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Abstract: 
 

While measurements of the polar dependence of the surface free energy are easily available, 

measurements of the whole polar dependence of the surface stress of a crystal do not exist. In 

this paper is presented a new procedure that allows, for the first time, the experimental 

determination of the surface stress polar dependence of a crystal. For this purpose (1) 

electromigration is used to control the kinetic faceting of surface orientations that belong to 

the equilibrium shape of the crystal and (2) for each destabilised surface, the period of 

faceting as well as the crystallographic angles of the appearing facets are measured by AFM. 

The so-obtained data lead to a set of equations whose mathematical solution, compatible with 

physical constraints, gives access to the surface stress polar dependence of the whole crystal 

and thus to a better understanding of surface stress properties. 
 

 

Two distinct macroscopic quantities are needed to describe the thermodynamics 

properties of a crystalline surface n characterized by its normal direction n̂ : the surface free 

energy per unit area n  which measures the cost of creating a surface area at constant 

deformation and the surface stress  ns , which measures the energy cost for deforming a 

surface at constant number of surface atoms. While n  is a positive scalar, the surface stress, 

which depends upon the direction of stretching, is a second rank tensor. If the surface tends to 

shrink (resp: expand) with respect to the bulk in one direction, the corresponding surface 

stress component n

ijs  is positive (resp: negative) and is said to be tensile (resp: compressive). 

Since, in vacuum, a fully relaxed surface has no normal stress, the surface stress can be 

simply considered as a two-dimensional tensor which, when diagonalised, is simply 

characterized by two orthogonal components. Because of the anisotropic nature of the 

crystalline state, surface stress as well as surface free energy depends upon the orientation of 

the crystalline surface. However while measurements of the polar plot of the surface energy 

(that means its dependence with the surface orientation n̂ ) can be easily obtained from a 

detailed study of the equilibrium shape of 3D crystals
1,2

 , measurements of the polar plot of 

the surface stress of a crystal are still lacking
3,4

. This is the most puzzling that during the last 

decade there has been an increasing interest to understand the influence of surface stress on 
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many physical properties such as surface relaxation or reconstruction
5-7

, surface segregation
8
, 

surface adsorption
9
, nano-sensors properties

10
 and self assembling

11,12
. Moreover, surface 

stress is very often the main driving force for bottom-up nanostructuration
13

. The new 

procedure we propose enables for the first time the experimental determination of the surface 

stress polar plot of a crystal. 

 

Since the equilibrium shape of a free crystal is the one, which minimizes its surface 

free energy, it is intuitive that the geometrical description of the equilibrium shape (ES) of a 

crystal is an image of its surface free energy anisotropy
14

 . Thus, the polar plot of the surface 

free energy of all the surface orientations that belong to the equilibrium shape can be obtained 

from a simple inverse geometrical construction (in Fig. 1 is given the Silicon ES and its 

corresponding  -plot
2
). Missing orientations on the equilibrium shape (ES) correspond to 

unstable surfaces. If such an unstable surface is macroscopically prepared (by slicing a crystal 

for instance), then annealed (to equilibrate it) it breaks up into facets of the two neighboring 

orientations present on the equilibrium shape of the crystal
15

. The period of this spontaneous 

faceting is connected to the surface stress difference between the two stable orientations
11,12

, 

which thus can be extracted from a simple wavelength measurement
16

. However, this 

procedure cannot be used for the crystallographic orientations that belong to the equilibrium 

shape which, since stable, do not facet upon annealing and thus, give no information on 

surface stress. Nevertheless, we show that this problem can be get round each time it is 

possible to use an external constraint to destabilize these stable surfaces. It is in particular the 

case of the stable vicinal faces of W
17

, Ta, Mo, Pt, Fe, Ni
18

 and Si
19

, which can be destabilized 

by adatom migration leading to a step bunching instability and then to kinetic faceting
19-23

. In 

this work, such electromigration driving force is used to destabilize some well-chosen vicinal 

facets in order to obtain the surface stress anisotropy of all the directions that belong to the 

equilibrium shape. Because of its technological importance we have chosen silicon for which 

a good knowledge of the surface stress anisotropy should be welcomed! 

 

For our purpose, we have selected the (118), (223) (443) and (105) stable vicinal faces (whose 

orientations were controlled by Laue diffraction) of a Silicon crystal (Fig. 2) and heated them, 

in ultra high vacuum conditions,  by Joule effect (AC or DC current). Since at 1423 K the 

evaporation rate is of 0.02 bilayer per second, a clean surface is thus periodically regenerated 

avoiding any foreign adsorption as confirmed by the absence of pinning points in the AFM 

images even after several hours at 1423 K. When using AC current, all the vicinal surfaces 
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remain flat, while using DC current, in the direction of ascending steps (that means in the 

 144 ,  433 ,  833 , and  501 directions for the  118 ,  223 ,  443  and  510  surfaces 

respectively) in the range 1200-1400K, the surfaces break up into a hill-and-valley structure 

(Fig. 3)
19-21

. There is no faceting with DC current in the direction of descending steps. 

 A further annealing by AC current of the so-facetted structure restores the flatness of the 

nominal vicinal face. The physical interpretation is clear: with the AC current, the 

electromigration-driven instability no more works and the Joule effect restores the original 

stable vicinal face initially obtained by mechanical slicing. It thus confirms that the faceting 

we observe is a kinetic effect due to adatom drift induced by the electrical field
21-23

. 

In Fig. 4 we show, for each vicinal surface, the time evolution of the faceting period 

and of the angle   that one of the facets of the hill-and-valley structure forms with the 

nominal orientation. The angle   of the other facet does not vary with time. (  and   are 

shown on Fig. 5). The following results are worth to be underlined. 

 1/ The period and the orientation of the so-formed facets evolve with time. After 

several hundred hours of annealing, a steady-state structure formed by the so-called facets 1F  

and 2F is reached. As schematically shown in Fig. 5, the facet 1F  is already present in the 

original vicinal surface so that its area simply increases with time at constant angle   while 

the facet 2F  slowly builds by step bunching (the angle   and the facet area thus increase 

with time). In Table I we report the vicinal Si faces that we have chosen and the 

corresponding facets 1F  and 2F  whose crystallographic indexes have been obtained from the 

measurement of   and  . 

 2/ For Silicon, the facets 1F  and 2F  correspond to cusps on the free energy polar plot 

(Fig. 1). More precisely, they correspond to the two closest facets in the equilibrium shape 

surrounding the original vicinal face (Fig. 2). 

 

The importance of elastic effects in periodic faceting kinetics has been recognized long time 

ago
11,12

: the longest wavelengths originate from elastic interactions, while the shorter ones 

may have a pure kinetic origin
24,25

. In the particular case of Si annealed at 1213 K, Song et 

al.
26,27

 have determined the position of the crossover between both mechanisms. For Si(113), 

they have found that the weaker periods (L<10
3 

Å for time t<10
3 

s) follow a power-law versus 

time characteristic of a zipping mechanism (in which two separate bunches zip each other to 

form a bigger bunch), while the longer ones asymptotically reach a state where elasticity plays 
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the major role for t10
4
 s and L1.310

3
 Å. In our experiments, at higher temperature, the 

steady state is obtained after roughly 10
6
 to 10

7
s where the so-obtained periods are of the 

order of microns. So, the intermediate states (before the asymptote) reported in Fig. 4 are 

located after the crossover and thus belong to the elastic range. In conclusion, taking into 

account the propagation of the elastic interaction (at the sound velocity), the fast surface 

diffusion that occurs at 1373 K, and that the periods (~ 4m) of these intermediate states are 

much closer to the final periodic structure (~ 10m) than to the original step distance of the 

vicinal orientation (~ 10Å), we believe that a local chemical equilibrium is achieved at each 

step of the process. 

In equilibrium conditions, the elastic origin of the periodicity has been established by 

Marchenko and Alerhand et al.
11,12

. When two facets a  and b  (characterized by their normal 

directions 
an̂  and 

bn̂  and their surface stress tensors   an
s  and   bn

s ) have a common edge 

(characterized by its tangential unit vector ̂ ), at the boundary between both facets exists an 

elastic force ba nn
ssf 


 , where    a

nn
nss aa ˆˆ  


 is the force per unit length across the 

common edge boundary (Fig. 2 and Fig. 5 for t=t2 and t). This localized force deforms the 

underlying bulk and thus decreases the total energy by means of stress relaxation. The 

periodicity results from a competition between the positive edge energy   and the negative 

stress relaxation. More precisely the wavelength reads
11,12

: 

 
















22 12
1exp

sin

2










f

Ec
  (1) 

where E  and   are respectively the Young modulus and the Poisson ratio of the material 

(calculated for the good crystallographic orientations), c  an atomic unit,  

   
2

222 sin4





 baba nnnn

ssssf  where   and   are the angles the faces a  and b  

form with the original orientation (Fig. 5), and 





tgtg

tg


  a geometrical factor. For a 

given facetted system the angles   and   can be measured so that, for a fixed value of the 

edge energy  , the period  ba nn
ss  ,,,  only depends upon the unknown values an

s  and 

bn
s . 

 

Since surfaces having a symmetry axis greater than two have isotropic surface stresses and 

owing to the chosen vicinal orientations (with common zone axis as for example   118  and 



 5 

 223  faces in Fig. 2.), the set of periods of the vicinal faces that we have considered only 

depends upon five unknown quantities: 001

101
s , 113

101
s , 111

101
s , 110

101
s  and the anisotropic factor   

defined by   1110

001

110

101
ss . Thus measuring (by AFM) the periods and the angles   and   

of a set of completely destabilized vicinal faces (labeled k) is enough to obtain a system of 

equations  kb

k

ka

k

nnkkk ss  ,,,  that can be numerically solved to obtain all the unknown 

quantities. Moreover, the hypothesis of local equilibrium enables us to use some of the other 

intermediate states (before the final asymptote but far away the crossover) whose facet 

orientations are simply determined by the angle they form with the mean face, to calculate the 

surface stress of the intermediate surface orientations. However, only some of the many 

numerical solutions of the system have a physical meaning. In particular, we consider two 

important physical constraints. Firstly, close to a low index orientation, step creation has an 

energetic cost but allows relaxing the surface stress so that a face that belongs to the 

equilibrium shape is a minimum of surface energy but a maximum of surface stress
4
. 

Secondly, to the best of our knowledge, surface stresses of clean reconstructed surfaces are 

known to be positive
3,4,28

. We find a single numerical solution, which verifies both physical 

constraints. It corresponds to a negative anisotropy factor ( 05.040.0  ) quite consistent 

with the structure of the Si(110) surface
29

. The corresponding surface stress plot given in Fig. 

6 is calculated for a constant value of   but the introduction of reasonable edge energy 

anisotropy (20%) does not affect substantially the surface stress plot. Notice that because of 

the tensorial nature of the surface stress, two branches are necessary to represent the surface 

stress anisotropy of the two perpendicular components ns  and ns  (where nt ˆˆˆ  is the unit 

vector normal to the edge). However, the procedure we describe only gives access to the ns  

component (perpendicular to the common edge  of the facets), that means between  001  and 

 110  directions to ns
011
 and between  110  and  100  directions to ns001

(Fig. 2). Obviously for 

the anisotropic (110) surface we thus have access to the two orthogonal components 110

011
s  and 

110

001s  of the surface stress tensor  110
s . The so-obtained surface stress values, connected by a 

continuous line (simple guide for the eyes) are plotted on Fig. 6. 

Let us comment some interesting points: 

(1) Since in the common direction ̂  (Fig. 2) all the surfaces exhibit more or less 

the same local step geometry (dense row) while in the orthogonal direction ̂  the local 

geometry of the microfacets formed by the step and the underneath terrace varies a lot, the 
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surface stress anisotropy cannot have the same amplitude for the two branches of the surface 

stress plot. In other words the ns  anisotropy must always be larger than the ns  one, so that 

our procedure gives access to the polar plot of the more anisotropic branch of surface stress 

that means here to ns
011
 anisotropy between  110  and  100  directions and to ns001

 anisotropy 

between  001  and  110  directions (Fig. 6). 

(2) The surface stress anisotropy is more important than the surface energy 

anisotropy (compare the scales of Fig. 1 and 6). This behaviour is quite normal since it is well 

known that surface stress is much more sensitive to surface relaxation than surface energy
4
. 

(3) Open surfaces relax easier than dense ones and thus exhibit smaller surface 

stress. It is the case of the (113) surface in comparison to the (111) or (001) surfaces. 

(4) Our procedure does not give access to the polar plot of the weak anisotropic 

branch (see point (1)). Nevertheless the surface stress anisotropy calculated for several 

materials
4
 can be used to estimate a zone in which should appear this branch ns . For this 

purpose we simply draw (in grey in Fig. 6) a zone in which should lie the less anisotropic 

branches calculated for most of these materials. However, since calculations can hardly take 

into account at the same time the complex surface reconstructions, surface relaxations and the 

important entropic effects, a detailed comparison remains  difficult. 

(5) Since the kinetic pathway towards the two closest facets 1F  and 2F  are very 

different, the decomposition of the original vicinal surface only gives access to the surface 

stress of the intermediate orientations which are close to the facet having the slowest kinetics 

(here 2F ). Thus the experimental branch is incomplete in the vicinity of the 1F  surface. More 

precisely, a vicinal (111) surface gives access to the stress variation near (110) or (113) 

orientation but not near the (111) orientation. At the same time, a vicinal surface of the (100) 

orientation only gives information on surface stress variations near (110) or (113) but not near 

(100) (Fig. 6). Thus in order to “fill the holes” of the polar plot one must use other vicinal 

faces: a vicinal of (113) to get the surface stress change near (111) or (001) orientations and a 

vicinal of (110) to get the surface stress change near (111) and (100) orientations. 

Unfortunately, one encounters in these cases a new experimental problem related with the fact 

that it is easier to reach a stepped face by the step bunching mechanism than to reach a flat 

surface for which supplementary activation energy for step coalescence is needed. It is for this 

reason that using a vicinal (113) face we couldn’t explore an angular domain greater than 8° 
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near the (111) or (100) surface, even after 15 days of annealing at 1373K, as already depicted 

by Song et al.
26,30

. 

 

In summary, we have shown that the control of kinetic faceting induced by adatom 

electromigration enables, for the first time, to determine the surface stress polar dependence 

of stable facets belonging to the equilibrium shape. The procedure that we propose can be 

extended to other materials for which (i) the orientations that belong to the equilibrium shape 

(surface energy plot) are known, (ii) a controlled mechanism for faceting (electromigration or 

any other) exists, and (iii) working at high temperature and for a long time is possible. It is not 

difficult to find materials for which these conditions apply. For example, (i) the equilibrium 

shape of Au, In, Pb, Cu… has been already determined experimentally, (ii) electromigration 

driven faceting has been recognized to work for many metals including W, Ta, Mo, Pt, Ni… 

and (iii) a rough indicate of what high temperature means, is T between 2/3Tm and Tm with Tm 

the melting point in order to insure a great enough diffusion.  
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Figure captions: 

Figure 1: Equilibrium shape and corresponding  -plot of silicon obtained at 1373 K 

from a 3D silicon bulb. The surface orientations are perpendicular to the  011  direction
2
. 

 

Figure 2: Stereographic representation of the vicinal faces under study. a, Main 

crystallographic faces and definition of the directions n̂  (normal vector), ̂  (zone axis) and 

nt ˆˆˆ  of a crystalline face. b, normal vectors to the vicinal faces (red) and their 

corresponding closest stable faces (blue). 

 

Figure 3: AFM image of a hill-and-valley structure obtained after annealing a (118) 

vicinal surface in UHV conditions at 1373 K during 150 h. The facets 1F  and 2F  are (001) 

and (113) respectively. Geometrical data are: =5.50.2 m, =100.1 deg, =162 deg, the 

maximum height of the “factory roof” is 0.60.02 m. 

 

Figure 4: Temporal evolution of the wavelength   and the crystallographic angle   for 

all the studied vicinal faces. The angle  , which does not evolve with time, is not reported. 

Lines are only guides for the eyes and the error-bars correspond to experimental 

reproducibility. 

 

Figure 5: Schematic representation of the mechanism of kinetic faceting. t represents the 

time. 

 

Figure 6: Surface stress polar dependence. In units of 
21 





E
 calculated for the (100) 

face. 

 

 

Table caption: 
 

Table I: Decomposition of the vicinal faces in 1F  and 2F  facets for the stationary state. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1 

 

 

Vicinal face (118) (223) (443) (510) 

1F  

(flat at the atomic scale)  

(001) (111) (111) (100) 

2F  

(exhibit monoatomic steps) 

(113) (113) (110) (110) 

 

 


