
HAL Id: hal-01966872
https://hal.science/hal-01966872v1

Submitted on 30 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Geometric Noise for Locally Private Counting Queries
Lefki Kacem, Catuscia Palamidessi

To cite this version:
Lefki Kacem, Catuscia Palamidessi. Geometric Noise for Locally Private Counting Queries. Proceed-
ings of the 13th Workshop on Programming Languages and Analysis for Security (PLAS 2018), 2018,
Toronto, Canada. pp.13-16, �10.1145/3264820.3264827�. �hal-01966872�

https://hal.science/hal-01966872v1
https://hal.archives-ouvertes.fr


Geometric Noise for Locally Private CountingQueries
Lefki Kacem

University of Paris Saclay

France

Catuscia Palamidessi

INRIA and École Polytechnique

France

ABSTRACT
Local differential privacy (LDP) is a variant of differential privacy

(DP) where the noise is added directly on the individual records,

before being collected. The main advantage with respect to DP is

that we do not need a trusted third party to collect and sanitise

the sensitive data of the user. The main disadvantage is that the

trade-off between privacy and utility is usually worse than in DP,

and typically to retrieve reasonably good statistics from the locally

sanitised data it is necessary to have access to a huge collection

of them. In this paper, we focus on the problem of estimating the

counting queries on numerical data, and we propose a variant of

LDP based on the addition of geometric noise. Such noise func-

tion is known to have appealing properties in the case of counting

queries. In particular, it is universally optimal for DP, i.e., it pro-

vides the best utility for a given level of DP, regardless of the side

knowledge of the attacker. We explore the properties of geometric

noise for counting queries in the LDP setting, and we conjecture an

optimality property, similar to the one that holds in the DP setting.
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1 INTRODUCTION
Our lives are growingly entangled with ubiquitous communica-

tion technologies and the limitless digital information they provide

access to. The ways we relate to each other, work, travel, shop,

or entertain ourselves are increasingly driven by mobile services.

Most such services heavily rely on the collection and analysis of

personal data, which are often generated and provided by the users

themselves: tweeting about an event, browsing the World Wide

Web, calling with a mobile phone, using a car navigation system, or

paying with a credit card are examples of situations generating data.

Service providers, web tracking platforms, mobile network opera-

tors, automotive manufacturers, or banking information systems

can then gather substantial amounts of such data about millions of

customers, at unprecedented accuracy level and at low cost.
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While data-driven technologies provide undeniable benefits to

individuals and society, the collection and manipulation of personal

data has reached a point where it raises alarming privacy issues.

Not only the experts, but also the population at large are becoming

increasingly aware of the risks, due to the repeated cases of viola-

tions and leaks that keep hitting the headlines. Examples abound,

from iPhones storing and uploading device location data to Apple

without users’ knowledge [1] to the popular Angry Birds mobile

game being exploited by NSA and GCHQ to gather users’ private

information such as age, gender and location [5].

Until recently, the most popular and used data sanitization tech-

nique was anonymization (removal of names) or more sophisticated

variants like k-anonymity [14] ensuring indistinguishability within

groups of at least k people, and ℓ-diversity, ensuring a variety of

values for the sensitive data within the same group [11]. Unfortu-

nately, these techniques have been proved unable to provide an

acceptable level of protection, as several works have shown that

individuals in anonymized datasets can be re-identified with high

accuracy, and their personal information exposed (see for istance

[12, 13]).

In the meanwhile a new paradigm, differential privacy (DP) [8],

has emerged and become extremely successful. In DP, the individual

data are not directly accessible. Rather, the dataset is protected by

an interface called mechanism. The mechanism then computes the

answer on the basis of the information contained in the dataset and

typically adds some controlled noise to the result, in such a way

that the data of a single individual will have a negligible impact on

the reported answer. DP has two important advantages with respect

to other approaches: it is independent from the side-information of

the adversary, thus a differentially-private can be designed without

taking into account the context in which it will have to operate,

and it is compositional, i.e., if we combine the information that

we obtain by querying two differentially-private mechanisms, the

resulting mechanism is also differentially-private.

In recent years, a variant of DP called local differential privacy

(LDP) was proposed [7]. LPD is a distributed variant of differen-

tial privacy in which users obfuscate their personal data by them-

selves, in a differentially-private way, before they are collected.

LPD implies DP on the resulting data collection, and has the same

advantages of compositionality and independence from the side-

information. Additionally, with respect to the centralized model, it

has the advantages that it does not need to assume a trusted third

party, and since all stored records are individually-sanitized, there

is no risk of privacy breaches due to malicious attacks. Furthermore,

each user can choose the level of privacy he wishes. LDP is having a

considerable impact, especially after large companies such as Apple

and Google have started to adopt it for collecting the data of their

customers for statistical purposes [9].

Another variant of LDP, called d-privacy, has been proposed

by [6]. The condition for d-privacy to be applicable is that the
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domain of data is a metric space (the “d” in the name stands for

“distance”), and the idea is to make advantage of the underlying

topologic structure in order to improve the trade-off between utility

and privacy. A well-known instance of d-privacy is the notion of

geo-indistinguishability [4], which is obtained when the domain of

data are locations, and the distance is the geographical distance.

The main methods to obtain d-privacy are the extended laplacian

and the extended geometric noise, applicable in the continuous and

in the discrete cases, respectively. (“Extended” here means that the

density function is defined on a generic metric space rather than

on the reals.)

In this paper we consider the (truncated) geometric noise func-

tion, and the particular case of counting queries. The geometric

noise has been proved universally optimal for counting queries

[10], meaning that it is the mechanism providing the best utility

for a given privacy level, and for all possible prior knowledge the

adversary or the user may have. The notion of utility to which this

result refers is the accuracy of the reported answer, measured (in

the case of [10]) in terms of its expected distance from the true

answer. We call it punctual utility.
When we deal with a collection of noisy data, however, there is

another natural notion of utility, which is the capability to recon-

struct the original distribution in order to make precise statistical

analyses. The notion of d-privacy has been advocated in a recent

work [3] as a variant of LDP that is able to provide a better trade-off

between privacy and statistical utility than the standard LPD.

In this paper, we explore the properties of geometric noise for

counting queries in the LDP setting, and we conjecture an universal

optimality property, analogue to that of [10] but for LPD rather

than DP, and for statistical utility rather than punctual utility.

2 PRELIMINARIES
In this section we recall some basic notions about probability distri-

butions, DP, LPD, d-privacy, counting queries and geometric noise.

We will consider only the case of discrete domains.

Given a generic set X, a probability distribution p on X is a

function p : X → R such that ∀x ∈ X p(x) ≥ 0 and

∑
x p(x) =

1. We will denote by Distr (X) the set of all possible probability

distributions on X. For notational convenience, we will use px to

denote p(x).

2.1 Differential privacy
We will use D to denote a collection of data (dataset), D to denote

the set of all possible datasets of the class of interest, and ∼ to

represent the adjacency relation between datasets: D ∼ D ′
means

that D and D ′
differ only for the value of a single record. We will

assume that the dimension of the datasets in D is fixed, i.e. that

each dataset in D contains exactly n records, for some n. Given a

query f : D → X, a (noisy) mechanism K for f is a probabilistic

function which, for every D, gives a reported answer y ∈ Y with

a certain probability distribution that depends on the true answer

x = f (D). The domain of the reported answers Y may coincide

with X but not necessarily. We will use the notation P[K(D) = y]
to denote the probability that K applied to D reports the answer y.

Then we say thatK satisfies ε-DP, where ε is a non-negative real
number denoting the level of privacy, if for every pairs of datasets

D and D ′
such that D ∼ D ′

, and for every y ∈ Y, we have

P[K(D) = y] ≤ eε P[K(D ′) = y]. (1)

2.2 Local differential privacy
In LDP the idea is that the mechanism obfuscates directly the value

of the data rather than the answer to a query. In this setting, we let

X denote the set of all possible values (possibly tuples) for the data,

and a mechanism K is a probabilistic function which, for every

x ∈ X, returns a reported value y ∈ X with a certain probability

distribution that depends on the true value x . We will use the

notation P[K(x) = y] to denote the probability that K applied to x
reports the answer y.

A mechanism K provides ε-LPD if for every pair of input values

x ,x ′ ∈ X, and for every measurable set S , we have

P[K(x) = y] ≤ eε P[K(x ′) = y]. (2)

2.3 d-privacy
In d-privacy, like in LDP, mechanism obfuscates directly the value

of the data. The main difference is that the domain X is assumed

to be a metric space, namely be endowed with a notion of distance

d : X × X → R≥0, where R≥0 is the set of non-negative real

numbers.

A mechanism K provides ε-d-privacy if for every pair of input

values x ,x ′ ∈ X, and for every y ∈ Y, we have

P[K(x) = y] ≤ eε d (x,x
′) P[K(x ′) = y]. (3)

2.4 Counting queries
In DP, a counting query is a function f : D → [0,n] such that f (D)
gives the number of records in D that satisfy a certain property.

Here [0,n] denotes the set of integers between 0 and n included.

In this paper, we will adopt a more abstract notion of counting

query, suitable for LPD. Namely, we assume that f : X → [0,n]
associates a number f (x) ∈ [0,n] to each element of x ∈ X .

For instance,X could be the set of records of a certain population,

where each x ∈ X contains information about a certain person, and

f could be a function reporting, for example, the age (in years), or

the number of children, or the monthly salary, etc. Namely, any

function that encodes a query of the form “howmany . . . ”, assuming

that the result can be computed from x .
A mechanism K for f , in this context, associates to each value

i ∈ [0,n] a value j ∈ [0,n] chosen randomly according to a certain

probability distribution. We will denote by Ci j the probability that,

on the element i ,K reports j . Note thatCi j represent the conditional
probability of i given j , hence the valuesCi j form a stochastic matrix

C (whereCi j is the element at the intersection of the i-th row and j-
th column) such that ∀i, j ∈ [0, 1]Ci j ≥ 0 and ∀i ∈ [0, 1]

∑
j Ci j ≥ 0.

From now on for notational simplicity we will useC rather than K .

We will also call C “mechanism” since it is a direct representation

of K .

2.5 Geometric mechanism
In the following, for simplicity wewill use α to indicate e−ε , where ε
represents the level of privacy. Note that 0 < α ≤ 1. The geometric

mechanism (for a counting query) is represented by an infinite



matrix C with rows indexed by [0,n] and columns indexed by Z
(the set of integers), and whose elements are given by

Ci j =
1 − α

α

|i−j |
(4)

In order to avoid dealing with an infinite output domain, in gen-

eral we consider the truncated version of the geometric mechanism.

The idea is that the probability mass of every negative element is

remapped in 0, and the probability mass of every element greater

than n is remapped in n. The truncated geometric mechanism will

be denoted by G and it is defined as

Gi j =


1

1+α α
i j = 0

1−α
1+α α

|i−j |
0 < j < n

1

1+α α
|i−n | j = n

(5)

3 THE TRUNCATED GEOMETRIC AS A
d-PRIVATE MECHANISM

In this sectionwe investigate the properties of the truncated geomet-

ric mechanism. We start by observing that the truncated geometric

is indeed an ε-d-private mechanism.

Proposition 3.1. If X is the domain [0,n] and d is the difference
between integers, then G is a d-private mechanism on X.

Proof. The proof is immediate, taking into account thatα = e−ε .
Let i, j,h ∈ [0,n], and assume first that 0 < j < n. Then we have:

Gi j = 1−α
1+α α

|i−j |

≤ 1−α
1+α α

|i−h |+ |h−j |

= α |i−h | 1−α
1+α α

|h−j |

= α |i−h |Ghj .

where the second step is justified by the triangular inequality. For

j = 0 and j = n the proof is analogous. □

The following is an important property that will be used in the

next section

Proposition 3.2. The matrix G is invertible.

Proof. (Sketch) Consider the relation between G and the geo-

metric mechanism C defined by (4), and observe that the highest

elements of C are all on the central diagonal (corresponding to the

principal diagonal of G). Hence the rows of C are linearly indepen-

dent. Since G is obtained from C by adding the columns of index

[−∞,−1] to the column 0, and the columns of index [n + 1,∞] to

the column n, the rows of G are still linearly independent (G00 is

still the highest element of column 0 and Gnn is still the highest

element of column n). □

4 RECONSTRUCTING THE ORIGINAL
DISTRIBUTION FROM A COLLECTION OF
NOISY DATA

We consider now the following problem: Assume that we have a

collection of N noisy data representing the result of the application

of the geometric mechanism to the data of a certain population.

Each datum (as well as each noisy datum) is a number in [0,n], and

let π ∈ Distr ([0,n]) be the prior distribution on the original data.

In other words, the set of original data is generated by a sequence

of random variables X1,X2, . . . ,XN independent and identically

distributed (i.i.d.), according to π . Let p ∈ Distr ([0,n]) be the prob-
ability distribution determined by X1,X2, . . . ,XN (i.e., obtained by

counting the frequencies of the result i in X1,X2, . . . ,XN , for each

i ∈ [0,n]. Namely, for how many h we have Xh = i).
To each of the results of X1,X2, . . . ,XN we apply the geomet-

ric mechanismG, thus obtaining a sequence of random variables

Y1,Y2, . . . ,YN . Let q ∈ Distr ([0,n]) be the probability distribution

determined by Y1,Y2, . . . ,YN (again obtained by counting the fre-

quencies of j in Y1,Y2, . . . ,YN , for each j ∈ [0,n]).
The task we consider here is how best to reconstruct the original

distribution π from q. To this purpose, we consider the following
iterative procedure, which is inspired by the Bayes theorem. In

the definition of this procedure, qj represents the probability of j

according to q, and analogously for p
(k )
i :

Definition 4.1. Let {p(k)}k be the sequence of distributions de-

fined inductively as follows:

p(0) = q

p
(k+1)
i =

∑
j qj

p(k )i α |i−j |∑
h p

(k )
h α |h−j |

The interest of the above definition relies in the following result:

Theorem 4.2. Let {p(k )}k be the sequence of distributions con-
structed according to Definition 4.1. Then:

(1) The sequence converges, i.e., limk→∞ p(k ) exists.
(2) limk→∞ p(k ) is the Maximum Likelihood Estimator (MLE) of

p given q.

Proof. (Sketch) The proof proceeds by showing that the algo-

rithm to produce the sequence {p(k)}k is an instance of the Expecta-

tion Maximization (EM) algorithm defined in [2], which proves the

convergence to the Maximum Likelihood Estimator for all additive

noise functions. □

Wewill denote by p∗ the limit of the sequence {p(k )}k , i.e., p
∗ def

=

limk→∞ p(k ).
Theorem 4.2(2) means that for all possible distributions p′, the

probability that the distribution induced from the noisy data (san-

itized with G) is q when the prior is p∗ is higher than or equal to

the same probability when the prior is p′.
Furthermore, as N increases, p and p∗ approximate the prior π ,

as shown below. We first need the following lemma.

Lemma 4.3. p∗ is the unique fixed point of the transformation that
generates the sequence {p(k )}k , namely, for every p′,

p′i =
∑
j
qj

p′iα
|i−j |∑

h p
′
hα

|h−j |
iff p′ = p∗

Proof. (Sketch) The if part is immediate by using the properties

of the limit. The only if part follows from the fact thatG is invertible.

□

We are now ready to show the main result:



Theorem 4.4. Let {p(k )}k be the sequence of distributions con-
structed according to Definition 4.1. Then, as N grows, p and p∗

approximate π . Namely:
(1) limN→∞ p = π
(2) limN→∞ p∗ = π

Note that the parameter N is implicit in the definition of p and p∗.

Proof. (Sketch)
(1) This part is standard and follows from the law of large num-

bers.

(2) This part follows from the fact that p∗ is the MLE of p, from
point (1) above, and from Lemma 4.3.

□

Finally, we give a characterization of p∗ using G. For this we
introduce the following notation: For a distributionp ∈ Distr ([0,n])
and a matrixC indexed by [0,n]× [0,n], pC is the product of p (seen

as a vector) and C . Namely, (pC)j =
∑
i piCi j . Furthermore, I will

represent the identity matrix.

Proposition 4.5. If r = qG−1 is a probability distribution, then
p∗ = r .

Proof. Thanks to Lemma 4.3, it is sufficient to prove that r =
qG−1

is a fixed point of the transformation. We have:∑
j qj

riα |i−j |∑
h rhα |h−j | =

∑
j qj

riGi j∑
h (qG−1)hGhj

=
∑
j qj

riGi j∑
h (qI )h

=
∑
j qj

riGi j
qj

=
∑
j riGi j

= ri

□

We conclude our investigation with a conjecture

Conjecture 4.6. The truncated geometric mechanism with pa-
rameter α = e−ε is the mechanism that gives the best approximation
of the original distribution among the ones that are ε-d-private.

The intuition is that the Arimoto algorithm for optimizing the

trade-off between the mutual information and the distortion rate

produces a mechanism of the form λi je
−ε |i−j |

, the mutual informa-

tion is directly related to ε , and the distortion rate to the distance

between the original distribution and the approximated one.

5 CONCLUSION
In this paper, we have investigated the properties of the truncated

geometric mechanism in relation to the reconstruction from noisy

data of the original distribution on the real data. We have provided

an iterative algorithm to approximate the original distribution, and

we have given a characterization of the fixed point in terms of the

inverse of the matrix. Finally, we have conjecture the optimality of

the truncated geometric mechanism with respect to the trade off

privacy-statistical utility. In the future we intend to explore and try

to prove this conjecture.
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