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PH Model-based Shape Reconstruction of Heterogeneous Continuum
Closed Loop Kinematic Chain: An Application to skipping Rope

Inderjeet Singh1, Yacine Amara2, Othman Lakhal1, Achille Melingui3 and Rochdi Merzouki1

Abstract— Soft robotics is a swiftly growing research area
these days. Modeling continuum robots accurately is still a
demanding field. The paper aims to propose a shape recon-
struction method and the estimation of the kinematic behavior
of heterogeneous continuum robot in closed loop kinematic con-
figuration, by using Pythagorean Hodograph (PH) curves. The
validation of the model approach has been tested on cooperative
continuum robots, namely Compact Bionic Handling Arms
(CBHA), driving an intermediate flexible rope (a passive flexible
link), by using a 3D tracking system. Experimental comparison
of the proposed approach with the existing approaches is
performed in terms of accuracy as well as the time cost.

I. INTRODUCTION

Continuum robots are made up of soft material to produce
a flexible motion. These robots can be inspired from nature
(biological activities) like an elephant’s trunk [1], a fish or
an octopus [2]. They are complex to model due to their non-
linear behavior and high degree of freedoms.
Various models for continuum manipulators are studied in
terms of kinematics and shape reconstruction. A noval ap-
proach based on shape functions is proposed to model spatial
kinematics of a multiple section continuum manipulator [3],
assuming constant curvature. In this approach appropriate
shape functions are chosen to remove the singularity [4].
Kinematic modeling of Bionic Handling Assistant (BHA) is
done by representing the manipulator as torus segments [5].
Various Forward kinematic models of CBHA manipulators
are discussed and compared in terms of accuracy in [6]. In
[7], OctArm V manipulator consisting of air muscle actuators
is modeled geometrically using cosserat rod theory and a
fibre reinforced model. Inverse kinematic model (IKM) of a
continuum manipulator is described using feed-forward neu-
ral networks in [8]. In [9], Neural Networks (NN) approach
is used to approximate the IKM of the CBHA manipulator.
A hybrid approach (quantitative as well as qualitative) [10] is
used for IKM of CBHA manipulator in which a geometrical
approach is used to compute the inverse kinematic equations
of the CBHA manipulator and then NN is used to solve these
equations due to their high non-linearity. In [11], various
IKM models are compared for CBHA manipulator in terms
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of accuracy and time cost.
Furthermore, there are many works in which sensors are
used to reconstruct the shape of the continuum manipulators
[12], [13], [14]. In [15], a correspondence between a hyper-
redundant manipulator and a geometric curve has been
established by solving a non-linear optimization problem
called ’shape inverse problem’. The backbone shape of a
hyper-redundant manipulator has also been solved using the
modal approach and thereby using a fitting algorithm to join
the various sections of a discrete 30 DOF manipulator [16].
Pythagorean Hodograph curves and their applications are
defined by Farouki and Sakkalis in 1990 [17]. These curves
have the following main properties: 1) Length as well as
bending energy of these curves can be calculated in the
closed form 2) Easy to construct parallel curves 3) Only four
boundary conditions are required to construct a quintic PH
curve: starting position, final position and direction vectors
at both of these positions. In robotics field, PH curves are
used mainly for the trajectory planning purposes. PH curves
have been used in 3D path planning of three unmanned
aerial vehicles (UAVs), as well as to avoid obstacles in
their path [11]. In [18], PH curves are utilized to model
spatial continuum manipulators for the first time, which
is being extended in this paper. In this paper, work is
focused on the concatenation of more than one PH curves
to model more complex shapes of continuum manipulator or
to model continuum closed loop kinematic chains. The main
contributions of this work are:

• Concatenation of Pythagorean Hodograph curves to
model either serial continuum manipulators or the con-
tinuum closed loop kinematic chains.

• Building a heterogeneous continuum closed loop kine-
matic chain using two CBHA robots and a rope (passive
flexible link). Heterogeneous means the use of different
kind of links in a chain: as CBHA and the rope in the
presented case.

• Experimental validation of the PH based model for the
continuum closed loop kinematic chain.

• PH curves can be used to model heterogeneous links in
a kinematic chain.

The organization of the paper is as follows: Section II
describes the Pythagorean hodograph condition and also the
generation of the PH curves. Concatenation of PH curves
is discussed in section III to model continuum closed loop
kinematic chains. Section IV describes the experimental set
-up and the experimental validations of the proposed method-
ology. Results and discussions are presented in section V.



Finally, the conclusions, as well as future perspectives of the
presented work, are discussed in section VI.

II. PYTHAGOREAN HODOGRAPH IN CONTEXT OF
CONTINUUM MANIPULATORS

A. Shape Reconstruction of Continuum Manipulators or a
flexible link

Continuum manipulators are continuously curving manip-
ulators to produce a flexible motion. Pythagorean Hodograph
curves are used in the context of continuum manipulators to
reconstruct their optimal posture [18]. Let us consider two
spatial poses Ps and Pf on the continuum manipulator as:

Ps(xs,ys,zs,αs,βs,γs)

Pf (x f ,y f ,z f ,α f ,β f ,γ f )
(1)

Here, Ps is the starting pose of the continuum manipulator
located at its base. Pf is the final pose of the continuum ma-
nipulator located at its end. PH curve is used to reconstruct
the shape of the continuum manipulator from its starting
pose to the final pose. PH curves are the normal polynomial
curves with an extra condition of Pythagorean Hodograph.
Therefore, these curves are the special case of the normal
polynomial curves and are explained as follows [19]:
Let r(h) be the normal polynomial curve used to reconstruct
the shape of the continuum manipulator.

r(h) = (x(h),y(h),z(h)); 0≤ h≤ 1 (2)

h be the normalized curvilinear coordinate of the curve. It
means:

Ps = r(0) = (x(0),y(0),z(0))
Pf = r(1) = (x(1),y(1),z(1))

(3)

Hodograph is a term defined as the first derivative of the
curve r(h). It is parallel to the tangent to the curve. It is
given as:

r′(h) = (x′(h),y′(h),z′(h)) (4)

The length L(h) of the continuum manipulator reconstructed
using curve r(h) is:

L(h) =
∫ 1

0
|r′(h)|dh =

∫ 1

0

√
x′(h)2+y′(h)2+z′(h)2 dh (5)

Equation (5) represents the length of the continuum manip-
ulator. Due to the presence of the square root in the integral,
the closed form solution of the length is not possible. There-
fore, a numerical method is needed to find the approximation
of the actual solution. To get rid of this situation, the square
root sign can be replaced, if:

x′(h)2 + y′(h)2 + z′(h)2 = σ(h)2 (6)

This is called the Pythagorean law or condition in three
dimensions. Therefore,
The first derivatives (Hodographs) of parametric polynomials
which satisfy the Pythagorean condition, are known as
Pythagorean Hodographs.
Now length can be calculated in closed form as:

L(h) =
∫ 1

0
|σ(h)|dh (7)

A sufficient and necessary condition which satisfies eq. (6) is
given in [20], [19], i.e. the four polynomials u(h), v(h), p(h)
and q(h) are used to express the hodograph components as:

x′(h) = [u2(h)+ v2(h)− p2(h)−q2(h)] (8)

y′(h) = 2[u(h)q(h)+ v(h)p(h)] (9)

z′(h) = 2[v(h)q(h)−u(h)p(h)] (10)

u(h), v(h), p(h) and q(h) polynomials are chosen so that
σ(h) is:

σ(h) = u2(h)+ v2(h)+ p2(h)+q2(h) (11)

Generalized degree of PH curves is 2n+ 1, where n is
the degree of polynomials u(h), v(h), p(h) and q(h). The
lowest degree PH curves are cubic PH curves while linear
polynomials are used. Cubic PH curve does not have any
free control point (out of four control points), it means they
have a unique solution only. Therefore, cubic PH curves are
not good for shape representation. Quintic PH curves can be
generated by using quadratic polynomials u(h), v(h), p(h)
and q(h). Quintic PH curves contain two free control points
which makes them more suitable to reconstruct the actual
shapes accurately [19]. Hence, the following development
uses the quintic PH curves to model continuum manipulators.
The expression of quintic PH curve is derived by using
quadratic polynomials u(h), v(h), p(h) and q(h) in the
Bernstein form [21], [19]. These quadratic polynomials are
inserted in eqs. (8,9,10) and integrated from both sides to
yield the general form of quintic PH curve r(h):

r(h) =

x(h)
y(h)
z(h)

=
5

∑
k=0

Pk

(
5
k

)
(1−h)5−khk (12)

It implies,

r(h) =


1
h
h2

h3

h4

h5



T 
1 0 0 0 0 0
−5 5 0 0 0 0
10 −20 10 0 0 0
−10 30 −30 10 0 0

5 −20 30 −20 5 0
−1 5 −10 10 −5 1




P0
P1
P2
P3
P4
P5


(13)

The derived form is the Bernstein-Bezier form. Here, Pk =
(xk,yk,zk) are the control points. These control points are in
terms of u(h), v(h), p(h) and q(h). Therefore next step is to
find these optimal polynomials u(h), v(h), p(h) and q(h) to
calculate the control points Pk.
Basic Schematic of a quintic PH curve to reconstruct the

shape of the continuum manipulator is shown in Fig. 1. ~ds
and ~d f are the direction vectors at starting (base) and ending
point of continuum manipulator respectively. They can be
computed using orientations (αs,βs,γs) and (α f ,β f ,γ f ). Us-
ing four conditions Ps, ds, Pf and d f , polynomials u(h), v(h),
p(h) and q(h) are calculated which leads to the calculation of
the control points as in [18]. Due to the presence of two free
control points, there are infinite solutions in case of quintic
PH curves. Therefore an optimal solution is selected with



Fig. 1. Basic schematic of PH curve

minimum potential energy as discussed in [18] to reconstruct
the shape of the continuum manipulator. Because a physical
system always tries to move from one point to the other point
with minimum potential energy (combination of bending and
twisting energy).

B. Inverse Kinematics of Continuum Manipulators

Shape reconstruction of continuum manipulators using PH
curves leads to the inverse kinematics of the manipulator.
In case of continuum manipulators, IKM is the relationship
between the coordinates of the tip of the manipulator, i.e.,
the end point of PH curve and its length respectively. By
combining Eq. (13) and Eq. (5), the following expression of
L(h) is obtained.

L(h) =
∫ 1

0
((−5+20h−30h2 +20h3−5h4)P0

+(5−40h+90h2−80h3 +25h4)P1

+(20h−90h2 +120h3−50h4)P2

+(30h2−80h3 +50h4)P3 +(20h3−25h4)P4

+(5h4)P5)dh

(14)

Therefore, solving eq. (14) in the matrix form, the length of
the backbone of the continuum manipulator can be computed
[18].

III. CONCATENATION OF PH CURVES TO BUILD A
CONTINUUM CLOSED LOOP KINEMATIC CHAIN

Concatenation of more than one PH curves is necessary
in the following two cases:

A. Case 1:

Sometimes the continuum manipulators are difficult to
model with one PH curve due to their complex shape or
due to the more number of sections. Also in the case of
continuum closed loop kinematic chains, to model more than
one link, concatenation of PH curves is required. As shown
in Fig. 2, two PH curves are concatenated. In this case, both
of the links are joined with C1 continuity. Therefore this is

the case in which position, as well as velocity, are same at
the junction point. Following conditions need to be used to
construct PH curves for this case:
For PH1,

r1(0) = A r1(1) = B (15)

r′1(0) = ds r′1(1) = dm (16)

For PH2,
r2(0) = B r2(1) =C (17)

r′2(0) = dm r′2(1) = d f (18)

s

Fig. 2. Concatenation of two PH curves with C1 continuity

B. Case 2:

In a continuum kinematic chain, sometimes the links are
joined with C0 continuity having only the position constraint
at the junction. Fig. 3 shows the concatenation of two PH
curves (two links) with C0 continuity. Following conditions
need to be used to construct PH curves for this case:
For PH1,

r1(0) = A r1(1) = B (19)

r′1(0) = ds r′1(1) = d f (20)

For PH2,
r2(0) = B r2(1) =C (21)

r′2(0) = dss r′2(1) = d f f (22)

IV. EXPERIMENTAL TESTS

An OptiTrack vision system (Figs. 4,5) is used for all of
the experimental validations. Four Prime13 cameras are used
for tracking, each of them having configuration:
• Resolution: 1.3 MP (1280×1024)
• Frame rate: 240 FPS
• Filter Switcher: Included
• Interface: GigE/PoE
• No. of LEDs: 62
• Latency: 4.2 ms
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Fig. 3. Concatenation of two PH curves with C0 continuity

Fig. 4. Experimental Set-up

Motive 2.0 software is used for this OptiTrack vision system.

Fig. 5. Motive 2.0 software for tracking of shape of CBHA arm

A. Modeling One CBHA Arm using PH-curve (Open Loop
Configuration Case)

The proposed PH curves modeling method is applied to
Compact Bionic Handling Assistant (CBHA) manipulator of
Fig. 6, designed by Festo [22]. CBHA manipulator, also
called elephant trunk manipulator, is made up of a soft elastic
polyamide material, where it is divided into two sections, a
rotating wrist and a compliant gripper (Fig. 6). Each section
is composed of three tubes, connected each other through
a backbone, and actuated by electro-pneumatic actuators.

Fig. 6. CBHA manipulator description

Pressure change inside the tubes leads to change in their
respective lengths, inducing the change in the position and
orientation of the tip of the manipulator.
Equal pressures in all three tubes maintain the robot in
straight line longitudinal posture. An inextensible cable
placed at the backbone of the manipulator limits the maxi-
mum extension. To create bending, differential pressures can
be applied inside the tubes. The elongation of each tube
is measured with a wire-potentiometer. There are six wire-
potentiometers, three of them measure the tube lengths of
the first section, and the three others measure the total tube
lengths. CBHA is not able to make a torsion movement
around its longitudinal axis. Thus, no twisting behavior can
be generated during its displacement.
In the following development, it is supposed that the two
bending sections (Fig. 6) are fused to one entire continuum
section, without any shape disconnection. As discussed in
section II, the proposed modeling method shows how the
backbone shape of the CBHA can be reconstructed by using
PH-curves and then how its IKM can be deduced.
To perform the experimental validation, five markers are

Fig. 7. Shape tracking of CBHA arm

attached to each tube of the CBHA arm (Fig. 7): at starting
point, at ending point and three intermediate points. Inputs
are given to CBHA arm to create a random posture. Using
vision system, the data of the markers is tracked. Four
inputs to construct a PH curve for CBHA arm are: starting



point, direction vector at the starting point, ending point and
direction vector at the ending point. Therefore, a PH curve
is constructed from starting point to the ending point of the
CBHA arm.

B. Closed Loop Kinematic Chain of Continuum Links

A heterogeneous continuum closed loop kinematic chain
is formed to move towards the application of skipping rope.
A CBHA manipulator can move an object like we can move
it by hand. Therefore, A heterogeneous continuum closed
loop kinematic chain is formed with an assembly of three
flexible links. Fig. 8 shows the two CBHA arms driving an
intermediate flexible rope, forming a closed kinematic chain
ABCD. The rope is a passive link, and it is hanging under
the condition of its self-weight. Both of the CBHA arms
are fixed at their bases. The aim is to model the shape of
heterogeneous continuum kinematic chain using Pythagorean
Hodograph curves.
Let us consider that CBHA1 acts as a link1, rope as a link2
and CBHA2 as a link3. A PH curve is used to reconstruct
the shape of each flexible link of the closed kinematic chain
(Fig. 9). Table I shows the four initial conditions used to
construct the PH curve for each link. Therefore, three PH
curves are constructed for the considered kinematic chain.

Fig. 8. Heterogeneous continuum closed loop kinematic chain

TABLE I
INITIAL CONDITIONS TO CONSTRUCT PH CURVES FOR HETEROGENEOUS

CONTINUUM CLOSED LOOP KINEMATIC CHAIN

Link1 (PH1) Link2 (PH2) Link3 (PH3)
Starting Position A B C

Starting Orientation O(A)CBHA1 O(B)Rope O(C)CBHA2
Ending Position B C D

Ending Orientation O(B)CBHA1 O(C)Rope O(D)CBHA2

To do experimental validation, markers are attached on all
of the three links of the closed kinematic chain: CBHA1,
rope and CBHA2 as shown in Fig. 8.

V. RESULTS AND DISCUSSIONS

Results are presented for the following sections:

A. Shape reconstruction of single CBHA arm using PH curve

Fig. 10 shows a posture of CBHA arm as well as the
reconstruction of the shape of the CBHA arm using PH
curve. PH construction uses only start and the end point of
the CBHA arm. Other three intermediate points are used for
the comparison of the reconstructed shape with the actual

Fig. 9. Modeling of closed loop kinematic chain using PH curves

shape. In this case, the three intermediate points (actual
shape) are at distances 1.6135 mm, 4.2048 mm and 3.8339
mm respectively from the reconstructed PH shape.

Furthermore, a trajectory (Fig. 11) with 100 points is

Fig. 10. Comparison of real shape with shape reconstructed using PH
curve for single CBHA arm

recorded using vision system. Base of the CBHA manipula-
tor is fixed. Therefore, Starting point as well as orientation
at that point is fixed. Ending point as well as orientation at
that point is used from the tracked trajectory (Fig. 11). PH
curves methodology is used to reconstruct the shape of the
backbone of the CBHA arm for the whole trajectory. Some
random postures reconstructed using PH curves are shown in
Fig. 12. During this trajectory, to compare the actual shape
with the PH shape, the distances of the three intermediate
tracked points is calculated from the PH shape. The average
distances for the whole trajectory (100 postures) are 1.2 mm,
3.7 mm and 3.1 mm respectively.

The errors in the shape reconstructed by PH curve are
acceptable. It means PH curves can approximate the shape of
the continuum manipulators. The reason of these small errors



Fig. 11. Trajectory tracked using vision system

Fig. 12. Random postures reconstructed using PH curves along the
trajectory

can be the choice of an optimal quintic PH curve from the
multiple solutions. In future the focus would be to reduce
these errors by modifying the choice of optimal quintic PH
curve.

B. Inverse kinematics of CBHA arm

Length of the backbone of the CBHA arm is computed
using PH method for the trajectory (Fig. 11). Three tubes
are attached (constrained) to the backbone of the CBHA
arm. Therefore the lengths L1, L2 and L3 of the entire tubes
of the CBHA arm are computed from the backbone length
[18]. Lengths of the three tubes are also recorded from
the potentiometer wire sensors of the arm as the reference
lengths. Two inverse kinematic methods already exist for
CBHA arm: 1) Hybrid Method [10] 2) Newton Raphson
Method [11]. Therefore the proposed method, as well as
existing methods, are compared with the reference lengths.
The errors are being tabulated in table II. From the errors,
it is confirmed that there is improvement in the accuracy of

inverse kinematic solution using PH curves based method.
Also, PH curves approach can approximate the shape of
the CBHA manipulator, but other approaches can not. Table
III shows the time cost of each of the method while the
calculation of the inverse kinematics of the CBHA. PH
curves approach is the most time efficient among other
approaches.

C. Closed Loop Kinematic Chain of Continuum Links

Three PH curves are constructed for the kinematic chain
as described in Fig. 9. The reconstructed shape of the closed
kinematic chain using PH curves is compared with the actual
tracked shape (Fig. 14). The average errors from the actual
shape (tracked markers) for the links CBHA1, rope and
CBHA2 are 2.8 mm, 8 mm and 3.1 mm respectively. These
results show that PH curves based approach can approximate
the shape of the heterogeneous links in a chain. Different

Fig. 13. Tracking of continuum closed loop kinematic chain

Fig. 14. Comparison of real shape with shape reconstructed using PH
curve for Heterogeneous continuum closed loop kinematic chain

movements of the kinematic chain are created as shown
in the attached video. Using the tracking system, data is
recorded for some of the postures during the movement. We
tried to show these postures along with the movement of the
kinematic chain in the video.



TABLE II
ABSOLUTE ERRORS IN LENGTHS FOR FULL TRAJECTORY

Min Err in L1 (mm) Max Err in L1 (mm) Avg Err in L1 (mm)
Pythagorean Hodograph Curves Approach 0.0112 4.4020 2.8239

Newton Raphson Approach 1.9555 13.2310 6.3947
Hybrid Approach 8.6865 24.1922 14.5922

Min Err in L2 (mm) Max Err in L2 (mm) Avg Err in L2 (mm)
Pythagorean Hodograph Curves Approach 0.0032 5.2327 2.2020

Newton Raphson Approach 0.1101 7.5254 3.9361
Hybrid Approach 2.7561 7.4398 4.9772

Min Err in L3 (mm) Max Err in L3 (mm) Avg Err in L3 (mm)
Pythagorean Hodograph Curves Approach 0.0012 3.5959 0.9768

Newton Raphson Approach 0.0054 9.9292 6.2398
Hybrid Approach 0.0074 8.5180 4.3089

TABLE III
TIME COST FOR ONE SAMPLE

Time Cost (sec)
Pythagorean Hodograph Curves Approach 0.00027

Newton Raphson Approach 0.23351
Hybrid Approach 0.01208

VI. CONCLUSIONS

In this paper, a quantitative approach to model the shape
reconstruction as well as kinematic behavior of a hetero-
geneous continuum closed-loop kinematic chain using PH
curves is proposed and validated experimentally. Comparison
with two existed models indicates the enhancement of the
performances regarding time cost as well as accuracy for
the same trajectory tracking. Our future work includes the
PH model-based control of rope using two collaborative
continuum robots. Controlling the shape of the rope is an
important task for the application of skipping rope.
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