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Towards Accurate Shape Reconstruction of Compact Bionic Handling
Arm

Inderjeet Singh1, Yacine Amara2, Manarshhjot Singh1 and Rochdi Merzouki1

Abstract— Continuum robots can continuously curve to give
much more flexibility than rigid robots. Usually, continuum
robots are made up of soft flexible material and have complex
structures to provide high dexterity of motion. The presence of
these factors, i.e., soft material and complex structure, make
mathematical modeling of continuum robots a cumbersome
task. This paper aims to discuss the Pythagorean Hodograph
(PH) based method for shape reconstruction of continuum
robots and proposes a methodology for improving this re-
constructed shape using experimental data. The method is
successfully applied to Compact Bionic Handling Arm (CBHA)
manipulator. The results show a clear improvement in the
accuracy.

I. INTRODUCTION

Continuum robots can mimic the behavior of biological
mobalizers like an elephant’s trunk [1], a fish or an octopus
[2], due to their soft material. Modeling them is difficult due
to the non-linearity and high degrees of freedom in their
structure.
Continuum manipulators are being studied for their kinemat-
ics and shape reconstruction. Bionic Handling arm (BHA)
manipulator is modeled kinematically by representing it
as torus segments [3]. Different forward kinematic models
(FKMs) for CBHA manipulator are discussed and also
compared regarding accuracies in [4]. A combination of
optimization and pattern recognition is used to find optimal
setting for multiple CBHAs in parallel configuration in [5].
In [6], a geometrical model is developed for OctArm V
manipulator using cosserat rod theory and a fiber reinforced
model. Inverse kinematic model (IKM) of a continuum
manipulator is described using feed-forward neural networks
in [7]. In [8], various IKM models (Hybrid approach, Neural
Network approach, Newton Raphson approach and Damped
least square approach) for CBHA manipulator are compared
on the basis of accuracy and time cost.
Furthermore, in case of shape reconstruction of continuum
manipulators, sensors are used in most of the works [9], [10],
[11]. In [12], a correspondence between a hyper-redundant
manipulator and a geometric curve has been established
by solving a non-linear optimization problem called ’shape
inverse problem’. The backbone shape of a hyper-redundant
manipulator has also been solved using the modal approach
and thereby using a fitting algorithm to join the various
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sections of a discrete 30 DOF manipulator [13].
Pythagorean Hodograph curves and their applications are
defined by Farouki and Sakkalis in 1990 [14]. These curves
have the following main properties: 1) Length as well as
bending energy of these curves can be calculated in the
closed form 2) Easy to construct parallel curves 3) Only
four boundary conditions are required to construct a quintic
PH curve i.e. starting position, final position and direction
vectors at both of these positions. In the field of robotics,
PH curves are used mainly for the trajectory planning
purposes. PH curves have been used for 3D path planning
of three unmanned aerial vehicles (UAVs), as well as to
avoid obstacles in their path [15]. In [16], PH curves are
being utilized for optimal path planning of mobile robots
and also the same concept is introduced for the calculation
of backbone curve of a two-dimensional hyper-redundant
manipulator. In [17], PH curves are utilized to model spacial
continuum manipulators, which is being extended in this
paper. This paper focuses on improving the accuracy of the
PH based reconstructed shape for CBHA manipulator. The
main contributions of this work are:
• Discussion of shape reconstruction of CBHA manipula-

tor using PH curves based approach. Improvement in the
accuracy of the reconstructed shape using experimental
data.

• A relation is developed between existing PH based
shape and corrected shape using neural networks ap-
proach.

The organization of the paper is as follows: Section II gives
a brief description of the CBHA manipulator. Section III
describes the Pythagorean hodograph condition and also
the generation of the PH curves. Section IV introduces
the methodology used for improving the accuracy of the
shape for the CBHA manipulator. Results and discussions
are presented in section V. Finally, the conclusions, as well
as future perspectives of the presented work, are discussed
in section VI.

II. DESCRIPTION OF CBHA MANIPULATOR

CBHA manipulator, also called elephant trunk manipula-
tor, is made up of a soft elastic polyamide material, where it
is divided into two sections, a rotating wrist and a compliant
gripper (Fig. 1). Each section is composed of three tubes,
connected each other through a backbone, and actuated by
electro-pneumatic actuators. Pressure change inside the tubes
leads to change in their respective lengths, inducing the
change in the position and orientation of the tip of the
manipulator.



Fig. 1. CBHA manipulator description

Equal pressures in all three tubes maintain the robot in
straight line longitudinal posture. An inextensible cable
placed at the backbone of the manipulator limits the maxi-
mum extension. To create bending, differential pressures can
be applied inside the tubes. The elongation of each tube
is measured with a wire-potentiometer. There are six wire-
potentiometers, three of them measure the tube lengths of
the first section, and the three others measure the total tube
lengths.

III. PYTHAGOREAN HODOGRAPH IN CONTEXT OF
SHAPE RECONSTRUCTION OF CBHA MANIPULATOR

In the following development, it is supposed that the
two bending sections (Fig. 1) are fused at a junction point,
to form one entire continuum section, without any shape
disconnection. Pythagorean Hodograph curves are used in
the context of CBHA manipulator to reconstruct its optimal
posture [17]. Let us consider two spacial poses Ps and Pf on
the CBHA manipulator as:

Ps(xs,ys,zs,αs,βs,γs)

Pf (x f ,y f ,z f ,α f ,β f ,γ f )
(1)

Here, Ps is the starting pose (position xs,ys,zs and orientation
αs,βs,γs) of the CBHA manipulator located at its base. Pf is
the final pose (position x f ,y f ,z f and orientation α f ,β f ,γ f ) of
the CBHA manipulator located at its end. PH curve is used
to reconstruct the shape of the manipulator from its starting
pose to the final pose. PH curves are the normal polynomial
curves with an extra condition of Pythagorean Hodograph.
Therefore, these curves are the special case of the normal
polynomial curves and are explained as follows [18]:
Let r(h) be the normal polynomial curve used to reconstruct
the shape of the CBHA manipulator.

r(h) = (x(h),y(h),z(h)); 0≤ h≤ 1 (2)

h be the normalized curvilinear coordinate of the curve. It
means:

Ps = r(0) = (x(0),y(0),z(0))
Pf = r(1) = (x(1),y(1),z(1))

(3)

Hodograph is a term defined as the first derivative of the
curve r(h). It is parallel to the tangent to the curve. It is
given as:

r′(h) = (x′(h),y′(h),z′(h)) (4)

The length L(h) of the CBHA manipulator reconstructed
using curve r(h) is:

L(h) =
∫ 1

0
|r′(h)|dh =

∫ 1

0

√
x′(h)2+y′(h)2+z′(h)2 dh (5)

Equation (5) represents the length of the CBHA manipulator.
Due to the presence of the square root in the integral, the
closed form solution of the length is not possible. Therefore,
a numerical method is required to find the approximation of
the actual solution. To overcome this situation, the square
root sign can be replaced, if:

x′(h)2 + y′(h)2 + z′(h)2 = σ(h)2 (6)

This is called the Pythagorean law or condition in three
dimensions. Therefore,
The first derivatives (Hodographs) of parametric polynomials
which satisfy the Pythagorean condition, are known as
Pythagorean Hodographs.
Now length of the CBHA manipulator can be calculated in
the closed form as:

L(h) =
∫ 1

0
|σ(h)|dh (7)

A sufficient and necessary condition which satisfies eq. (6) is
given in [19], [18], i.e. the four polynomials u(h), v(h), p(h)
and q(h) are used to express the hodograph components as:

x′(h) = [u2(h)+ v2(h)− p2(h)−q2(h)] (8)

y′(h) = 2[u(h)q(h)+ v(h)p(h)] (9)

z′(h) = 2[v(h)q(h)−u(h)p(h)] (10)

u(h), v(h), p(h) and q(h) polynomials are chosen so that
σ(h) is:

σ(h) = u2(h)+ v2(h)+ p2(h)+q2(h) (11)

Generalized degree of PH curves is 2n+ 1, where n is
the degree of polynomials u(h), v(h), p(h) and q(h). So, the
lowest degree PH curves are cubic PH curves when linear
polynomials are used. Cubic PH curve does not have any
free control point (out of four control points), it means they
have a unique solution only. Therefore, cubic PH curves are
not good for shape representation. Quintic PH curves can be
generated by using quadratic polynomials u(h), v(h), p(h)
and q(h). Quintic PH curves contain two free control points
which makes them more suitable to reconstruct the actual
shapes accurately [18]. Hence, the following development
uses the quintic PH curves to model CBHA manipulator. The
expression of quintic PH curve is derived by using quadratic
polynomials u(h), v(h), p(h) and q(h) in the Bernstein form
[20], [18]. These quadratic polynomials are inserted in eqs.



(8,9,10) and integrated from both sides to yield the general
form of quintic PH curve r(h):

r(h) =

x(h)
y(h)
z(h)

=
5

∑
k=0

Pk

(
5
k

)
(1−h)5−khk (12)

It implies,

r(h) =


1
h
h2

h3

h4

h5



T 
1 0 0 0 0 0
−5 5 0 0 0 0
10 −20 10 0 0 0
−10 30 −30 10 0 0

5 −20 30 −20 5 0
−1 5 −10 10 −5 1




P0
P1
P2
P3
P4
P5


(13)

The derived form is the Bernstein-Bezier form. Here, Pk =
(xk,yk,zk) are the control points. These control points are in
terms of u(h), v(h), p(h) and q(h). Therefore next step is to
find these optimal polynomials u(h), v(h), p(h) and q(h) to
calculate the control points Pk.
Basic Schematic of a quintic PH curve to reconstruct the

Fig. 2. Basic schematic of PH curve for CBHA manipulator

shape of the CBHA manipulator is shown in Fig. 2. ~ds and ~d f
are the direction vectors at starting (base) and ending point
of CBHA manipulator respectively. They can be computed
using orientations (αs,βs,γs) and (α f ,β f ,γ f ). Using four
conditions Ps, ~ds, Pf and ~d f , polynomials u(h), v(h), p(h)
and q(h) are calculated which leads to the calculation of the
control points as in [17]. Due to the presence of two free
control points (P2,P3), there are infinite solutions for quintic
PH curves. Therefore an optimal solution is selected with
minimum bending energy as discussed in [17] to reconstruct
the shape of the CBHA manipulator. This is because a
physical system always tries to move from one point to the
other point with minimum potential energy (combination of
bending and twisting energy).

IV. SHAPE IMPROVEMENTS FOR CBHA MANIPULATOR

A. Experimental Tests

An OptiTrack vision system (Fig. 3) is used for all of the
experimental validations. Four Prime13 cameras are used for
tracking, each of them having specifications as follows:
• Resolution: 1.3 MP (1280×1024)
• Frame rate: 240 FPS
• Filter Switcher: Included
• Interface: GigE/PoE
• No. of LEDs: 62
• Latency: 4.2 ms

Motive 2.0 software is used for this OptiTrack vision system.

Fig. 3. Experimental Set-up to track the shape of the CBHA arm in Motive
2.0

The PH curves modeling method is applied to Compact
Bionic Handling Assistant (CBHA) manipulator of Fig. 1,
designed by Festo [21]. As discussed in section III, the
modeling method shows how the backbone shape of the
CBHA can be reconstructed by using PH-curves. To perform

Fig. 4. Shape tracking of CBHA arm

the experimental validation, five markers are attached to each
tube of the CBHA arm (at corresponding levels) (Fig. 4)



i.e. at starting point, ending point, junction point and two
intermediate points. Virtual rigid bodies are created using
corresponding markers of each tube to calculate the position
and orientation at corresponding backbone point (Fig. 3).
Inputs are given to CBHA arm to create a random posture.
Using vision system, the poses of the backbone of the
CBHA, are tracked. Four inputs to construct a PH curve for
CBHA arm are starting point, direction vector at the starting
point, ending point and direction vector at the ending point.
Therefore, a PH curve is constructed representing the shape
of the CBHA arm. The junction point and the other two
intermediate points are tracked to verify the reconstructed
shape.

B. Reforming The Shape

When the PH based reconstructed shape and backbone
points (indicator of actual shape) from experimental data are
superimposed, a slight deviation is observed. So PH curves
based approach can construct the nearest possible shape of
the CBHA manipulator, but the reconstructed shape has some
errors from the actual shape. These errors occur because:
• There is non-uniformity in the structure of the tubes.

As, in the case of the CBHA manipulator, each tube is
made up of the concatenation of 16 vertebrae. Also, the
diameter of each tube decreases continuously from its
base to the top.

• The material has highly non-linear elastic behavior.
Therefore, the minimum energy calculation of the PH curve
does not fully adhere to these two conditions.
The reconstructed shape needs to be improved for better
accuracy with minimum effort. It is observed that the recon-
structed shape does not pass through the junction point of two
CBHA sections. The junction point should lie on the curve
defining the shape of the manipulator. Therefore, a corrected
curve is generated which not only closely resembles the PH
curve but is also made to pass through the junction point.
Bezier interpolation is used for the initial reconstruction of
the PH based shape (eq. (13)). So, the properties of bezier
polynomial are exploited for generating the corrected curve.
Hence, the corrected shape is also a bezier curve of the same
order. This is achieved as follows:

1) The curvilinear coordinate (h) of the bezier curve
varies from 0 to 1. Therefore, it is important to
determine the correct value of curvilinear coordinate
(h) at the junction point of two sections. As the PH
curve gives very close initial results, it is assumed that
the PH and the corrected curves are similar in shape.
Therefore, the value of curvilinear coordinate (h) of
the point closest to the junction point in the PH, is
selected as the value of the curvilinear coordinate (h)
in the corrected shape.

2) As noted previously, we need to correct the shape with
minimum effort and minimum deviation from PH. So,
in this method, only one control point is altered to shift
the curve so as to pass it through the junction point.
In a bezier curve, the control points have global

influence, but the weight of each control point at a
particular value of curvilinear coordinate (h) is given
by the variation in Bernstein coefficients (Fig. 5). To
have a minimum deviation from the initial PH, only
the control point which has the maximum influence at
the selected curvilinear coordinate (h), is shifted.

3) The bezier curve eq. (12) is inverted to find the desired
control point when the value of curvilinear coordinate
(h) and the desired junction point is known.

Pi =
r−∑

5
k 6=i,k=0

(5
k

)
(1−h)5−khkPk(5

i

)
(1−h)5−ihi

(14)

Here, Pi is the corrected ith control point, r is the
desired junction point from experimental data and h
is the desired value of the curvilinear coordinate at the
junction point.
In general, the ith control point to be corrected can
be selected by noticing the most influential control
point from Fig. 5, corresponding to the curvilinear
coordinate (h) at the junction point. Experimental work
space analysis of CBHA (subsection C) shows that
value of h ranges from 0.41 to 0.61. Therefore, in this
range the value of i is either 2 or 3 (Fig. 5).

Fig. 5. Variation of Bernstein coefficients with curvilinear coordinate for
quintic bezier curve

C. Establishing Shape Relationship

As discussed above, the new control points are com-
puted to correct the PH based reconstruction. Now, it is
advantageous to develop a relationship between the old
conditions (old control point, h corresponding to the junction
point) and the new control points. This relation is developed
using neural networks approach. Markers are attached on
the CBHA manipulator as shown in Fig. 4. Data for all of
the work space (4096 samples) of the CBHA manipulator is
tracked using vision system. This data is used to compute
the shapes of the backbone of the CBHA manipulator for
all of the work space using PH curves based approach. The
control points are recorded for all of the PH curves. Then the
new control points are computed using the shape correction



method as discussed above. The new control points are also
recorded from the corrected curves. Therefore, a relation is
developed to compute the new control points directly from
the old conditions using neural networks.
Depending on the value of h, an NN is selected to find
new control point. For h <= 0.5, P2 is recalculated as
this condition implies that P2 has maximum influence at
corresponding value of h. Otherwise P3 is recalculated. Fig.

Fig. 6. Block representation of correction method

6 presents a block representation of the discussed method
used to find the new control points for the corrected shape
of the CBHA manipulator.

V. RESULTS AND DISCUSSIONS

To validate the proposed method, the corrected shape is
deduced by calculating the new control points. Fig. 7 presents
the comparison of actual shape, PH based shape construction
and the corrected shape using proposed methodology. Here,
the three intermediate tracked marker points are at distances
1.7132 mm, 0 mm, and 2.5424 mm respectively from the
corrected shape. These distances are less than the distances
of PH based shape (1.6135 mm, 4.2048 mm, and 3.8339
mm). Therefore, an overall improvement in accuracy of the
shape of CBHA manipulator is validated.

Fig. 7. Verification of the PH based shape reconstruction as well as
corrected shape with the experimental data

Furthermore, a trajectory (Fig. 8) with 50 points is
recorded using vision system. Base of the CBHA manipula-
tor is fixed, so, the starting point as well as orientation at this

point remains fixed. Ending point as well as its orientation
is taken from the tracked trajectory (Fig. 8). PH curves
methodology is used to reconstruct the shape of the backbone
of the CBHA arm for the whole trajectory. Some random
postures reconstructed using PH curves are shown in Fig. 9.
The corrected shapes are also constructed using the proposed
method (Fig. 9). In Fig. 9, control points of the curves are not
shown to avoid the confusion with the tracked marker points.
To compare, the PH based and the corrected shape with the
experimental data, the distances of the junction point and two
intermediate points from both of the shapes are tracked over
the trajectory. The average errors for the whole trajectory (50
postures) are tabulated in Table I.

Fig. 8. Trajectory tracked using vision system

TABLE I
AVERAGE ERRORS FOR WHOLE TRAJECTORY (50 POSTURES) IN MM

PH based shape Corrected Shape
Distance from marker 2 1.3331 1.2088

Distance from junction point 3.6660 0.0000
Distance from marker 4 4.2215 2.9104

To establish the relationship between initial PH shape and
the new control points, neural network approach is used. As
already discussed, in our case either control point P2 or P3 is
changed depending upon the value of curvilinear coordinate
(h) at the junction point. This property was exploited to split
the input data to train two different neural networks as shown
in Fig. 6. Levenberg-Marquardt method in MATLAB is used
to train both of these networks each containing ten neurons in
a single hidden layer. In NN1, the MSEs of 2.21783×10−5,
3.89162×10−5 and 3.60386×10−5 are achieved for training,
validation and test sets respectively. In NN2, the MSEs of
2.37198× 10−5, 1.42342× 10−5 and 4.302266× 10−5 are
achieved for training, validation and test sets respectively.

PH curves can approximate the shape of the continuum
manipulators as stated in [17]. This PH based approach is
applied to CBHA manipulator. But due to the non-uniform
and non-linear nature of CBHA manipulator, there are some
errors in the PH based shape construction. From table I, it is
clear that these errors are reduced by using the proposed
method to correct the PH based shape. As we tried to
improve the overall errors in the shape only by changing



Fig. 9. Random postures reconstructed using PH curves as well as the corrected method along the trajectory

one of the existing control points of the PH based curve,
this can be the reason for the remaining errors.

VI. CONCLUSIONS
In this paper, a method to improve the accuracy of the

shape approximation is proposed and validated experimen-
tally. PH based shape reconstruction approach is applied to
CBHA manipulator. Then the accuracy of the reconstructed
shape is improved using the proposed method. Comparison
with the experimental data indicates the enhancement of the
performances regarding the accuracy for the same trajectory.
This is a generalized method. It can be applied to any con-
tinuum manipulator to improve its PH based approximated
shape. Our future work includes the further improvements in
the shape by adjusting a combinations of control points and
also applying it to the other continuum robots.
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