact, at equilibrium the chemical potential: must be the same for the 2D layers and the

3D crystal. Combining thus z* and V* expressions dad (b) of table Il,Au-independent

equilibrium values z* and V* can be easily obtain€tus for each value af* there exists
an aspect ratio r which minimises the crystal vaduti(r) which can co-exist on z* layers.

At this stage we can summarise the conditions @nSki-Krastanov transition onto a
dislocation free 2D film:

ER(r) <Ay <e,
Z,<2(r) < zq (46)
V(r)>V,, Om?®

* Concerning the equilibrium shape the main diffeesnbetween Volmer-Weber and

Stranski-Krastanov cases are:

(1) In the expression of the equilibrium shape ratidhe factorl-r,/r which appear in
formula (41) in case of Volmer Weber (VW) growtashto be be replaced iy roe‘z/r in
case of Stranski-Krastanov growth. This originaiesthe now negative wetting energy
@, (necessary to build z pseudomorphous layers) wikgtneases with the film thickness z.
Owing to this difference, positive height,,, can only exist for r>yin the VW case whereas
crystal flatter than rgrcan exist in the SK case.

(2) The relaxation facto®®® r( and R®  z Jappearing in table 1l are not the same.

As still mentioned relaxation factdR®* r ¢ ,for 3D crystals onto z pseudomorphic layers

have not been calculated. Nevertheless if the numtbenderlying layers is great enough, it
can be considered that the 3D crystal grows ontmraogeneously strained semi-infinite

substrate of A. In this case it must B&“(r,z2) =R®*® r @and thus the equilibrium shape can
be obtained (for z ) from the following parametric equations

h*=—4y‘A dr )"
3E\ dr
*=h*/r

(47)

Thus since for box shaped crystals an analyticah fof R*® (r) has been found [87] (see
also 2.2.3.2.) it is possible to plot the equililoni shape of the SK 3D crystal.
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b 10 Figure 12a: Corner trajectory of the ES

1n h=f(¢/2) for Stranski Krastanov case
(ro=0) calculated form,=4%.
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Figure 12b: Free energy change
(32) as a function of the aspect ratio
of the growing crystal for

V<V (r) where there is no
minimum (excepted in r=0) and for
V>V_ (r) where the minimum

defines the equilibrium aspect ratio,
the maximum a labile state to
overpass.

We plot on figure 12a such an ES, the graph/h¥)( having now two branches which
correspond to the extremadiF(r) (32) and define two equilibrium aspect ratigéyreat) and
rs (small) or two equilibrium heightsghand k provided the volume V is greater thaf),,

(45). The lower branch (flat crystals with ) is the locus of the maximum AF(r) (crest)
(see figurel2b) and thus describes a labile eqiuhbwhereas the upper branch (thick crystal
with r= ry) is the locus of the minimum dkF(r) (valley) and thus describes the stable
equilibrium analogous to what we depicted for Valriiéeber growth (see section 3.2.3.2.).
Obviously (see figure 12b) the transformation amstant volume from labile equilibrium
(crest) to stable equilibrium (valley) is spontane{s6,65].

From a theoretical point of view we have seen sirate for SK growth z* depends upon the
3D islands coveragé = (f/ L)z(see z* for SK growth in table II) the greater tr@dume of the
3D crystal the smaller the number of underlyingelayat equilibrium. Most experiments
agree with this description since they clearly shinat Stranski-Krastanov transition can
occur at a constant number of deposited atoms leatd3D growth occurs at the expense of
the 2D layers. In other wordsving to the elastic relaxation of 3D crystals, soof the upper
layers of a metastable 2D strained-film (thickne§scan transform into stable 3D islands
leading to the Stranski-Krastanov situation where temaining z* layers support these 3D



islands In a paper we have shown how owing to strairxeglan sufficiently large 2D islands
of simple height double their height and start3tketransition [56].

* Obviously, once more the stored elastic energyemses with the number of deposited
atoms so that beyond some critical size dislocatioray enter the system. lhg<zsk the
dislocations may enter in the film before Strankskastanov transition takes place. Thus since
dislocation entrance decreases the misfit, Straksdgtanov transition can no more occur
even for further growth. Since on one hand thetgrehe wetting the greategzwhereas on
the other hand the smaller the relative rigidityfdee appendix F) the smallegjisg for weak
wetting and sufficiently soft substrate there céso de 2is>zsk. Obviously as for Volmer-
Weber growth kinetics may modify this condition. ®&h %s>zsk, naturally arises the
question of the localisation of the dislocationse Ahey at the bottom of the layers or at the
bottom of the deposited crystals? The question irgm@pen and the answer must depend, at
equilibrium, upon the shape and the density ohdda (in section 4. we will say some words
on interacting crystals) as well as on the relasibstrate to deposit rigidity since dislocations
always go towards the softer material.

2.2.3.4. Comments on surface stress effects

Until now we have not considered surface stressceffin the just foregoing discussion.
When such effects are included in the formulatibAle of (32) by means of the surface work
during accommodation and relaxation, elastic relaraand equilibrium shape calculations
can no longer be explicitly solved (see for exanpi@]). Nevertheless surface stress has
several predictable main effects

(1) For 2D growth, since the surface stress modifies wletting factor from®. to
d™ (see (25) and (27)) it modifies the number of eftiilim layers. Surface stress also plays
a role on the critical number of layers beyond Whétislocations may thermodynamically
appear. However since in this case the film relaxgglislocation entrance the interfacial
stress g5 also works [93]. It is thus easy to show (see afpeG) that for positive natural

misfit m, a positiveAs™ =s, +s; —s,; value (where sand g are the surface stresses of
deposited crystal A and substrate B respectivawels the critical thickness..hOn the
contrary a negativeAs™ increases the critical thickness beyond whichodetions may

appear. For Ge/Si(100) (n-4%) Floro et al. [94] giveAs® =2.3 Jnf. In this case MAS” <0
so that the critical thickness; s decreased by surface and interface stresses Hd
monolayers to 2.6 monolayers (see figure 13 wherghot the equilibrium strain versus the

deposit height h forAs”=0 and As®=+2.3 Jn¥). Nevertheless such a reversible critical
thickness dependence with misfit and surface stiegdifficult to put in evidence since

dislocation formation is an activated process st the kinetic critical thickness beyond
which dislocations effectively occur generally i®ater than the predicted thermodynamical
value.

(2) For 3D growth let us recall that taking into accosunface stress work against surface
deformation is equivalent to taking into accourd tinst order development with strain of the
surface energy (see comments just after (27)). Tthesgamma plot of the strain free
equilibrium shape is modified by strain. Nevertlsslsince in most cases the surface energy

™ In fact for semi coherent interface composed gfid of dislocations one needs to distinguish tnteiifacial
stresses. Indeed the usual interfacial stresdfiisedieas the work done to deform both facing phégethe same
amount, whereas in the presence of dislocationsigihg the in plane parameter of the substrate needs
dislocation introduction (See [95])



change versus strain remains weak (of the ordés-gEk see (27)) surface stress is not really
effective when elastic relaxation operates (seeek@ample [96]). Nevertheless things can be
different when new surface phases can be stabilizedxternal stress. Indeed in this case
stress-induced changes of surface structures (frster transition) may lead to a
discontinuous change of surface energy and susi@ess and thus of the gamma plot. In this
case new cusps could appear on the gamma plothaisdnew stress-stabilized faces may
appear on the equilibrium shape. We believe [88{ this happens for the well defined {105}
facets of the so called “huts” appearing during fird stages of the growth of Ge/Si(100)
[97,98].
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Figure 13: Residual misfit m’ versus the film thickness hcalated for rg=-4% and
As"=0+2.3 Jn¥ (see appendix G). The growing film remains pseudphous to its substrate
up to h= h. Beyond this critical thickness. Hthe misfit is partially accommodated by
dislocation entrance and the residual elastic midécreases with the thickness i the
film. For 4s*=0 and m=-4%, h.<5.4 ML. A positive surface stress chamgg=2.3 Jm?
decreases fto 2.6 ML whereas negative surface stress chafgje-2.3Jni? increase hto

h.=7.5 ML. The case Ge/Si (100) corresponds §e-#%, As”=2.3 Jm?[94] and thus h=2.6
ML.

It was found in Molecular Beam Epitaxial growth ttisame foreign adsorption plays a role
on the equilibrium state. In the case of 2D growstich additives can modify the number of
equilibrium layers z [99,100], whereas for 3D grbwtey can modify the equilibrium shape
of the growing crystal [101]. Such additives areown to lower the surface energy [5]
without bulk incorporation and thus were calledfactants by the semiconductor community.
Nevertheless since surface eneygy lowered by adsorption, and since Shuttlewasthtion
(10) connects surface energy to surface stressseqoently surface stress changes with
adsorption. More precisely since theredig/ou = —I" wherep is the chemical potential of the

adsorbed species amdthe adsorption density (generally positive sedi@ec.4.) there is
0§0u=-T-0r/oe. The adsorption may thus reduce or enhance thiacguistress. Such



surface stress changes with adsorption have bgemted (for example see the important
review paper by Ibach [102] its erratum [103] ah@4]). Therefore surfactants not only play
on the surface energy but also change the mechatata of the crystal.

3. ELASTIC EFFECTS ON ATOMISTIC MECHANISMS

We recall some well-known facts for non-stressgdtats.

In the case of a flat (F) defect-free surfdcthe rate of growth is determined by the
frequency of formation of 2D or 3D nuclei. The reiclormation requires overpassing an
activation barrier. Supersaturation decreasing liarsier, a critical supersaturation has to be
overcome for the growth to take place. We will sesection 3.1 how elasticity can influence
the 2D and 3D nucleation process. For a stepped(fcwith an orientation along an inward
cusped valley, the growth may occur by step flonchamism as first depicted by Burton
Cabrera and Frank (BCF) [105]. In their seminalgrape authors consider kinetics of growth
of a vicinal surface as a balance between adatgositeon, adatom diffusion and adatom
attachment to steps (for a review see [92,106]phdf sticking probabilities of adatoms from
the upper terrace and lower terrace are equathallsteps have the same velocity. Such
growth mode is known as step flow and occurs atllssugersaturation. In fact at higher
supersaturation there is a transition from thip $kew mode to 2D nucleation mechanism in
between the steps. When no reevaporation takes,macthe diffusion length onto the terrace
is much greater than the distance between stepsniileation on the terrace is more
favourable. When the nucleus only contains one afwary high supersaturation, see
appendix H) this transition occurs when (Bff2L where L is the step to step distance, D the
surface diffusion constant and F the impinging fll®6,107]. Such transition from step flow
to 2D nucleation is easy to detect experimentatigeed in presence of 2D nucleation birth
and spread of 2D islands give oscillations of theERD intensity at each completion of layer
whereas in step flow mode there are no oscillatja@8,109]. In the case of a flat (F) face but
with screw dislocations 2D nucleation is shuntetbat supersaturation [105] and steps with
high Burgers modulus [ propagate laterally each anchored at the dislmtasio that
equidistant steps are winded as helices. This greeg flat growth pyramids around each
non-cooperating screw dislocation. Their sloperagprtional to 1Au [105].

Obviously elasticity may influence some of thesenmedntary processes involved in step
flow. In the framework of these lectures the vasi@lastic effects on adatom detachment rate
and surface diffusion will be discussed separgtsdgtion 3.2. and 3.3.). In each case we will
not give the details of the calculations but omlytb capture the essential physics for simple

cubic material (/,=).).

3.1. Nucleation barrier

* On a flat perfect surface (F), crystal growth taldace after 2D or 3D nucleation. On
average, clusters smaller than the so-called afitiacleus spontaneously disappears whereas
clusters larger than the critical nucleus spontaslgogrow. The critical nucleus size depends
on supersaturatiod\y and its formation requires overpassing an actwatbarrier. In
principle the activation barrieAF* is obtained by injecting the equilibrium nucleus
parametersh*, /¢ *or V* r* (table Il) in the free energy chandd- (32) due to the nucleus

¥ An F face is a face having an inward cusp in ésima-plot.



formation. However this cannot be done explicitrénin the epitaxial case. Furthermore we
have to distinguish the Volmer-Weber (VW) and S$karKrastanov (SK) cases having very
different behaviour.

* For the Volmer-Weber cas@{>0 or >0) with table Il and (32) the nucleation barrier
can be factorised [87] as three terms of distihgispcal meaning

AF\;W/kT = (AFh*om/kT) lo I:ro,K (A:u/ Eo ) (48)

The first and leading factor is the well known saled homogeneous nucleation barrier
(without surfacel - 0 ((@.=0, L,=1) (see appendix H) which is reduced by the secwms,
(O<r<1) (34) due to substrate wetting. The last term tlueepitaxial strain at contrary
opposes to the former one sinEg, < isla function ofAu which becomes very close to 1

for A/J/ E =10. Homogeneous nucleation in vapour phase castbeated to be effective at

AF, /KT =30(see appendix H) with a critical number of atomsN5<60 and driven by
supersaturation much higher theff (see (40)),6 <Au/ E, <10. The functionF,,, for these

ratios is very close to unity so thdte activation barrier for classical nucleation ot
influenced by misfit straln

* In contrast, elasticity is the driving force dfet Stranski-Krastanov transitio®4<0) as
underlined before. Let us demonstrate it by thieowahg process. The free energy change of
the transformation of z’ 2D layers into a 3D islgdlume V) sitting on z layerAF’ is that
one of (32)AF(z,V) minusAF(z’,0) where the 3D crystals are absent. At caristalume of
material A there is fol/al® = §°h/a <<1 that means for a small fraction of the film sugfac
covered by 3D islands :

OF'=- EV[1-R(")|+ |cpw|{v - [¥j }eﬂ + Ay N Py (49)

The activation energy for Stranski-Krastanov traosi AF*(r)can thus be obtained by
injecting the equilibrium values V* and r* of thaltle | for ® <0 in the previous relation.
For ®_e* - 0 (that makes sense at the SK transition) the aeas

coy_aly) e
AF" (r) = 3(3 ED)Z RT (50)

As usually ([92] and appendix H) the activationrigar AF*(r) is proportional toy;
but E (L- R(r*)) obviously plays the role of a driving force. On ohand AF*(r )is

proportional toE, > that means tan.*, on the other hand inhomogeneous relaxaRan - Q)
pushes it>S, (The lowest value ofAF™*(r s roughly reached for r*=0.05 that gives for

%5 Let us note that in absence of elastic relaxat®fm)=1 in (50)) the barrier becomes infinite. Thelsarly
again it appears that the inhomogeneous relaxafidime 3D islands is the driving force for Strankkastanov
transition.



Cu(111) where/=1300 ergerif [110] and E, /n =2.310*? ergen?® [17] so thatAF*/kT=100
for me=1%, AF*/kT=30 for my=2% but AF*/kT=2 for my=8%). Thus generally Stranski
Krastanov transition can only occur for a suffidigrhigh misfitmo| >2%. Nevertheless some

cases of SK growth are well known for misfit of theler of 1.1F where activation barrier
calculated from the previous relation seems to due high. NeverthelesdF* could be
lowered by other mechanisms. Furthermore our b@peth model is not the most flexible

one. When considering truncated pyramids (see [6%)y', in (50) is reduced by some

factor, vanishing when the summital facet disappe@his is however also the sign of non-
stability of this face even in absence of stresstiermore since the true ES is that which
minimises the activation barrier, the activationriea could be lowered by other specific
shapes. Last but not least SK transition could starsome point defects so that 2D or 3D
nucleation activation barriers are lowered. Thishmwvever only possible at very high
supersaturation on a F face [92] that means notleeveral atomdn fact the problem of the
real amount of the activation barrier remains wiglah open question.

3.2. Strain effects in irreversible condensation bgrowth simulation

Equilibrium thermodynamics describes statisticaltyicleation and growth at low
supersaturation. Far from equilibrium or reallyewrersible growth studies are only possible
by numerical resolution of kinetical systems [11I3]lin the mean field approximation or by
simulation catching more or less the collectiveurat Latter studies started in their most
simplest form by Monte Carlo technics in thé"q114-116] bringing the now classical and
eventually fascinating images of birth, spread aodlescence of islands on a growing
compact crystal face, leading to the surface roogige divergence at some critical
temperature.

Introduction of elastic strain started only in t8€é". Let's report about some studies of
Ratsch and Zangwill [117-119] who took a very siemptheme. Atoms are randomly put on
the nodes of a quadratic grid with a rate of F at@®ar second per site. When accumulating,
eventually at different levels, there is applied grescription to avoid overhangs and holes in
the so generated cubic 3D lattice (solid on solidS®S model). By this simple scheme
column clusters of various shapes and random diwgrgeights are generated (see [106]).
However atoms can move away from the landing siteept to go back to the vapour phase,
in the extreme case of complete condensation (@h ttee vapour phase is reduced to a
“directed beam” so that the lateral faces of thé&uroms don’t receive atoms, since no
overhangs have to be created). Single atoms migpatext neighbours sites at the highest
rate say D per second (short range surface diffijsibsually D/F>>1 so that surface
diffusion is very active. Clusters are not allowledmigrate but they loose single atoms to
neighbouring sites with a smaller ralthexr(— n¢/kT), depending on the number n=1,2,3,4
of lateral bonds of strengtlh which have to be brokenp( stays for an activation energy).
This so generated atoms migrate with rate D andyathance in traps of n=1,2,3,4 bogds

where they reside thus longer thus stronger theybanded. When all the atoms are bonded
vertically by E=¢ it results normal crystal growth (homoepitaxy) afflat face (F) that
means a new layer starts when the other comesnipletion. However single atoms settle
also on higher levels thus more F/D is high andtilayer growth may occur. Very flat
pyramids (up to 3 layers) may form. Rough kineessimations [106,107,113] confirm the

mean nucleation densit§> and the mean coalescence siza = (D/F)"".



Formulating epitaxial growth there is to choigethe bond energy ¢, either E<¢ for
VW growth (equivalent to®.,>0) or E>¢ for Frank-van der Merwe and SK growth

(equivalent to®.<0); (ii) strain energy has to be accounted too. The stydi€s,118]
considered SK growth£&>¢ and due to the model of first neighbours intecacdj only one

SK wetting layer A is grown on the substrate B (sé® our analysis close to (38) and
appendix E). The atoms in the second layer araecadiyt bonded with EE¢ so that lateral

layer-by-layer growth should follow. Due to midfibwever the SK layer is strained and strain
weakening of lateral bond energies is taken asimmiporinciple by the authors:

4 - 29 E, (51)

However 3D box shaped clusters are elasticallyxeslaby R(h/¢) O (¢/h)"? (a crude
approximation of figure 7) so that the frequenceggription for the growth simulation is
Dexd—n(¢— EOR(r)/Z)] for detaching an atom on a summital layer of astelu[119].
Atoms thus detach more frequently a cluster is 8atthat taller cluster are favoured during
the evolution; this trend being thus stronger thigfimsquare is high. Simulated images
[117,118] show slightly dispersed rectangular ngaadratic based clusters with mostly
complete layers. At increasing total coverage alibeeSK layer of Ft=1/4, %2 % monolayers,
single and double layered clusters appear progedgsiAt Ft=1, 2D islands of 2,3, and 4
layers are formed so that only some half of thel&}er is covered. This thickening of the
clusters is clearly due to the strain relaxati§fR even if somehow exaggerated by the type
of simulation.

The authors observed that thickening starts onlysatne critical misfit* of 3%. This
surprising result may not be general and needs@mments. Consider a distribution of box
shaped crystals above their SK wetting layers abttie energy to spent is in average, that to
create lateral faces plus the elastic energy wriitethe former mentioned approximation

(R%®(r) = 014//r see 2.2.3.2.)
AF =4y,hl + 014 EV./(/h =4y, V /( + 014 E V(3 (52)

At constant volume&/ = h¢? for spontaneous thickening there mus@blé/ah|v <0.Thisis
realised when for this vqumé/a>[19yA/ an]2/3(h/a)1’3. Doubling the height of a 2D
island occurs when its size exceegls], >[19yA/ an]z’s. Clearly it has to be smaller than
the coalescence siwajc = (D/F)M(if not the single height islands annihilate mulyaihe
authors simulations took D/F=1Go that ¢/d]_=30atomic units. There is according to
Frank’s rule [45)/ E=10° cm for clean crystal faces, but 2D edges beingnih#y

roughened we takefl/Ezlli%.lO9 cm so that with a=3A there is a critical siéia|0= 170 (for

mMy=1%), 40(3%), 26 (4%), 15 (6%). Thus doubling cartycstart for misfit greater than
roughly 3% which corresponds to what the autholséoved”. Conversely it can be foreseen
that “SK roughening” can be avoided whén </, that means by decreasing the coalescence



size or increasing the density of critical nucl€his can be done by increasing the reduced
flux F/D >60m:**or by increasing the nuclei density by other medmts add that these

simulations have been done on a flat F face. Wiwere ebn a vicinal with terraces width L,
the coalescence size has an upper limit for 2Mdsa<L.

3.3 Growth instability induced by strain on vicinal faces

3.3.1 Growth of a vicinal face without strain

Growth instabilities are very frequent in bulk gtbvwwhen diffusion-convexion of matter-
heat are involved. In vapour growth, even outsial strain considerations, surface diffusion
coupled with interfacial kinetics leads to instélak we have to mention first. In the pioneer
work of BCF [105] a vicinal face receives (or logsadatoms from the terraces where they
migrate towards (or away) the steps making themditance or to recede. In any case, steps
exchange (from their kinks) their atoms with theotadjacent terraces from the top side (+)
and from the low side (-) with frequencie$ Bnd D leading to a very quiet step flow when
D*=D<D. Disymmetric step kinetics may result from adsiorp of impurities in the kinks
[105] D'2D<D. But there exists also some intrinsic effectsdiean steps with xD<D due
to some activation barrier near the upper ledge stircalled Schwoebel [120]- Erhlich [121]
barrier .

a) D > D"

_E'—I"«“«‘.
R
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Figure 14: a/ Adatom sticking is easier onto an upper stepr[IJ). Then since the number
of atoms that reach a terrace is proportional t@ tterrace area, a terrace larger than its
neighbours becomes smaller, thus all terraces rethehsame size, each step reaches the
same velocity and step flow mechanism occurs.
b/ Adatom sticking is easier onto a lower step<(@"), a terrace larger than its neighbours

becomes larger and larger and step bunching occline opposite scenarios are valid for
evaporation. This concerns a non-strained solid.

In BCF's theory the lateral step velocity is anrgasing function of the size of the adjacent
upper and lower terraces:= D" f (L") + D f (L™ ). Suppose a given step (figure 14) in a

™ When atoms approach or leave an upper ledge seattnadtive neighbour bonds have to be cut, busegho
from the lower ledge not.

™ n fact v depends upon the normalised distanc2s,LWwhere xis the mean diffusion distance before
desorption of an atom.



regular train [=L"=L, during growth the mean spea&®0 fluctuates, sayAL>0 so that the
lower terrace becomes smaller, the upper one widwer.velocity of this step is

V=V+Av=D"f(L+AL)+D f(L-AL)=(D* +D")f(L)+ (D" - D‘)% AL (53)

L

The symmetric case 'BD” doesn't change the velocity from the mean valu¢heftrain,
D*<D" slows down the step,'BD” boostst and may lead to instability. For evaporatigrQ,
the opposite happens.

P.Bennema and G.H.Gilmer [122] showed that the gniweg differential equation is similar
to that of a chain of masses connected by sprihgsing for growth (evaporation) an
exponential damping regime for'8D" (D">D") and an exponentially increasing perturbation
for D'>D" (D'<D’) leading to step bunching (see also [106]). In mamy ordinary (usual)
Schwoebel-Ehrlich effect renders, fortunately, nalrorystal growth stable.

The case of strained layers of vicinal nature hesnbstudied by Duport et al. in 1994
[123,124] and Tersoff in 1995 [125]. Because of tiegght h discontinuities, the border of
these strained layers bear elastic monopoles iessx¢see (16)) with the elastic dipoles
existing without strain (see 2.). There is firststady the thermodynamic stability of such a
train, secondly its stability versus growth or emagtion.

3.3.2. Tersoff’s step bunching driven by step-steipteraction due to bulk strain

() We have seen (1.3.2.) that a step on a vicinahseartan be described as a line of
dipoles at which adds a line of monopoles. Therautgon energy per unit length of a pair of
identical, L-apart, steps (h=a) can thus be sepdratfour terms. Each of these terms and its
physical origin are described in table Il whenfaoe stress is neglecteds£® in (14))

_ Ea'my

mo-mo H ‘a,In(L/278) | @ —Hm

2A2(1-p )
di-di _“L’_«L._ a,(a/L)’ 0’22%

mo-di
I = N a,(a/L)

di-mo
e -a,(a/L)

@ ==b 1)

Table llI: Sketch of the various interactions in betweentieglasonopoles (mo) and dipoles
(di), with the analytical expressions of the inttran energies in column 3. Here,+0 and
A>0

In the given analytical expressions of the foum®rn(see third and fourth column of table
) let us recall that A is a dipole moment asl32. Here A>0 describes a dilatation centre.
Identical monopoles are said long range attracfime) whereas the identical dipoles,
whatever their sign, are said short-range repul$iv®. The medium range monopoles-



dipoles interaction depends on the sign of,Abut for the pair of steps the total interactisn i
zero. In appendix J we derive these interactions.

Consider now a step m at positiopir between two others steps (of same sign),atand
Xm+1, With Xms1-Xm-1=2L (Xm is the deviation of step m from its middle posititaken as
origin see figure 15). The step-step interaction @t length versus the deviatiog, xrom
table 1l thus reads

ss — _ L_Xri a ’ a ?
U (Xm) _Ul(xm)+U2(Xm) _al|n|:W:|+a2!(L_xmj +(L+ij ] (54)

and is drawn as a full line on figure 15. The stemt %,=0 thus is mechanically unstable
since by some fluctuation it is attracted eitheooe side or the other side and finally trapped
in the left or right minimum due to the repulsivetgntial. For figure 15 we took usual values
of the various ingredients E=540erg cn?®, v=1/3, a=2.18 cm. For the dipole moment
A=0.7eV=1.10" erg consistent with E and a (see appendix I). \&itmisfit m=2.10° one
thus obtains1;=2.10% erg ¢, 0,=1.10° erg cm* anda,/as=1/3.1G. From figure 15 where
L/a=100 the pairing distance is seen to be {)M/a=23 atomic units. A good approximation is

(2a,/a,)"* = 2|A4/(Ea3|mo|):25. From latter result one understands that eipitastrain m

whatever its sign compresses the pair. Addinga@ a(T) terni**, a temperature increase
may further separate the pair.

1,8x107
1,6x1071 Figure 15: Interaction energy of a
step of a strained solid U (54) versus
its the position in between two others,
U, attracting part due to elastic
a0 A P . monopoles, b repulsive part due to
00 50 0 50 100 X elastic dipoles (units: erg ch).
=1 m......
L
(m-1) 0 Xm
(m+1)

¥+ The elastic interactions as all elastic properties slightly decreasing with temperature. An irefefent
dipole-dipole repulsiomz(l')(a/ L)2 exists for 0 due to kink formation [105] so that the steps mokest and due

to their mutual confinement there results [126] edponentially increase afi,(T) with T. Obviously these
“dipoles” don't couple with elastic monopoles opdies.



(i) How does this mechanical instability lead to stemdihing? This is a matter of
cooperative kinetics of transport of atoms by stefaliffusion in between steps. Tersoff
[125] considers the adatoms coming from exchangfe tve kinks on the steps and eventually
from an incoming flux Fsétper site. No atom leaves the crystal, completalensation is
thus supposed so that the time dependant adatosityd@ms governed by the simplified BCF
[106] diffusion equation. The boundary conditioristtze steps are simplified to¢l) The
transfert of atoms from or to the kinks and neaagksttoms positionspta has no kinetical
barrier (at least that of the usual surface diffinscoefficient D). There is no interfacial
kinetics, no Schwoebel or other retardation effg@sThe local adatom density at the steps is
that of thermodynamical equilibrium

6(x,, +a) = 6(x, —a) = exg- AE

ot /kT] (55)

whereAE is the bond energy of a kink atom minus that ohthe adjacent adatom A& (in
fact the adatom creation energy from a kink atorh)s quantity is however modified by the

elastic field where the kink is located af iside the train of stepk as quoted in (55) by the
indices % and L. A kink atom at %#0 is submitted to a net attractive force
af (x.,) =—aduU S_S/Mxm >0 towards the nearest of its neighbouring step. Wgning an

atom the kink goes ahead byAxp=a so that its energy changes by
AW = af (x_)Ax_ =a?f(x_)so that®®

) aU S-S
16)4

X,

AE

ol AE|o,t -a (56)

m

where nowAE|OE is the adatom creation energy from a kink whea tbice vanishes. From
(55) and (56) there is

U S‘S/«Man

0(x,, +a)=6(+a)exg -a T

m —

(57)

which means that these elastic interactions duepitaxial strain boost the equilibrium
adatom density at the step when the step devietes its middle position. This is a simple
way to formulate how a mechanical effect is tranmsfed in a chemical one.

For testing stability let us consider at the tin¥® ta regular train of steps of mean

distance. . Let us assume a small displacement of every psdbg u,_(0) =Acos(27m/ N),
at a small time t>0 the following time evolutiorBj5s found to be valid [125]

u, (t) = Ae" co{%ﬂ (m+ Ft)} (58)

855 |n fact this is only true when each step site i&irgk site. When the kink density is 6<1, the local
displacement is reduced Ax,=a€



The exponent is given in (59) for widely spacegsté./a>,/a;) and since positive, leads
to an amplification of the bunching rate r we faise:

_Ea'm (., 2m\ (1
r=—2""(3°p, /ZKT{[ th n(l ﬂ (59)

1-v N

First there is the “driving energy” of epitaxialah per atom, then the “kinetic resistance”
due to the material transport. Appears the maséssiiin coefficient

D, = Dexp(—AE|Xm’L /ij =D, exp(—[AEhm’L + E*) /kT) (60)

composed of the adatom creation enetgi{x . usually greater than the activation barrier
-

E* for surface diffusion of atomsAE|X . Is able to freeze this rate process when tempreratu
-

is not high enough, e.g. when T<2/2fing. The last term in (59) shows that bunching starts
for N=2, that puts in evidence the cooperative reatf the process. N=2 is the most efficient
mode, the amplification slows down rapidly for medé>2. This initial bunching rate is flux
independent. At F=0 (but zero evaporation is prbed) numerical resolution [125] showed,
starting with a random train, the development efltinches with time. The bunch size (mean
number of steps in a bunch) varies monotonouskresit'’*. Atomically flat zones can be
obtained separated by bundles of many steps. Qlyioit was observed (but not
systematically studied) that when flux is put orgimiaining the same other conditiofily
bunching progresses less rapidly €t%°(2) bunching saturates at some small valuessr3

for F=25. Such simulations should be reactivategdrallel with in situ experiments similar
to those of Métois et al. [127] under well contedliflux F<0, F=0 or F>0.

3.3.3. Duport’s strain driven surface diffusion ingability

The Grenoble group [123,124] predicted first in 49 other instability we are now able to
qgualify more precisely. The phenomenon concerrargd vicinal faces under biaxial misfit
m, With an incoming flux F>0 but without re evapoacati(complete condensation) as in 3.3.2.

The authors considered the elastic interactionnohdsorbed atom on a terrace in-between
two consecutive L apart steps (see figure 16) destas a dipole & located in-between two
lines of identical monopoles m on the right and on the left. Taking the middle point as
origin of xuq the interaction energy per atom reads in absehsarface stress and thus with
F3=0in (14) (see table III)

ad-s — — a - a a 2 a 2
U (xad)—U3(><ad)+Uz(xad)—d{u2+xad u2—xaj+d{(u2+xad] +(u2—xad]

(61)




A¥m

°(1+v) [123,124]
a

K*kk

for the dipole-monopoles interaction and

where a';=-

a',= 2A""dA/(7Ea3) for the dipole-dipoles interaction (see table. Ilf) principle £%A but
are of same sign so this interaction again is el Mostly [A%<|A|.

Figure 16: Interaction energy &' of (61)
erg cm' of an adatom (dipole) and two steps
of same sign of a strained body, t¢pulsive
part due to the two dipole—lines with the ad-
dipole interaction, { attractive part due to
Ly : . . the two monopole-lines and the ad-dipole

3
=
X o

In figure 16 we draw (61) as a full line taking th&me numerical values as in figure 15 of
E,v, a, m, L/a and A, furthermore we put®*A (making therefore an underevaluation).
Thus 3=8.4.10"°, @2=2.10"% erg per adatom. For®m>0 the adatom is attracted to the
lower terrace of the steps the short range repulsreating a single well located near the
lower terrace of the step, (specifically hegg/(k/2)=-20 atomic units). When #m, changes
sign, the well switches to the symmetrical positidime stationary adatom density at the
position x along the terrace is given by the resotuof

_83n() g 62)

Fax

whereJm(X) is the net current proportional to the gradienadatom densityd x(tp which is
added a drift term due to the elastic forg = —oU ***/ax acting on the adatoms:

96 D
Jn(X)=-D—=+—6(x)f 63
m(X) o i 000 T (63)

where D/KT is the so-called Einstein mobility okethdatoms when submitted to the force
fad (X) '

The Einstein-Focker-Planck equation (63) thus gavesirely kinetics effect as can be easily
seen since when this force derives from the equulib distribution 8(x) = exd—U ads / kT]

" We put here minus sign since our misfit conventoof opposite sign of Duport'$a/a=-m.



there will be no current on the terraces. Putt®g) (n (62) and integrating along a terrace
gives

B(x) U

Fx+ D{H(x)+ j o

dx} +C=0 (64)

The constant C is obtained from boundary conditanthe step. Obviously they have to be
non-equilibrium conditions: for the left step (m,—-BFQ(LIZ) =C - FL/2; for the right step
a

D 6(L/2)=C+FL/2. The condition for a step m to collect from iterit and its back
a

terrace leads again to a differential equation samjlar to (59) with a stability exponent r

r :_{[ D j _( D_jz , 2A1+v) A%m, E}(ZMJZF (65)
D" D T KT a|lNL

Physically however the result is very differei. The oscillation of the train suffers
damping or amplification only when a fluxt€ exists (clearly only an incoming flux since
evaporation was precluded)) The shortest mode, even N=1, is the most efficoemat. (iii)

For my=0, an asymmetric adatom integration'€D'<D) is stabilising (similar to Schwoebel
effect). For £my>0 (for self-adsorption £>0 it means rg0) stability is increased even for
symmetric integration (B=D"). (iV) For the opposite casé®n<0 (that means gr0 for self
adsorption) and with still xD'<D, the epitaxial strain drives so much the adatoms
downward the step that they overcome easily thew8ehel barrier. However this only
happens provided the mean step distance L/a ovspas critical value depending on the
height of the barriel!™

From our discussion here and the one in 132 itlsar that Duport's and Tersoff's
instabilities are not of the same naturbe Tersoff's one is misfit square dependent, ®xaist
zero flux and slows down for increasing flux. Thebrt's one is misfit sign dependent, does
not exist for >0 and when exists @®0) is boosted by increasing fluxrhis gives a
contradictory feeling about both effects. Furtherenia Tersoff’s theory the adatoms have not
been supposed subjected to the elastic field ostidyes and thus are not dragged towards the
steps. In Duport’s theory the steps are supposedotlonteract by their elastic field as of
course they should. The situation is however notbad since Tersoff's and Duport's
instabilitiesin fact occur in different temperature rangdadeed in Tersoff's formula (59)

appears the mass diffusion coefficieBt, = D e =/*"e™*%*T, which is very temperature
dependent throughE/KT, and thus only works at very high temperat@a.the contrary, in
Duport’s formula (65) appears the surface diffusamefficient D = D_e */*T. Thus since

E*/AE=1/5 for stable faces the Duport instability workdoav temperature where kinks can'’t
produce adatoms by their own (Adatoms in this @aseonly provided by the incoming flux).

T Thus wafers with very small miscuts and the useeo§ weak flux would be helpful for avoiding this
instability.



3.3.4. Miscellaneous kinetics effects

* In the previous section we have seen that sttam modify surface diffusion by way of
the supplementary elastic forces along the stepsgaon adatoms. Nevertheless strain can
also have an effect on the diffusion coefficieseit as shown by Schroeder and Wolf [128]
who calculated activation barriers for diffusion strained high symmetry plane surfaces
(without steps) of simple cubic, fcc and bcc crigstkor this purpose they described pair-wise
interactions by means of an anisotropic Lennardegopotential with a strain-modified
distance in between atoms; then they placed aromdah a binding site and moved it by
small steps. The activation energy for surfaceuditin is calculated by a conventional
minimal energy path saddle poifithe main result is that generally for tensile strég>0)
the diffusion barrier is increased whereas compkesstress ¢<0) decreases the barrier.
(see figure 17). The diffusion barrier change igniyadue to a change of the saddle point
energy whereas the minima are shifted only vetleliAs said by the authors this behaviour
can be naively understood on the basis of limitcages. Indeed in the limit of large
compressive streso€0) the surface becomes continuous and thus tlsemilonger a
diffusion barrier. On the contrary, within the linof large tensile stres©#%0) the surface
consists of isolated atoms and diffusion becomesvatgnt to breaking a pair of atoms and
building a new pait**. In the same paper the authors have also studéedetically diffusion
on top of a stressed island. In this case, sineditiite size island can elastically relax by its
free edge the strain along the top surface of stend becomes inhomogeneous and thus
diffusion may vary from the centre of the island/iéods its edges-or compressive strain the
diffusion is faster near the island centre wheréarstensile stress it is faster towards the
edges Thus it should be easier to nucleate on top tehaile strained island than on top of a
compressive strained islaticr.

7 extension (5%) Figure 17: Diffusion barrier path for an

adatom on an homogeneously strained cubic
lattice (parameter a) calculated by [128].
Upper curve: tensile strain (5%), middle
curve my=0, lower curve: compressive strain
(-5%). In fact for a homogeneous strained
(001) surface of a simple cubic crystal the
diffusion barrier depends linearly upon strain
which can be easily shown by a simple first
order development of pair-wise potential in
0 o 5 respect to strain [128].

—
1

E (arbitrary units)

These two effects are second order effects in casgato elastic interaction in between
adatoms and steps as described in the previousrse€turthermore thesimple surface
diffusion change cannot modify the growth mechanlMore precisely since adatom density
essentially depends upon the ratio D/F a strainged increase (decrease) of the surface

¥+ n other words in this latter case the diffusi@mrer becomes equal to the pair-binding energy

8558 More precisely for an inhomogeneous strained sartae saddle point energy and the binding energy m
vary as well. The saddle point energy change léad® inhomogeneous nucleation whereas the birslieggy
change leads to a drift term in the diffusion cotréNevertheless for cubic crystals the bindingrgnehange
remains weak [128].



diffusion constant (D) is exactly equivalent to @ppropriate increase (decrease) of flux (F

and thus may only weakly shift the transition betwstep flow and 2D nucleation or change
the nucleation density. At the same since thertallerystal, the more relaxed its top face, this
kind of elasticity-induced Schwoebel barrier thumn conly help the first stages of the

thickening of tensile islands.

* We avoided in these lectures to treat alloy faioraand especially the effect of strain.
Let’s fisrt mention some facts.

(i) Deposition of A pure on a B pure substrate formaither 3D crystals (VW) or thin
epitaxial layers (F-vdM). In the absence of ep@dxnisfit and defects the interface in both
cases moves, in a planar way in the first caselilcebg the substrate in the vicinity of the 3D
crystals for the second case. One speaks aboutasitopal strain due to the different atomic
radius of A and B.

(i) Deposition of an alloy /1.« on a substrate B. Interface diffusion is common fo
planar Ge/Si or Si/Ge systems and starts at tertyperhigher than 650°C but is difficult to
follow. Some other systems are more accessiblevarah more brilliant for demonstration. It
is the case of epitaxial deposit Bagifdm deposited on MgO buffered sapphire substrate:

BaTiOs(100)//MgO(100)A03(1120 ) [129] where the interface BaTi®IgO is very abrupt
whereas MgAJO, layers appear at the interface MgQO#2d (see figure 18). This alloy layer
thickness depends on the subsequent depositiondinBaTiO; deposited at 1100°C, the
MgO layer having been deposited on@d at 650°C only.

MgO

001 MgAl204

1102 Al203 nm

Figure 18: BaTiOs(100)//MgO(100)Ai05(1120): Lattice image of the Mg#D,; spinel
reaction layer between the MgO buffer layer andgapphire substrate (courtesy of C.H. Lei
et al [129])



(i) Interesting to study is the surface of a strainddyawhere compositional and
morphological instabilities occur both [130-141Jndilations become totally unstable for all
wavelengths. Islands nucleate at different commwsithan the alloy layer, stress induced
nucleation rate is drastically increased. Experitwane far behind theory.

Last but no least lets mention very important pcattut trivial effects: misfit changes that
occur at the end of a growth process when temperatumes back to normal temperature and
the different dilatation coefficient are not adpakt

4. A FEW REMARKS ABOUT INTERACTING CRYSTALS

Up to now we have only described isolated epitaxtipstals. Generally one has to do with a
collection of crystals so that when their meanatise L approaches their mean sizethese
crystals may interact. We will distinguish two tgpef interactions. Even when the crystals
are far one from another/<<L , they may exchange atoms by surface diffusion hen t
substrate provided the surface diffusivity is hafiough. At smaller distances=L , there is
furthermore to consider elastic interaction of thgstals via the substrate.

* When the equilibrium shape of a 3D crystal (Volmvéeber case) is realised putting
equation (d) in equation (e) of table Il it followlse generalised Gibbs Thomson equation
[87]:

D=yt E{R(req) o,

} (66)

Relation (66) says that an equilibrium crystal wiité sizefeq has an excess chemical

potentialAp with respect to a bulk and non-strained crysthk first term of (58) corresponds
to a hyperbolical decrease &f1 with sizeKeq as in the classical Gibbs-Thomson equation.

The second term represents the contribution to eamotential of the strained but relaxed
crystal at its equilibrium shape ratig,rFor usual elasto-capillar length/Y (see section
3.2.3.2.) this term contributes to less than 5% rfosfits as high as g5.10% Thus the
smaller the equilibrium shape/,,, the higher the chemical overpotential. So at
thermodynamic equilibrium, the usual Ostwald ripgnistill holds: small crystals loose
molecules in favour of the bigger ones. However kinetics when limited by surface
diffusion may oppose to this thermodynamic tendeoneyards Ostwald ripening.

For coherent epitaxies a continuous layer is fslifained at its natural misfim, (see
section 3.2.3.1.)Thus a collection of islands initially relaxed, &hcoalescing, have to strain
back tom, at layer completion. This was first mentioned b€ra [141] who said that this

proceeds by the overlapping of the substrate stiglols when the island borders come closer.
This means that, when close enough, two islandshaonicate by the substrate. This must
affect the equilibrium shape of each crystal sittoe greater the coverage, the greater the

" This may be different when the various crystalgehdifferent shapes. In this case, owing to itscijt
shape, a great crystal should have a greater chepatential than a small one. In this case therdccbe a size
selection.



elastic energy. In [87] we have studied the equiiin shape ratio of interacting box shaped
crystals (Volmer Weber growth) and shown that et&ng crystals have a shape ratio r
which deviates from that of isolated crystals. Mprecisely, the near equilibrium growing
crystals prefer to thicken rather than to comeards the borders and finally to coalesce.
Obviously the harder the substrate, the smallerdtheation from the equilibrium shape of
isolated crystals. Nevertheless these elasticdotens should also affect Ostwald ripening
since now the mean elastic energy per atom thatribates to the total energy becomes
coverage dependant. Floro et al. [142] tried tooshice such a contribution to the mean
energy per atom by writing the usual chemical piaéms A,u:4yA[Weq+ p(@]. The mean

field term p @) they introduced was obtained by finite elementsutations and found to be

proportional toexd&z)—l wheref is the surface fraction covered by the islandghis case

the authors found that Ostwald ripening is enharmeelastic repulsion as soon as elastic
interaction in between deposited islands playsl@ that means for high coverage close to
coalescence. The results thus obtained are conwgaltith their experiments [142].

. Such elastic interactions have also been propasduaetthe driving force for self-
organised growth [143,144]. Indeed, if in an aroéyslands one of the island deviates in size
or shape, its neighbouring islands feel the chaitgtherefore installs a driving force for
material transport restoring a uniform size andpshdistribution, if temperature is high
enough.

In the case of multilayers films, the repeated démm of layers enhances the self-
organisation, so 3D islands may organise progrelsia a uniform and regular pattern [150].
The theoretical description of such organisatiominltilayers has been given by Xie et al.
[143] then Tersoff [145], and called verticallyfsetganised growth.
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APPENDIX A

In the case of a (001) biaxially straineg=,=m) layer ©3=0 at the free surface) of a cubic
material, the relation (3) can be written:

Ul Cll C12 C12 O O O mo
02 C12 C11 C12 O O O mo
C, C, 0 0 0 |e

0

0| |C,
0| |0 0 0 C, 0] o0
0 0 0O 0 C, O0]oO

o/ lo o o 0o 0 c,lo

where we use the jGnatrix for a cubic material (x2,xs being the fourfold axis). The
compliance matrix has the same form. For cubic rnat&; and G are connected via the
following relations [15]:



Cll + C12 . S C12 .
(Cll + 2C12)(C11 - Clz) ’ " (C11 + 2C12)(C11 - 12) ’
Notice that G and § coefficients can be inverted.
The previous relations betweerande thus give

{01 =0, =(C, +C,)m, +C,,&,

S44 = 1/ C44

11

2Ca2nl)*-c%l£é ::O

and thus
o Ch
0,=0,=(C,; +Cp, —2=)m,
(: (:11
£, =212
3 C., m,
The elastic energy density (5) thus reads
=BGy
2D C122 _ 12 H H H
where E, =C, +C,,-2—= and Voo = —2—2 define the two dimensional

11 11
Young’'s modulus and Poisson’s ratio for this orétioin [19,20].

In the case of (111) strained layer one obt¥rs6C,,(C,, + 2C,,)/(C,, + 2C,, +4C,,).
For less simple cubic orientations see [146].

APPENDIX B

The mathematical definition of the principal value) is:

X—0
j ) dx} = Iimdﬁ{ j fl(x ) dx'+ j ) dx} which can be written under the Hilbert
X'=X

-0 X+0

form with t=x-x vp“ (x) dx} =lim,_ {J' f(XH); fx-Y dt}. Thus in the case under

o
study there is

J.S,n dx}-h N {]’isina)(xﬂ)—sina)(x—t)dt}=|imdﬂo{2008ax]'isir:wt dt}

o t o

sinax'
X=X

Thus forw>0 there isv J' dx} = JTCOSGX



APPENDIX C

By writing the strain tensor in terms of displacerme

lja-ikgikdv :lj.a'ik 1 ﬂ+% dv

27 25, " 2| 0%, 0x

Integration by parts transforms the second membarsurface integral:
1 1,00,

Zluo,ndS-=|—kudv

2'[ i~ ik k 2J- an q

The last integral is zero since in the bulk of dodid the bulk density of force components
(1), f, =00, /0%, have to be zero when no body forces as gravittieers are acting. In the

first integral n, are the components of the unit vector normal ¢ostivface so thatr, n, = f,

are surface force density components creatingigpatementw,, :%J' fydsS.
S

APPENDIX D

For semi-conductor films, the situation may appsanple since it seems that a film of
roughly 1 to 3 monolayers can already be considaedn elastic continuum where bulk
constants are roughly valid [147,148]. This may eofnom the short-range potential
describing semi conductor bondings. For other nmedgethe situation is more complex since
now the bulk elastic properties must be size depethdHowever a simple model of size
dependence of the biaxial modulus of thin film bagn published [71]. In this paper Streitz
et al. have calculated the thickness-dependentidbiamodulus Y(h) of thin metal films
(thickness h) as the second derivative of the ttargyAU per unit volume with respect to
strain. They show that for Co, Ni, Ag and Au wi@l0{) or (111) orientations, size dependent
biaxial moduli obtained from atomistic simulatiosuse perfectly fitted by a simple analytical
model whereAU= AUg +AUs with AUg the volume strain density energy of an infinite
material (characterised by the usual bulk biaxiadoius) andAUs the work done against
surface and interface stress. More precisely uiag relation (18) the biaxial modulus of a
thin supported film reads in the framework of teswamptions herein (linear elasticity, strain
1-VaSa*Sus

EA hA
n=-¢,/&, is a function of the Poisson ratio. Thus the @hriodulus Y(h) of a thin film

scales with the reciprocal of the film thicknessl aeaches the usual bulk value, Yor
increasing thickness. Thus in the framework ofdmnelasticity it seems that it is formally
equivalent to use size-dependent bulk elastic eotsbr to properly consider surface stress.

independent surface stressjh) =Y, [1-¢,(27-3)] with &, =- and where



APPENDIX E
The proof is: the short range behaviour reéqg) = ® |_| (z-D, |_| the Heaviside
0

function and from (32) witl®=0, V=0

0AF 2 , 00(2)
—=-(Au-E)L"a+L°——==0
5, - Bu-E) p”
so that now in table Il ford <O there is 5(2—1):%. Since Ay <E, the ratio is

positive so that the solution is z*=1 and also4p=0, z=1.

APPENDIX F

From a thermodynamical point of view the numbeintérfacial dislocations may pass from
N to N+1 when the total energy change due to tteduction of the (N+1) dislocation is
negative. The elastic energy stored by the syste?xd orthogonal dislocations exist can be
roughly written [80] for isotropic solids

E, = 2@&2—’;(& IN1)S,,+ YM2VR 0

where the first term is the energy of a double yaroh perpendicular non interacting
dislocations with 1/ls=1/Er+1/Eg the reciprocal “interfacial modulus” (EY a/(1-va) and
Eg=Ygs/(1-vg) are the elastic modulus of A and B respectively)the Burgers vector
component in the interface, om’ the part of the misfit accommodated by the ()1
dislocation pair and a cut off. When h<d where d is the equidistandeeiween dislocations
there isA=h, if not there isA\=d/2. When there are N interfacial dislocations thkased
elastic misfit is obtained from Vernier consideoas. It reads

m'=m, = Nb/ /S, (i)
where SAB|Nis the interfacial area for a crystal having N ifdaeial dislocations. The

thermodynamical criterion for the (N+1)dislocation entrance is thus obtained from
En.: — Ey <0 that means when

h V _b 1 K 1+In A
—= > — (iii)
a Sy, a2ml+K N+1/2 |
mo_
VSl /b

Where K=E/Ea is the relative rigidity, and R the relaxation ttac For a thin
pseudomorphous infinite film there is R=%,; — 0 andA=h/a so that the previous relation
reads

h_ b 1 K 1+in(ha) i)

a a2ml+K m,
which is nothing other than the usual Matthewsti@hagiving the critical height beyond
which dislocations may appear in a pseudomorphiims[80]. Let us note that more precise

expressions of h have been given in literature &oeview see [149]) but above relations
roughly give the good order for reasonable migétfew %).




APPENDIX G
The elastic energy of a film in presence of surfstcess can be written

E,, (M= Em?h, +2mAs”(1-exp(h,/af)

The first term is the bulk elastic energy storedly film of height k. The second term is
the work against surface and interface stresse®ated for long range exponential inter
layers forces [69,70]. In this latter terys” =S, +5S,; —S; IS the surface stress change due to

_As°(1-expth,/da) 1
B ha

, ,_ 1| b K h, : , I

With m',=—| — 1+In| = where K =E;/E, is the relative rigidity of the
h,| 2r1+K b

substrate with respect to deposit and where wefq@uthe cut off distance\=h, in the
expression of k.

The film thickness hbeyond which the first dislocation entrance bec®rarergetically
favourable is then obtained by setting mE=mthe previous relation. Thus there is:

no1b k[ (h 1 8s°(1-expth /Za))
Imy| 2771+ K bl m E

The critical thickness is therefore amended (compdath last equation in appendix F) by
the surface stress effect.

the film. The value of m” which minimisesifg+Eqgisi is: m'=m’,

APPENDIX H

As known [6,92] homogeneouwtassical nucleatiomarrier amounts to 1/3 of the total
surface energy of the nucleus :

AF* 1 6(g/a)° _ 2y, (N*)?°

(i)

kKT 37" kT KT
with N* the number of molecules in the critical heugs.
0AF

From —— =0 there is
ON *

3 * 2
N* :(%J ang2F " - 2 yiz (ii)
Au KT  2kT Au
The nucleation rate readsiN*/dt=vexd-AF*/kT| with v=10" se¢" an attempt
frequency. Thus a nucleation raidl*/dt =1 which is quite reasonable gives
AF */KT =30 (iii)
Since 2<(2yAa2)/kT<5 is a quite usual surface energy at evaporatingpéeature the
operative critical nucleus contains
15<N*<60 (iv)
molecules. From (ii) it results the supersaturatiangeskT/a? <Ay <5kT/a? or compared
to E,, Au/E, =Au/(Yang), E=102erg cnt®, m=2.10° gives at E10°K

Au
6<—<10
£ (v)



Non-classical nucleation is that one where theeuskize N* is so small (N*=1,2,3...) that
the macroscopic concepts of surface energy no mmalds. Then additive bond energies are
convenient to define each cluster (see Walton’gkrtheory in [92, 106] or papers as [113].

APPENDIX |
Exact calculations of the dipole momenf & adsorbed atoms on a substrate can be done

precisely when the interactions in-between two ignsand (j), X'/ apart, are well
represented by a pair potentiar(x"j). Indeed, using the concept of point forces the
components of the force of an atom (i) acting at'is: f;'jd(i—ii'j) with

. i) xhi .
fl :—%F‘,’j‘. Far from the point of application of the force>> x'"! this force
X X"

reads up to the first ordef/5(x - X1 )= f;'i{d(x)+zx;i %5(2)} . For all i-j bonds
B

')
ax/,,

the total distribution of forces thus redgldx - x' )= f;'j{5(2)+2x‘[;j axilld(i)} At
j B B
mechanical equilibrium the first term of the deystent vanishes and there is
a0l ) X%
f aXi'j ‘XII‘
In [26] appendix IV one can find for an ion selfsadbed, but non relaxed on the (001) face of
the NaCl-structure type : #0.10 é/at2%, i=1,2 with a the shortest equilibrium distance

between opposite ions?=l.5 10" eVcm per ion so that for a= 2" $@m A;=0.75 eV (i=1,2).
More generally, comparing with the cohesion energy this structure type

Fix-x')= A a)%é'()?) with the moment of the elastic dipofg,, = -
5

2
W,on :%M e—(l—ijwith M=1.74860.05 % the Madelung number per ion, m the Born
a m
. 020 m .
repulsion exponent (8<m<12). Thereford, /W,,, =V—l, i=1,2 or the narrow
m_

estimation valid for all the alkali-halide serieB,12<A, /W._, <0.13 (i=1,2). Notice the
peculiarity of the (001) faced,, /W, , <10°.

coh
More crude estimations have been done with Lendards (6-12) interactions. [25] gives

A=4.5 eV for Xe on (111)Au, [23] gives A=0.23 eVirfAr/(111)Ar. Finally Duport et al. (see

[124] appendix A2) scaled\,/W,,, =0.17 andA,, /W, , =0.07 for the self adsorbed atom on

the border of a hypothetic compact two-dimensiangstal.



APPENDIX J

Using (12), the expression (17) of the elasticratdon of 2 elastic defects (1) and (2)
(located at the surface z=0) reads:

U =%ZZ j j F(X)D,, (%, X)F 2 (X)dVdV
a B

which when forces have only x components reads

=%ZZ [[F2 (D, (xx)F? (x)dvdv 0)
i o ) = N1Vl v (x—x)
With D,,(%,X') = D,y (% X) == L+1_V = }[131

and r:’(x—><)2+(y—y)2 +(23)2]1/2 the in-plane distance in between the two defektsut off

distance 2a is introduced to avoid local divergence
For our purpose the step on a stressed body igildeddy an elastic monopole whose x
component (perpendicular to the step and directedlatds the lowest terrace) reads

F,°(X) =Fo(X) with =:1Ea2 m,awhereas the elastic dipole is described by
-V

FO(X) = Aaié'(i) where J & )is the Dirac function. Thus injecting these expi@ss in (i)
X

one obtains easily by using substitution propeuiehe Dirac function:

1 1_.0 g 1, 0 y

U™ ==F?D,(x®,x?);U™" ==FA—D,, (XX U == D (%X i

2 XX( ) 2 @((1) XX( )X(Dvyx(z) 2 @((]) @((2) XX( X(DX(Z) ( )

The interaction in between a lines of defects asthgle defect located at a distance x=L of
the line is thus obtained by integrating (ii) alahg line y with x=L. Then the interaction in
between two lines of defects is obtained by mutiig the previous result by the number of
defects in the second line. The expressions oéthbare the first order development of these

expressions for y oo,
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