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Abstract 
This paper is devoted to professor R.Kaishew’ 100th birthday ceremony. It intends to 
illustrate his theorem especially when some inherent simplifying conditions are released 
(e.g amorphous substrate, stress free system). It is shown that some new insight was 
brought for the better understanding of present day arrays epitaxial dots, which are said to 
be promising tools in solid-state electronics. 
 
Introduction  
The paper will be divided in six parts: 
1/ We first recall the somewhat long and tortuous genesis of the Wulff’ 
theorem which at the end, clearly concerns the equilibrium shape (ES) of 
a freestanding crystal A.  
2/ Kaishew’ important achievement was to predict the ES of a crystal A 
sitting on a planar substrate B restricted to be amorphous and the system 
being stress-free. 
3/ When releasing this limitation, allowing the substrate B to be 
crystalline too, epitaxial orientations may install. For coherent epitaxy 
high stress and strain appear not only in the contact area but spread out in 
A and B. Elastic energy has to enter in the formulation of the free energy, 
and has to be minimized (elastic relaxation) as well as the shape. The new 
theorem shows that ES is deeply modified by the relaxed elastic energy.  
4/ Upon some critical size of the deposit crystal the stored elastic energy 
becoming too expensive, introduction of interfacial dislocations makes to 
release partially this energy par saccade. Consecutively, the ES 
retrogrades, at its proper rate, at each dislocation entrance. 
5/ Due to (3) and (4) a dot A pilots, outside its contact area, a zone of 
nearly the same area where the non covered substrate B bears stress 1σ  
and strain 1ε . This is a kind of “antenna” that enables each dot A1 to 
detect at distance other stress-strain fields of the substrate.  



 

6/ To this “2D communication” there has been imagined  and realized its 
equivalent of “3D communication”. Defects A  are buried in B close 
beneath the surface. The stress-strain field of the defects σ -ε , spreads at 
the free B’ surface where material dots 'A preferentially “choose” to 

grow epitaxially at loci where the 'Bε  map has the smallest misfit with 
these 'A dots.  
 
1. Towards the Wulff theorem: 
 
At the end of the 19th century, Gibbs [1] then Curie [2], interested in 
equilibrium capillarity, went to anisotropic crystals and their well-known 
polyhedral shapes. They showed that the total free surface energy 

i
i

i S∑=Φ γ has to be minimal for crystal polyedra at constant volume 

i
i

i ShV ∑=3
1  when the area iS are varied arbitrarily. Still at that time, 

very fond of variational calculus, Gibbs [1] went unfortunately not further 
to solve the general problem. Curie gave an exact solution but based only 
on some explicit crystallographic form combinations. He found, in such 
case, that the central distances ih to the surfaces iS  of the stable 
equilibrium shape  (ES) have to be proportional to the iγ :  

Ctehhh ii === γγγ ....2211     (1) 
Curie [2] called them capillarity constants but gave the same definition as 
that of  Gibbs: specific surface free energy of an incompressible system 
(zero strain)1. The constant of proportionality however was not precised. 
Wulff ‘s (1901) famous paper [5], quoted as Wulff theorem, has in fact 
not received a right demonstration (p. 520) as was shown in (1914) by 
                                                 
1 It is known that Gibbs introduced the two distinct intrinsic properties of surfaces 
of solids iγ precisely the above specific surface free energy concerning the work 

of creation of a surface i  and is  describing the in-plane state of stress of a 

planar solid surface in equilibrium with its environment. These surface forces is  
work when the system is mechanical deformed. For the 80th birthday paper [3], 
we gave some working routes; for closer inside see [4]. 
 



 

Liebmann [6] whose critic however was for many years overlooked. 
Instead giving arbitrary variations to the iS  and ih , Wulff considered 
only those who lead to self-similar polyedra by writing 2

i
i

i h∑∝Φ γ  

, ∑∝
i

ihV 3 . Since ii
i

i dhhd ∑∝Φ γ , i
i

i dhhdV ∑∝ when equating both to 

zero we cannot conclude the ii hγ proportionality (1) as done by Wulff.  
Liebmann [6] gave a correct demonstration by omitting this initial 
restriction and performed arbitrarily variations of  ih  to faces i  as well of 

iS to these faces. Up to the first order this gives: 

i
i

ii
i

i dShdhSdV ∑∑ += 3
1

3
1 .This volume change being calculated 

differently up to the same order: 

i
i

ii
i

i dShdhSdV ∑∑ == 2
1    (2) 

Variational calculus with conditional ( 0=dV ), minimum reads 

( ) 02 =−∑ i
i

ii dShλγ  where the arbitrary variations have to be 0≠idS  so 

that one has a set of i  equations and therefore there is : 
2...2211 λγγγ ==== ii hhh   (3) 

that means the Curie result (1). 
Notice that relations (1) to (3) mean self similarity ES crystals as long as 
the iγ are size independent.This is a consequence of the correct 
demonstration of Wulff’s theorem and not a premise. Furthermore, this 
self similarity (1-3) became helpful 

1. As the now so-called Wulff’s construction of the ES (at the scale 
2/λ )  when knowing the iγ  in all directions ii hh

rr
 of face normals 

2. To determine the surface energy anisotropy by measuring the 
central distances on ES crystal then by means of the  relations 11 γγ ≠i . 

However this famous paper [5] contains further very misleading 
matters bringing great trouble for a long time. Does not the title announce 
“About the question of velocity of growth of crystal faces” though its real 
positive content concerns ES crystals, such ones of zero growth velocity ? 
Manipulating Ctehii =γ , Wulff strengthened his conviction: growth 



 

velocities iv  have to be proportional to iγ  since the iv  are nothing else 
than dtdhi  per unit time. His faith found confirmation by the very 
known fact that crystalline faces of high velocities disappear while those 
of low velocity remain on the crystal (growth) shape satisfying by the way 
the minimal surface energy. Such farrago made great damage to the field 
for a long time. 

Only in the year 1943, M. von Laue [7] was appreciative of 
Liebmann’ demonstration. He gave himself a demonstration based on the 
independent variables ih instead of iS . In other words, he used the first of 
relations (2), considering it as an exact differential ikki hShS ∂∂=∂∂ , he 
applied (p 129) Euler’s theorem of homogeneous functions, then applying 
Lagrange multiplier calculus, leading to (1) (3), he could identify λ  with 

Vext 32 Φ=λ      (4) 
In the same series of papers, I.N.Stranski [8], following Volmer’s book, 
derived Wulff’s theorem directly from thermodynamics by transferring 

cvVn=  molecules (of volume cv ) from the ambient phase, at constant 
thermodynamic supersaturation ( )∞=∆ PPkT lnµ  to the crystal. The 
constant and Wulff’s theorem then becomes: 

iic hhhv γγγµλ ===∆= 221122     (5) 
Stranski called (5) the generalized Gibbs-Thomson equation by analogy 
with liquids where for crystals the iγ  are now anisotropic. Let’s note that 
we do not at all mention here the atomistic treatment of surface energies 
and ES derivations where Stranski and R.Kaishew  have been so much 
active nor the papers of C.Herring, W.W. Mullins and many others 
authors where e.g. the very fruitful techniques of γ -plots have been 
introduced. The same can be said for the experimental works associated 
with such matter and where specific ES have been analysed. We have 
reviewed this in [9]. 
 
 
 
 
 
 
 



 

2.  Kaishew’s theorem 
 
Free standing ES crystals are not easy to produce2. As for droplets, this 
can however be done more easily when the crystals are lying on an inert 
flat and horizontal surface as glass, plastic or some crystalline material3. 
R.Kaishew considered [12-14] the proximity effect of  deposit A on 
substrate B in its simplest form. The substrate is supposed to be 
amorphous so that only the crystallographic nature of the crystal face of A 
brought in contact has to be considered. Its azimuthal orientation is of no 
matter since all of them would be equivalent. The free energy change for 
creating a crystal A of cvV' molecules from an infinite reservoir of 
molecules of constant supersaturation µ∆ with a shape of 'iS free faces 
and contacting area BAB SS =  (see Fig 1) of interfacial free energy ABγ  
created at the expense of Bγ is: ( ) ABBABi

ABi
ic SSvVF γγγµ −++∆−=∆ ∑

≠
''  

Supposing, as in Fig. 1a,b,c that the opposite equivalent of the summit of 
face 1=i of A comes in contact with B, Dupré’ relation states 

ABBAAB βγγγ −+=  where ABβ  is the specific adhesion free energy of the 
face 1=i  of A on B. The quantity  BAB γγ −  in F∆  can be thus replaced by 

ABA βγ − . Using furthermore the basis areas 'iS of the pyramids as 
independent variables, we use (2) so that the emerging volume 'V change 
reads:  ABABi

ABi
i dShdShdV 2

1'2
1' += ∑

≠
 where the distance ABh  is that of the 

common pyramid summits O to the interface AB. It is taken negative if 
located inside the substrate S but positive if located in A. The free energy 
change thus reads:  

( ) 0
2

=−++



 +∆−=∆ ∑∑

≠≠
ABABAi

ABi
iABAB

ABi
ii

c
dSdSdShdSh

v
Fd βγγµ . Thus there is: 

i

i

c hv
γµλ =∆=

2
 for 0'≠idS  and ABi≠    (6) and    

                                                 
2 Closed environment among other conditions are necessary to install for stable 
equilibrium at supersaturation (see [9] p 84-98 and p 179-199). 
3 Gravity effects are harmless and can be neglected for usual densities and sizes 
smaller than 0.3-0.5 mm [10-11]. 



 

Hhv
ABA

AB

ABA

c

βγβγµλ −≡−=∆= 2
2

 for 0≠ABdS   (7) 

Notice that ABA hhH +=  is the height of the emerging crystal A above the 
substrate surface B measured to the summital face A. Kaishew’s theorem 
(7) thus says that the emerging ES is that one of the Wulff’s theorem (6) 
but truncated by the substrate at H . 
In Fig 1 are drawn the different situations for different sizes λ of the 
crystal A and different adhesion energies ABβ  with respect to the surface 
free energy Aγ . 

For a given size, when AAB γβ <  and 0→ABβ ( Fig. 1b and 1a) the 
truncation decreases and tends towards zero. The other extremum (Fig. 
1d) is when AAB γβ 2→ so that the emerging part of A tends to zero, 

0→H . By analogy with a liquid drop, where ctei =γ  is isotropic, Fig 1a 
corresponds to a free sphere,  Fig. 1b  to an incomplete wetting of the 
surface with a wetting angle παπ <<2 and Fig. 1c to half a drop sitting 
on its underlying substrate ( 2πα =  or AAB γβ = ). Fig. 1d corresponds to 

AAB γβ 2<  and AAB γβ 2→  that means to the full wetting case 0→α 4. In 
fact one is not limited to this case but may consider AAB γβ 2>  so that real 
2D solid (or liquid) phases can spread over the substrate B. In that case 
there is 02 <∆ Dµ , that means such solid or liquid 2D phases exist at 
undersaturation up to 0=∆µ  (see (16]). Notice that the Stranski 
Krastanov growth mode has to be treated in such a context [17]. 

Kaishew deduced from (6) (7) that every substrate favours 
kinetically the formation of 3D phases (solid/solid, liquid/solid) since the 
activation free energy of heterogeneous nucleation is in any case smaller 
than the activation energy for homogeneous nucleation. 

( )AABohetero FF γβ 21*hom* −∆=∆ ;   AAB γβ 20 <≤   (8) 

                                                 
4 When one wants to go to this very limiting case, the surface free energy 

( )aHAγ  and the adhesion energy ( )aHABβ  of the thin film A of on a thick 
substrate B have to be described as a function of the number of monolayers aH . 
See the tentative [3] and applications in [15] 



 

This was the first time it was understood  that every surface has some 
catalytic effect with respect to 3D nucleation: 1*hom* <∆∆ ohetero FF . 
Furthermore one can predict for the crystal A that it is able to make the 
choice of its AB interface in order to minimize (8) or select AB so 
that 12 →AAB γβ  provided 0>∆µ . 
 

 
Fig. 1: Equilibrium shapes of free (a) and deposited (b-d) crystals. O are the Wulff points, 
S the self similarity centre 

For a given adhesion ratio AAB γβ 2  notice that different crystal 
sizes are self similar. This is quite clear in Fig 1a for the free standing case 

0=ABβ  where the unique Wulff’s point O is a pole of similarity. If 
0>ABβ , for each crystal size (Fig. 1b and 1d) there are different Wulff 

points but they do not  coalesce with the unique similarity pole S, 
excepted when AAB γβ =  (Fig. 1c) for which the Wulff point, located at the 
interface is common to all the crystal sizes and again becomes the 
similarity pole S. We underlined this similarity property since we will 
show in the next section that it is directly connected to the hypothesis of 
amorphous substrate B or stress free systems. 

 
3.  Stressed epitaxial systems  
 
Kaishew’s theorem considered the substrate B as amorphous or, if 
crystalline, it has to be exactly isomorphous with the deposit A (strict 



 

identity and continuity of both lattices)5. In both cases the system is in fact 
not stress free due to surface stress s, an intrinsic surface property (See 
[3,4]). When a finite size solid phase as a deposit A is formed, it 
accumulates bulk stress σ  and strain ε . For an isotropic solid of cubic 

shape of side length l , there is  ls4−=σ  and ( )
l
s

E
νε 214 −−= , where 

ν is the Poisson ratio and E the Young’ modulus (see [18] p 130 App.A).6 
Notice that such a crystal A  is no more isomorphous with its substrate B. 
Due to its finite size, its crystallographic parameter 00 ba =  change to 

( )ε+= 10aa  so that there is now at the AB interface a misfit 
( )( ) εε −=+−= 000 1 babm  of both lattices. Since s scales 910−≈Es cm, a 

micron sized crystal A has a very small finite misfit 510−≈m  compared to 

the epitaxial misfit, defined for infinite crystals by ( ) 0000 babm −= , 

accounting usually around 2
0 10−≈m . In the following we will only 

consider this latter epitaxial misfit and thus neglect surface stress effects 
and work when surface areas are changed. 
 We have to implement now the thermodynamic process F∆  
written in 2. One wants to realize a coherent epitaxy of A on B as 
illustrated in Fig.2  
 

 
Fig 2: Thermodynamic process for coherent epitaxial growth  
 

                                                 
5 This strict isomorphism does not mean that there must be BAAB γγβ 22 ==  
6 This is the equivalent of Laplace’law for a liquid droplet of radius 2l=r  the 

bulk overpressure of which is rP lγσ 2=−= , lγ being the surface free energy of 
the liquid. 



 

Before adhesion of A on B, A needs to be homogeneously deformed to 
bring its parameter 0a  to the value of 0b  in the interface AB what needs 

an amount of elastic energy 2
00' mVE  for the 2D epitaxial adaptation ( 0E  is 

a combination of elastic constants of the crystals). Crystal A from its free 
surfaces will relax that means reduce its bulk elastic energy. If coherency 
is maintained when A relaxes it drags the substrate B increasing elastic 
energy in it. Both effects can be described by a factor 10 <<R  reducing 
the homogeneous energy to RmV 2

00'E  when mechanical equilibrium is 
reached. The relaxation factor R  depends on the shape of the crystal A 
(and therefore on iS and ABS ) as well as on the elastic constants of the 

crystal and its underlying substrate so that it can be written BA RRR += . 
This supplementary term has to be introduced in F∆  and Fd∆  in II. 
However let us first precise the R  factor which has to be calculated for 
each shape what needs the knowledge of ijε  and ijσ  in the interface Z=0 
after relaxation. This can be done explicitly only in some simple cases as 
e.g a rectangular 2D box of height/length ratio lhr=  and relative elastic 
rigidities K . In terms of AR  and BR  as a function of r  for K=1 the result 
is given in Fig 3c. For more complex polyhedrons as truncated 3D 
pyramids, only numerical methods are tractable (finite element calculus) .  
In Fig 3 there are the results of a quadratic based and truncated pyramid 
(angle θ =45 ° with K=1) taken from [19]. These energy relaxation factors 

AR  and BR  for both polyhedrons have similar trends. However, full 
pyramids have the same relaxation factor )5.0( ≥rR =0.45 whatever their 
size that means the same elastic energy density. 
 



 

Fig 3: Relaxation factors  BA RRR +=  calculated for a truncated pyramid (left) and a box-
shaped crystal (right) 
 
Let us give a road how to find the equilibrium shape in the most simple 
case of the square based box shaped crystal of volume 2lhV = : 

( ) ( )lllll ,2'4
2

22
0

22 hRhmEhh
v

G ABAA
c

+−++∆−=∆ βγγµ . The first order 

differential at constant volume 022 =+= lll dhdhdV  is 

( ) dhh
R

h
RhmEdh

G
hh

GGd AABA
h

h
V 







 +−+







∂
∂−∂

∂=









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∂
∆∂

−∂
∆∂=∆ l
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l
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l
l

ll

'222
1

2
2

322
0 γβγ  

For 0=∆Gd , 0≠dh , the equilibrium shape fulfils the condition 

0'22
2
12

0 =+−−







∂
∂−∂

∂
eq

A

eq

ABA

h
eq h

Rhh
RmE

lll

γβγ  . Calling lhr= , so that 

dr
dRhR

h
2ll

−=∂
∂  and dr

dR
h
R

ll

1−=∂
∂  and calling  the aspect ratio in absence 

of misfit ( ) '22 AABAooo hr γβγ −== l , the equilibrium condition reads: 

( )[ ]






=

−=−
−

rh
dr
dRrr

mE
h

eqeq

o
o

A
eq

l

1

2
1

3
'4γ

  (9) 

This is the new Wulff-Kaishev theorem in the form of a parametric  
system in orr> . From the elastic data of Fig 3, one computes drdR  for 

K =1. For a great variety of pure materials one has ( ) cmE AAA
9101' −≈−νγ , 

taking for the zero misfit case 0=m , 1.0=or  a very flat crystal, one has 



 

the half self-similar equilibrium shape given in Fig 4a from [20], as well 
as the non self similar half equilibrium shape for 0≠m  
 

  

 
Fig 4: Half equilibrium shapes variation of a box shaped crystal versus misfit (a), wetting 
factor (b), and relative rigidity (c). The last figure illustrates the equilibrium shape 
evolution of a pyramid shaped crystal versus its volume. The pyramid changes from 
truncated to full one.)(For more details see the text) 
 
The equilibrium  shape  becomes, at constant volume, thus thicker the 
misfit is greater whatever its sign. Fig. 4b  shows for 04.0=m , 1=K  the 

effect of the shape ratio or , while in Fig 4c is shown the effect of the 
relative rigidity BA EEK= for or =0.1 and  04.0=m .It results a valuable 
rule easy to remember: “wetting (adhesion) flattens the equilibrium shape 
while epitaxial strain acts against ”. Building more complex equilibrium 
shapes in presence of epitaxial misfit needs some more trigonometry but 
the principles are the same. See e.g. [19] for the truncated square based 
pyramid case whose relaxation coefficient we gave in Fig. 3 at the right  
for 1=K  and 4πθ= . 



 

The equilibrium shape half profiles are given in Fig. 4 below at the right. 
For 04.0=m  we draw the trajectory of the edge of the basal face and the 
pyramid face. Here at some critical size, at a given misfit, the basal face 
shrinks and the pyramid becomes a full one.  
 A general remark: We considered only polyhedral crystal shapes, that 
means only F-faces and in terms of γ -plots, by considering at T=0K, only 
their inward cusps. Epitaxial strain can only modify crystal faces 
belonging to these singular Aγ  values. No new inwards cusps can be 
created by this way, what means no new singular faces (F faces) can be 
created by epitaxial strain. Only surface stress can do this, when surface 
strain appears by some surface reconstruction. Such considerations have 
been very scarcely explored theoretically as well experimentally (see [19] 
p 248-251). The so-called huts have probably such an origin. 
 
4.  Plastic relaxation and strained equilibrium shapes 
  
 By increasing its size, a coherent epitaxial crystal increases its 
elastic energy )(2 rVRmEo  in spite of its elastic relaxation. At some 
critical size, plastic defects, mostly interfacial dislocations introduce 
spontaneously. For quadratic based crystals a orthogonal pair of 
dislocations may appear simultaneously for thermodynamic reasons 7. 
These plastic releases are abrupt, reduce the misfit in a discrete way, 

shorthanded [21] as 
N

ABoN SbNmm
r

−≈  for the N pairs, b
r

is the 

Burger vectors component in ABS . Comparing the self energies of the 
N2 interfacial dislocations accommodating the misfit No mm −  with the 

relaxed elastic energy at misfit Nm one calculates [19] p 236 the critical 
heights at each entrance N . In Fig 5 a and b we illustrate for the box 

                                                 
7 Each dislocation enters laterally in the interface for these 3D crystals, but for 
kinetical reasons, at some bit greater size than thermodynamic equilibrium 
requires. They enter not necessary simultaneously what shows the curious effect 
of a virtual small rotation of the crystal at the first entrance, due to Poisson ratio  
and a back rotation when the second dislocation of the pair enters as was 
explained by Mathews [21] after the observations of Vincent [22].  



 

shape and the truncated pyramid how the crystal retrogrades its height and 
facet size by successive saccades at each dislocation entrance. 
 

 
Fig 5: Effect of dislocation entrance on the ES of box shaped crystal (a) and pyramid 
shaped crystals (b)(For more details see the  text) 
 
One imagines an observator scrutizing a truncated growing pyramid (not 
depicted in Fig 5b) becoming higher, loosing continuously its summital 
face. By further growing he has the surprise to see the reappearance of the 
facet suddenly, becoming greater and flatter by saccade ! He does not see 
the dislocations. Such shape ratio changes have been really observed by 
several authors on semiconductor epitaxy in situ by electron microscopy 
following the shape change at each observed dislocation entrance [23]. 
We referred more completely about such facts in [19] p 248-251. 
 
5.  Strain-stress fields outside epitaxial contacts  

When relaxing a coherent epitaxial crystal A transmitting to its 
substrate B part of its strain and stress fields to its volume and surface8 . In 
Fig 6. we give the tangential strain components at the interface Z=0 of a 
box-shaped ribbon lhr= along the contact 121 <=<− lxX . In A and B 
they are necessarly complementary when their proper reference states are 
used: ( ) ( ) oBxxAxx mXX =+ 0,0, εε . Outside this contact area 1>X , 1−<X  the 
substrate at Z=0 suffers also strain but a tangential dilatation when the 
inside is contracted and vice versa.  

 
 
 

                                                 
8 This is true for every type of contact solid or liquid on solid but with very less 
extent e.g. glissile epitaxy or on amorphous substrate. 



 

 
Fig 6: Substrate strain xx components at  Z=0. (For more details see the  text) 
 
 With such kind of “antenna” the epitaxial dot A is able to 
communicate elastically with other strain-stress generators located in the 
bulk or the surface of B. Such generators9  may be other dots, foreign 
atoms or clusters, point defects and their clusters in the bulk or the surface 
of B or simply surface steps etc… Notice that the well-known surface 
defect decoration technique of Basset and Bethge’ school finds herein its 
rationality [24]: opposite sign strain bearers attract each other, same sign 
field bearers repulse each other. 
In the 70th, in a series of papers we summarized in [25,26,16], experiments 
showing that metal 3D clusters of Au, Al of 2≈  nm diameter give glissile 
epitaxies on the (100) cleavage of alkali halides crystals. They start to 
glide and rotate by maintaining the (111) (100) contact at moderate 80-
150°C temperature and the system remains conservative that means the 
collection does not change its size histogram.  
 

                                                 
9 This is true for isotropic elasticity but needs more care for general elasticity 
even for cubic crystals, except for their high symmetry contact faces. 



 

 
Fig 7:  Glissile epitaxy Au(111)/KCl(001) from [27] 
 
In Fig 7, at the left, one sees the as deposited crystals at room temperature 
(Au/KCl) and size histogram  with below the corresponding radial 
distance distribution drrgP )(=  . In Fig 7c the same sample but after 
several minutes of annealing at 120 °C and size histogram gives below its 

drrg )(  showing that (i) the crystals moved, (ii) that the crystals interact. 
From the quantitative analysis of the drrg )(  one could (iii) deduce that 
they interact elastically in a repulsive manner 4−≈r . This drrg )(  at the 
right below is the signature of an embryonic “self-organisation “ similar to 



 

that one obtains for a dilute 2D gas. May be that higher cluster densities 
will have a better tendency to organise as illustrated in Fig 8 for Pd(100) 
clusters  on (100) MgO around 550° C taken from [28]. 

 

Fig 8: Pd (100) on MgO (100) (Courtesy of C. R.  Henry) 
 
 Here surface diffusion, elasticity, Ostwald ripening, coalescence have 
been at work. There is some illusion of periodic self-organisation, the 
dream of many integrated circuit technicians. May be that a choice of 
anisotropic partners A/B with some in-plane, positive-negative alternation 
of strain lobes as described by [29] will bring better ordering but 
attainment of periodicity is doubtful. Let us mention that recently [30] 
similar results as ours have been obtained with in-situ Electron 
Microscopy observations on 3D Ag dots on hydrogenised Si(111) wafers. 
The interpretation is less quantitative but computer simulation of structure 
and energy of glissile interface is convincing.  
Recent kinetic Monte Carlo simulations [31] allowed modelling the 
growth of strained dots with the ingredients of semi-conductors systems. 
The strain field creates some 2D ordering and is said to narrow the size 
distribution of the collection of dots. We think  latter point is not quite 
understood. One knows usual Ostwald ripening (without strain) leads to 
eliminate the smallest clusters in the neighbourhood of bigger ones due to 
exchange of adatoms (Wulff-Kaishev theorem is responsible of that (see 
(6,7)). When strain is present the overlapping of the strain fields regulates 
furthermore the shape ratio of the neighbouring clusters and the material 
exchange by adatoms.  What remains true is that the bigger clusters eat the 



 

smaller ones in the neighbourhood10 what already was said by Curie, so at 
the real end there remains only one crystal. Let us furthermore remember 
that at some critical size the crystals plastically relax and go up to near 
zero strain, behaving then according usual Ostwald ripening. 
 
6. Towards 3D organisation 
 Usefull 2D organisation of dots in semiconductor systems is realised 
currently by photographic processus to lower limits of several mµ110−  
periods. More sophisticated is [32] the idea and realisation of strain 
mapping on the surface of thin wafers  brought together as Si(100) in 
close atomic planar contact but e.g. with some azimuthal small angular 
misorientation. The interface bears two orthogonal arrays of dislocations. 
The in-plane strain and stress field of this array intersect the surface of so 
welded wafers similar to a Moiré pattern with its periodic minima and 
maxima. It is clear that at the location of the minima of this strain field 
one has the opportunity to deposit epitaxially a material preferentially near 
these loci where one has minimal misfit. Nice 2D periodic arrays of dots 
have been obtained. There are some limitations of the metric of the 
coincidence lattice. Great inter dot spacing are more easy to obtain than 
smaller ones.  
Some authors in the 90th have observed that when coherent islands A are 
covered with materials B of the substrate that when fully buried in B the 
new planar surface has some “memory” of the location of the underlying 
dots. Strain fields have been calculated at the surface of an isotropic 
elastic materials when the generator is located in the bulk [33] so that 
Tersoff [34] proposed to study and fabricate 3D superlattices of 3D 
strained dots with (Si,Ge) on Si or InAs (or InGaAs) on GaAs. One has to 
start with strained dots A far smaller than their critical size to avoid 
entrance of dislocations, buried by the material B of the substrate and 
obtaining again a flat surface but bearing an attenuated strain field able to 
receive new dots A [33]. Tersoff simulated many such depositions and 
observed that the island size and spacing become progressively more 
uniform. Experimental confirmation could be obtained on the system 
Si¼Ge¾ /Si(001) with 20 consecutive layers (Si spacer nm10 , alloy 

                                                 
10 However, this can be wrong if two different shapes or orientations can coexist 
on the surface. Indeed, in this case, two crystals of different sizes and different 
shapes may have the same chemical potential. 



 

nm5.2 ). Regularity increases with number of layers as well in shape, 
size and pseudoperiodicity, latter being however not of better quality than 
that one we depicted in Fig. 8. 
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