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Abstract. Differential privacy is a formal definition of privacy ensur-
ing that sensitive information relative to individuals cannot be inferred
by querying a database. In this paper, we exploit a modeling of this
framework via labeled Markov Chains (LMCs) to provide a logical char-
acterization of differential privacy : we consider a probabilistic variant of
the Hennessy-Milner logic and we define a syntactical distance on for-
mulae in it measuring their syntactic disparities. Then, we define a trace
distance on LMCs in terms of the syntactic distance between the sets of
formulae satisfied by them. We prove that such distance corresponds to
the level of privacy of the LMCs. Moreover, we use the distance on for-
mulae to define a real-valued semantics for them, from which we obtain
a logical characterization of weak anonymity : the level of anonymity is
measured in terms of the smallest formula distinguishing the considered
LMCs. Then, we focus on bisimulation semantics on nondeterministic
probabilistic processes and we provide a logical characterization of gen-
eralized bisimulation metrics, namely those defined via the generalized
Kantorovich lifting. Our characterization is based on the notion of mim-
icking formula of a process and the syntactic distance on formulae, where
the former captures the observable behavior of the corresponding process
and allows us to characterize bisimilarity. We show that the generalized
bisimulation distance on processes is equal to the syntactic distance on
their mimicking formulae. Moreover, we use the distance on mimicking
formulae to obtain bounds on differential privacy.

1 Introduction

With the ever-increasing use of internet-connected devices, such as computers,
IoT appliances and GPS-enabled equipment, personal data are collected in larger
and larger amounts, and then stored and manipulated for the most diverse pur-
poses. The exposure of personal data raises all kinds of privacy threats, and it
has motivated researchers to develop theories and techniques to protect users
from these risks.

The state of the art in privacy research is represented by differential pri-
vacy (DP) [21], a framework originally proposed for protecting the privacy of
participants in statistical databases, and now applied to geolocation [34], social
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networks [35] and many other domains. DP is based on the idea of obfuscat-
ing the link between the answers to queries and the personal data by adding
controlled (probabilistic) noise to the answers. One of the main advantages of
DP with respect to previous approaches is its compositionality. Namely, if we
combine the information that we obtain by querying two differentially-private
mechanisms, the resulting mechanism is also differentially-private.

Recently, a distributed variant of DP has emerged, called local differential
privacy (LDP) [20]. In this variant, users obfuscate their personal data by them-
selves, before sending them to the data collector. In this way, the data collector
can only see, stock and analyze the obfuscated data. LDP, like DP, is composi-
tional, and furthermore it has the further advantages that it does not need to
trust the data collector. LDP is having a considerable impact, specially after
large companies such as Apple and Google have started to adopt it for collecting
the data of their users for statistical purposes [22].

In this paper, we consider dX -privacy [11], a metric-based generalization of
differential privacy that subsumes both DP and LDP by exploiting a metric in the
domain of secrets to capture the desired privacy protection semantics. We study
dX -privacy in the context of probabilistic transition systems (PTSs) and labeled
Markov chains (LMCs), aiming at importing the rich concepts and techniques
that have been developed in the area of Concurrency Theory. In particular, we
focus on behavioral metrics and on their logical counterparts, exploring their use
to specify privacy properties.

Behavioral metrics [1, 8, 12, 13, 17, 25, 31, 32, 39] represent the quantitative
analogue of behavioral equivalences and preorders measuring the disparities in
the behavior of processes. Here, we consider a probabilistic extension L of the
Hennessy-Milner logic (HML) [28] and we propose a notion of trace metric de-
fined via a syntactic distance over formulae in L, namely a pseudometric on
formulae measuring their syntactic disparities. Informally, we consider formulae
expressing probabilistic linear properties and we define the trace metric between
two processes as the Hausdorff lifting of the syntactic distance over the sets of
formulae satisfied by them. Such trace metric will allow us to obtain the first
logical characterization of dX -privacy.

Although dX -privacy is defined in terms of a multiplicative variant of the
total variation distance, one could also define privacy properties based on the
standard total variation, as in the case of weak anonymity from [16]. We exploit
the distance on formulae to define a real-valued semantics for them, from which
we obtain a logical characterization of weak anonymity.

Then we switch from trace to bisimulation semantics and we provide a log-
ical bound on dX -privacy. We consider the generalized notion of Kantorovich
lifting [12], which allows to define distances suitable to deal with privacy and se-
curity properties. We provide a logical characterization of the generalized bisim-
ulation metrics from [12], using the syntactic distance over formulae in the
probabilistic extension L of HML [14], and the notion of mimicking formula
of a process [9]. The latter is a special formula in L that captures the observ-
able behavior of a process and allows us to characterize bisimilarity. We show
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that the generalized bisimulation distance between two processes is equal to the
(generalized) distance between their mimicking formulae, called logical distance.
Moreover, we show that we can exploit the logical distance to obtain bounds
on dX -privacy. Notice that dealing with bisimulation semantics instead of traces
would allow us to develop efficient algorithms for the evaluation of the logical
distance (following, e.g., [4]), and thus of approximations on dX -privacy. Further-
more, we could exploit the non-expansiveness results obtained in [12] to favor
compositional reasoning over dX -privacy.

Related work. As already mentioned, this paper builds on the work of [9,
12]. The main novelty is that we develop a technique for characterizing privacy
properties, and that we deal with dX -privacy rather than DP.

Verification of differential privacy has been itself an active area of research.
Prominent approaches based on formal methods are those based on type sys-
tems [23, 36] and logical formulations [5]. Earlier papers [40, 41] defined bisimu-
lation metrics suitable for proving DP, however they suffered from the fact that
the respective kernel relations do not fully characterize probabilistic bisimilarity.

Contribution. Summarizing, the main contributions of this paper are:

1. We define a trace metric over LMCs in terms of a syntactic distance on
formulae in L, a probabilistic refinement of HML.

2. We show that such trace metric allows us to obtain a logical characterization
of dX -privacy.

3. We exploit the syntactic distance on formulae to define a real-valued seman-
tics for them, from which we get a logical characterization of weak anonymity.

4. We provide a logical characterization of the generalized bisimilarity metric
by using the syntactic distance over L and the notion of mimicking formulae
of processes in a PTS.

5. We exploit the characterization of the bisimilarity metric to obtain bounds
on dX -privacy.

2 Background

The PTS model. PTSs [37] combine LTSs [30] and discrete time Markov
chains [27], to model reactive behavior, nondeterminism and probability. The
state space is a set S of processes, ranged over by s, t, . . . and transition steps take
processes to probability distributions over S, namely mappings π : S → [0, 1] with∑
s∈S π(s) = 1. By∆(S) we denote the set of all distributions over S, ranged over

by π, π′, . . . The support of π ∈ ∆(S) is the set supp(π) = {s ∈ S | π(s) > 0}.
We consider only distributions with finite support. For s ∈ S we denote by δs
the Dirac distribution defined by δs(s) = 1 and δs(t) = 0 for s 6= t.

Definition 1 (PTS, [37]). A nondeterministic probabilistic labeled transition
system (PTS) is a triple (S,A,−→), where: S is a countable set of processes, A
is a countable set of actions, and −→⊆ S ×A×∆(S) is a transition relation.
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We write s
a−→ π for (s, a, π) ∈−→, s

a−→ if there is a distribution π ∈ ∆(S)

with s
a−→ π, and s

a−→6 otherwise. Let init(s) = {a ∈ A | s a−→} denote the set

of the actions that can be performed by s. Let der(s, a) = {π ∈ ∆(S) | s a−→ π}
denote the set of the distributions reachable from s through action a. We say
that a process s ∈ S is image-finite if for all actions a ∈ init(s) the set der(s, a)
is finite [29]. We consider only image-finite processes.

Labeled Markov Chains. We call trace any finite sequence of action labels
in A?, ranged over by α, α′, . . . , and we use e to denote the empty trace.

A labeled Markov chain (LMC) is a fully probabilistic PTS, namely a PTS
in which for each process we have at most one available transition. In a LMC,
a process s induces a probability measure over traces Pr(s, ·), defined for each
trace α recursively as follows:

Pr(s, α) =


1 if α = e

0 if α = aα′ and s
a−→6∑

s′∈supp(π)

π(s′)Pr(s′, α′) if α = aα′ and s
a−→ π.

We can express the observable behavior of processes in a LMC in terms of
the linear properties that they satisfy, or equivalently in terms of the traces that
they can perform. Hence, it is natural to compare process behavior in LMCs by
means of trace semantics (see for instance [4]).

Definition 2 (Trace equivalence on LMCs). Assume a LMC (S,A,−→).
Processes s, t ∈ S are trace equivalent, written s ∼Tr t, if for all traces α ∈ A?
it holds that Pr(s, α) = Pr(t, α).

Pseudometric spaces. For a countable set X, a non-negative function d : X×
X → R+ is a metric on X whenever it satisfies: (i) d(x, y) = 0 iff x = y, for
all x, y ∈ X; (ii) d(x, y) = d(y, x), for all x, y ∈ X; (iii) d(x, y) ≤ d(x, z) +
d(z, y), for all x, y, z ∈ X. By relaxing the first axiom to (i)’ d(x, x) = 0 for
all x ∈ X, we obtain the notion of pseudometric. We say that d is an extended
(pseudo)metric if we allow its value to be +∞, notation d : X ×X → [0,+∞].
Given a (pseudo)metric d on X, the pair (X, d) is called (pseudo)metric space.
The kernel of a (pseudo)metric d on X is the set ker(d) = {(x, y) ∈ X × X |
d(x, y) = 0}. Given two (pseudo)metric spaces (X, dX), (Y, dY ), the function
f : X → Y is 1-Lipschitz w.r.t. dX , dY iff dY (f(x), f(x′)) ≤ dX(x, x′) for all
x, x′ ∈ X. We denote by 1-Lip[(X, dX), (Y, dY )] the set of such functions. Given
any (pseudo)metric space (X,d), the diameter of X w.r.t. d, denoted by �d(X),
is the maximal distance of two elements in X, namely �d(X) = supx,y∈X d(x, y).

The Hausdorff lifting allows us to lift a (pseudo)metric over elements in a set
X to a (pseudo)metric over the power set of X, denoted by P(X).

Definition 3 (Hausdorff metric). Let d : X × X → [0,+∞] be a pseudo-
metric. The Hausdorff lifting of d is the pseudometric H(d) : P(X) × P(X) →
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[0,+∞] defined for all sets X1, X2 ⊆ X by

H(d)(X1, X2) = max
{

sup
x1∈X1

inf
x2∈X2

d(x1, x2), sup
x2∈X2

inf
x1∈X1

d(x2, x1)
}

with, by convention sup∅ = 0 and inf∅ = �d(X).

3 Logical characterization of differential privacy: a trace
metric approach

In this section we present the first logical characterization for dX -privacy.
We recall briefly the definitions. The interested reader can find more details

in [11]. Let X be an arbitrary set of secrets provided with distance dX . Let Z be
a set of observables, and let M be a randomized mechanism from X to Z, namely
a function that assigns to every element of X a probability distribution on Z. We
say that M is ε · dX -private if for any two secrets x,x′ ∈ X and any measurable
subset Z of Z, we have M(x)(Z)/M(x′)(Z) ≤ eε·dX (x,x′). The idea is that dX (x,x′)
represents a distinguishability level between x and x′: the more we want to
confuse them, the more similar the probabilities of producing the same answers in
the randomization process should be. Notice that dX -privacy subsumes standard
DP, by setting X to be the set of databases, and dX the Hamming distance
between databases: dX (x,x′) is the number of records in which x and x′ differ.
The resulting property is, by transitivity, equivalent to say that for all x and
x′ which are adjacent (i.e., dX (x,x′) = 1), M(x)(Z)/M(x′)(Z) ≤ eε. Note that we
consider here an equivalent definition of DP in which the adjacency relation is
defined as differing in the value of one record. The standard definition, in which
x and x′ are adjacent if x′ is obtained from x by adding or removing one record,
can be specified by using an extra value to indicate absence of the record.

Furthermore, dX -privacy subsumes LDP as well, by setting dX to be the
discrete distance, i.e., dX (x,x′) = 0 if x = x′ and dX (x,x′) = 1 otherwise.

To formalize dX -privacy, we will exploit the multiplicative variant of the total
variation distance on probability distributions.

Definition 4 (Multiplicative total variation distance, [38]). Let X be
a set. The multiplicative variant of the total variation distance on ∆(X) is
the function tv⊗ : ∆(X) × ∆(X) → [0,+∞] defined, for all π, π′ ∈ ∆(X), as
tv⊗(π, π′) = supx∈X |ln(π(x))− ln(π′(x))| .

For X set of secrets and Z set of observables, dX -privacy is defined as follows.

Definition 5 (dX -privacy, [11]). Let ε > 0 and dX be any distance on X . A
randomized mechanism M : X → ∆(Z) is ε · dX -private iff

tv⊗(M(x),M(x′)) ≤ ε · dX (x,x′) ∀ x,x′ ∈ X .

Interestingly, each randomized mechanisms can be modeled as a LMC. Each
secret x is mapped to a state sx in the LMC and the observable result of the
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sy

τ

1/2 1/2

shy st

τ τ

1
1/2 1/2

s′hy sth stt

yes yes no

sn

τ

1/2 1/2

shn st

τ τ

1
1/2 1/2

s′hn sth stt

no yes no

Fig. 1. The mechanism ‘Randomized responses’ as a LMC. For simplicity, an arrow
u

a−→ with no target models the evolution of process u to the Dirac distribution δnil,
with nil process that can execute no action, via the execution of a.

mechanism applied to x is modeled by the traces executable by sx in the LMC.
The randomized mechanism M on x is then modeled as the trace distribution
induced by sx. More formally, we consider Z = A? and we define M(x)(α) =
Pr(sx, α) for each α ∈ A?.

We give an example based on local differential privacy. The mechanism is
called “Randomized responses” and is a simplified instance of the system RAP-
POR used by Google to protect the privacy of their users [22].

Example 1 (Randomized responses). Suppose that we want to collect the answers
to some embarrassing question (for instance “Have you ever cheated on your
partner?”) for some statistic purpose. To persuade people to answer truly, we
allow them to report the true answer with probability 3/4, and the opposite
answer with probability 1/4. In this way, the privacy of the user will be protected
in the sense that the answers collector will not know for sure whether the person
has cheated or not. In fact, the system is log 3-locally differentially private. At
the same time, if the population is large enough, the collector will be able to
obtain a good statistical approximation of the real percentage of cheaters.

To implement the system, we can use a (fair) coin: the person tosses the
coin twice, and if the first result is head, he answers truly, otherwise he answers
“yes” or “no” depending on whether the second result is, resp., head or tail. The
results of the coin tossings, of course, has to be invisible to the data collector,
and thus we represent it as an internal action τ .

The LMCs sy and sn in Fig. 1 represent the mechanism applied to two
individuals: sy that has cheated and sn has not. sy will toss the coin and make a
transition τ . Then, depending on the result, will go in a state sh or st with even
probability. From sh it will toss a coin again, and then make a transition yes to
a final state. From st it will toss the coin and go in states sth and stt with even
probability. From sth and stt it will then make transitions yes and no, resp., and
then terminate. The system sn is analogous, with yes and no inverted.

To obtain the logical characterization of dX -privacy we can investigate the
semantics of the so obtained LMCs. In particular, we will exploit a notion of trace
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metric evaluated on modal formulae expressing linear properties of processes in
LMCs. Informally, we will consider a simple probabilistic variant of the modal
logic capturing the trace semantics in the fully nondeterministic case to define a
probabilistic trace semantics for processes. Then, we will define a metric for such
a semantics in terms of a syntactic distance over the formulae in the considered
logic and we will use such a distance to characterize dX -privacy. Interestingly,
although the considered trace semantics is based on a quite limited observation
power, it will allow us to obtain the first logical characterization of dX -privacy
(Thm. 2): we will show that the trace metrics so defined on LMCs coincides with
the multiplicative variant of the total variation distance (Prop. 2).

3.1 Trace metrics on LMCs

Probabilistic trace semantics compares the behavior of processes w.r.t. the proba-
bilities that they assign to the same linear properties, namely to the same traces.
In the literature we can find several notions of probabilistic trace equivalence,
of which ∼Tr given in Def. 2 is an example, and we refer the interested reader
to [6] for a survey. Such a wealth of notions derives from the interplay of non-
determinism and probability that we can witness in quantitative systems and
the different interpretations that researchers have given to it. We can also find
several proposals of behavioral distances measuring the disparities of processes
w.r.t. the same linear properties, that is their differences in the probabilities of
executing the same traces (see, e.g., [1, 4, 39]).

As the focus of this paper is on dX -privacy, we adopt a different approach,
w.r.t. to those referenced, to the definition of a trace metric on LMCs. In fact, we
hark back to the seminal work [17] on bisimulation metrics and: (i) We provide a
logical characterization of ∼Tr by means of a simple modal logic L that allows us
to express traces and their probability of being executed, so that s and t are trace
equivalent if they satisfy the same formulae in L. (ii) We quantify the trace met-
ric on processes in terms to the formulae distinguishing them. Informally, in [17]
this is obtained by transforming formulae into functional expressions and by
interpreting the satisfaction relation as integration. Then, the distance on pro-
cesses is defined on the so obtained real-valued logic by considering the maximal
disparity between the images of processes through all functional expressions.
Here, we propose a much simpler approach based on the boolean-valued logic L:
we introduce a (family of generalized) syntactic distance on formulae in L and
we define the trace metric on processes as the Hausdorff lifting of the syntactic
distance to the sets of formulae satisfied by processes.

The logic L extends the one used in the nondeterministic case to express
trace semantics [7] (and corresponding to the subclass of linear formulae) with
a probabilistic modality expressing the execution probabilities of traces.

Definition 6 (Modal logic L). The logic L = Ll ∪Lp is given by the classes
of linear formulae Ll and of probabilistic formulae Lp over A, defined by:

Ll : Φ ::= > | 〈a〉Φ Lp : Ψ ::= rΦ
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where: (i) Φ ranges over Ll, (ii) Ψ ranges over Lp, (iii) a ∈ A; (iv) r ∈ [0, 1].

We say that a trace α is compatible with the linear formula Φ, notation α =
Tr(Φ), if the sequence of action labels in α is exactly the same sequence of labels
of the diamond modalities in Φ, i.e., α = Tr(〈a1〉 . . . 〈an〉>) iff α = a1 . . . an.

Definition 7 (Semantics of L). For any s ∈ S, the satisfaction relation |=⊆
S × Ll ∪Lp is defined by structural induction over formulae in Ll ∪Lp by
– s |= > always;

– s |= 〈a〉Φ iff s
a−→ π for some π such that s′ |= Φ for some s′ ∈ supp(π);

– s |= rΦ iff s |= Φ and Pr(s,Tr(Φ)) = r.
For each process s ∈ S, we let L(s) = {Ψ ∈ Lp | s |= Ψ}.

Example 2 (Randomized responses II). Consider processes sy, sn in Fig. 1. One
can easily check that

L(sy) = {1〈τ〉>, 1〈τ〉〈τ〉>, 3/4〈τ〉〈τ〉〈yes〉>, 1/4〈τ〉〈τ〉〈no〉>}
L(sn) = {1〈τ〉>, 1〈τ〉〈τ〉>, 1/4〈τ〉〈τ〉〈yes〉>, 3/4〈τ〉〈τ〉〈no〉>}

By means of L we can provide a logical characterization of ∼Tr: two processes
are trace equivalent if and only if they satisfy the same formulae in L.

Theorem 1. Assume an LMC (S,A,−→). Then for all processes s, t ∈ S we
have that s ∼Tr t iff L(s) = L(t).

We can now proceed to the definition of the trace metric. The definition of
the syntactic distance on formulae in L is parametric w.r.t. a generic metric D
on [0, 1] that plays the role of a ground distance on the weights of probabilistic
formulae, to which a syntactic distance could not be applied. For this reason we
shall sometimes speak of generalized syntactic distance and trace metric.

Definition 8 (Distance on L). Let ([0, 1],D) be a metric space. The func-
tion dm�D : Ll×Ll → {0,�D([0, 1])} is defined as the discrete metric over Ll,
namely dm�D (Φ1, Φ2) = 0 if Φ1 = Φ2 and dm�D (Φ1, Φ2) = �D([0, 1]) other-
wise. The function dpD : Lp×Lp → [0,�D([0, 1])] is defined over Lp as follows:

dpD(r1Φ1, r2Φ2) =

{
D(r1, r2) if dm�D (Φ1, Φ2) = 0

�D([0, 1]) otherwise.

Definition 9 (Trace metric). Let ([0, 1],D) be a metric space. The trace met-
ric over processes dTD : S × S → [0,�D([0, 1])] is defined for all s, t ∈ S by

dTD(s, t) = H(dpD)(L(s),L(t)).

The kernel of each generalized trace metric corresponds to ∼Tr.

Proposition 1. For all possible choices of the metric D, trace equivalence is
the kernel of the trace metric, namely ∼Tr= ker(dTD).
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3.2 Logical characterization of dX -privacy

We can now present the logical characterization result for dX -privacy. As the
dX -privacy property is basically a measure of the level of privacy of a system, a
logical characterization for it should be interpreted as a logical characterization
of a behavioral metric, in the sense of [9, 10, 17], rather than in the sense of
behavioral equivalences. Roughly speaking, we evaluate the dX -privacy property
by exploiting the linear properties of the mechanism as expressed by our trace
metric, and thus by the logic L. More formally, we let dT⊗ denote the multiplica-
tive variant of our trace metric, i.e., the one with D(r1, r2) = | ln(r1) − ln(r2)|.
Then, we prove that dT⊗ coincides with the multiplicative total variation distance
on the trace distributions induced by processes.

Proposition 2. For any s ∈ S let µs = Pr(s, ·). Then dT⊗(s, t) = tv⊗(µs, µt).

We can then formalize our logical characterization of dX -privacy.

Theorem 2 (Logical characterization of dX -privacy). Let M be a random-
ized mechanism defined by M(x)(α) = Pr(sx, α) for all x ∈ X , α ∈ A?. Then,
given ε > 0, M is ε · dX -private if dT⊗(sx, sx′) ≤ ε · dX (x,x′) ∀ x,x′ ∈ X .

Example 3 (Randomized responses, III). We can show that the mechanism ‘Ran-
domized responses’ described in Ex. 1 is log 3-locally differentially private by
evaluating the trace distance between processes sy and sn in Fig. 1. By compar-
ing the sets of formulae L(sy) and L(sn) given in Ex. 2, we can infer that

dT⊗(sy, sn) = max

{
dp⊗(3/4〈τ〉〈τ〉〈yes〉>, 1/4〈τ〉〈τ〉〈yes〉>)

dp⊗(1/4〈τ〉〈τ〉〈no〉>, 3/4〈τ〉〈τ〉〈no〉>)

}
= | ln(3/4)− ln(1/4)| = ln(3).

3.3 Logical characterization of weak anonymity: from boolean to
real semantics

So far, we have seen how we can express the dX -privacy property as a syntactic
distance over modal formulae capturing trace semantics. However, in the litera-
ture, when behavioral metrics are considered, logics equipped with a real-valued
semantics are usually used for the characterization, which is then expressed as

d(s, t) = sup
φ∈L
|JφK(s)− JφK(t)| (1)

where d is the behavioral metric of interest, L is the considered logic and JφK(s)
denotes the value of the formula φ in process s accordingly to the real-valued
semantics (see eg. [1,3,17–19]). In this Section, we exploit the syntactic distance
on L to provide a real valued semantics for formulae and thus a characterization
of weak probabilistic anonymity expressed accordingly to classic schema in (1).

Weak probabilistic anonymity [16] uses the additive total variation distance
tv to measure the degree of protection of the identity of a user while performing
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a particular task. Hence, the set of secrets X is now the set of users’ identities
and a randomized mechanism M : X → ∆(Z) has to introduce some noise so
that from the ‘performed tasks’ in Z an adversary cannot discover the identity of
the user that actually performed them. Finally, we recall that the total variation
distance is defined by tv(µ, µ′) = supZ∈Z |µ(Z)− µ′(Z)| for all µ, µ′ ∈ ∆(Z).

Definition 10 (Weak probabilistic anonymity [16]). Let M be a random-
ized mechanism defined by M(x)(α) = Pr(sx, α) for all x ∈ X , α ∈ A?. Then,
given ε > 0, M satisfies ε-weak anonymity if tv(M(x),M(x′)) ≤ ε ∀ x,x′ ∈ X .

So, we consider all metric spaces ([0, 1],D) with �D([0, 1]) < ∞ and: 1. We
use the syntactic distance over formulae in L to define a (generalized) real valued
semantics for those modal formulae. 2. We show that the total variation distance
satisfies the general schema in (1) w.r.t. such real semantics. 3. We express the
ε-weak anonymity property as an upper bound to the total variation distance
on the values of formulae in the processes of the LMCs.

Equipping modal formulae with a real-valued semantics means assigning to
each formula φ a real number in [0, 1] expressing how much a given process s
satisfies φ; value 1 stands for s |= φ. We exploit our distance over formulae to
define such a semantics. Informally, let L be the class of formulae of interest, let
DD be any generalized syntactic distance defined on L (like, eg., the distance
dpD for the logic L) and for each process s let L(s) denote the set of formulae in
L satisfied by s. To quantify how much the formula φ ∈ L is satisfied by process
s, we evaluate first how far φ is from being satisfied by s. This corresponds
to the minimal distance between φ and a formula satisfied by s, namely to
infφ′∈L(s)DD(φ, φ′). Then we simply notice that being DD(φ, φ′) far from s is
equivalent to be �D([0, 1])−DD(φ, φ′) close to it (notice that �D([0, 1]) has to
be finite in order to obtain a meaningful value). Thus, we assign to φ the value
�D([0,1])−infφ′∈L(s)DD(φ,φ′)/�D([0,1]) in s, where the normalization w.r.t. �D([0, 1])
ensures that this value is in [0, 1].

Definition 11 (Real valued semantics). Let ([0, 1],D) be a metric space with
�D([0, 1]) < ∞. Assume any class of formulae L, let DD be any generalized
syntactic distance over L. We define the value of φ ∈ L in process s ∈ S as

JφKD(s) = 1−
infφ′∈L(s)DD(φ, φ′)

�D([0, 1])

Example 4. Consider sy in Fig. 1 and D(r1, r2) = |r1 − r2| for all r1, r2 ∈ [0, 1].
Notice that �D([0, 1]) = 1. For any r ∈ [0, 1], consider the formula ϕr =
r〈τ〉〈τ〉〈yes〉>. Then infϕ∈L(sy) d

p
D(ϕr, ϕ) = dpD(ϕr, 3/4〈τ〉〈τ〉〈yes〉>) = |r − 3/4|.

Hence, the value of ϕr in sy is given by JϕrKD(sy) = 1− |r − 3/4|.

Before proceeding to the characterization, notice that for each class of for-
mulae L equipped with a generalized syntactical distance DD we can provide an
equivalent reformulation of the Hausdorff metric as in the following Proposition.
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Proposition 3. Let ([0, 1],D) be a metric space. Assume a class of formulae L
and let DD be any generalized syntactic distance over L. For any L1, L2 ⊆ L we
have that H(DD)(L1, L2) = supφ∈L |infφ1∈L1

DD(φ, φ1)− infφ2∈L2
DD(φ, φ2)| .

If we focus on the class of formulae L, from Prop. 3 we can immediately
derive the characterization of trace metrics in terms of real-valued formulae.

Lemma 1. Let ([0, 1],D) be a metric space with �D([0, 1]) < ∞. For all pro-
cesses s, t ∈ S it holds that dTD(s, t) = supΨ∈Lp |JΨKD(s)− JΨKD(t)| .

By abuse of notation, for any linear formula Φ ∈ Ll, we write JΦKD(s) in
place of J1ΦKD(s). Moreover, we write the ‘generalized’ metrics defined on the
metric space ([0, 1],D), with D(x, y) = |x− y|, with no D subscripts. Then, the
following characterization of the total variation distance holds.

Proposition 4. Let ([0, 1],D) be a metric space with �D([0, 1]) < ∞. For any
s ∈ S define µs = Pr(s, ·). Then, tvD(µs, µt) = supΦ∈Ll |JΦKD(s) − JΦKD(t)|. In
particular, we have tv(µs, µt) = supΦ∈Ll |JΦK(s)− JΦK(t)|.

Finally, we can express ε-weak anonymity property as an upper bound to the
total variation distance on the values of formulae in the processes of the LMCs,
accordingly to the general schema in (1).

Theorem 3 (Logical characterization of weak anonymity). Let M be a
randomized mechanism defined by M(x)(α) = Pr(sx, α) for all x ∈ X , α ∈
A?. Then, given ε > 0, M satisfies ε-weak anonymity if supΦ∈Ll |JΦK(sx) −
JΦK(sx′)| ≤ ε ∀ x,x′ ∈ X .

4 A logical bound on dX -privacy: from traces to
bisimulations

So far we have shown how it is possible to obtain a characterization of dX -
privacy by exploiting trace semantics and a notion of syntactic distance on modal
formulae. However, one could argue that there are no efficient algorithms to
evaluate the trace metric, and therefore the dX -privacy property, especially if
the state space of the LMC is infinite. In [4] it is proved that we can obtain
upper bounds on the evaluation of trace metrics by exploiting bisimulation-
like distances, for which polynomial-time algorithms can be provided. Here, we
follow a similar reasoning: we switch from LMCs to the more general semantic
model of PTSs, we consider the generalized bisimulation metrics introduced in
[12] and we provide a logical characterization for them. This is based on the
notion of syntactic distance on formulae and the notion of mimicking formula
of a process from [9, 10]. As in previous Sect. 3.1, the former is a pseudometric
on a probabilistic version of HML L that extends L with modalities allowing
us to express the interplay of nondeterminism and probability typical of PTSs
(Sect. 4.2). The latter is a special formula in L that alone expresses the observable
behavior w.r.t. bisimulation semantics of the process to which it is related and
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allows us to characterize bisimilarity (Sect. 4.3). Then we show that the syntactic
distance between the mimicking formulae of processes equals their bisimulation
distance (Sect. 4.4) and that, when we focus on LMCs, it gives an upper bound
on dX -privacy properties of mechanisms (Sect. 4.5).

As a final remark, note that using bisimulation metrics and their charac-
terization would allow us to apply the compositional results obtained for them
in [12] also to dX -privacy properties. Due to space limitations, we leave their for-
mal development as future work. Now, we proceed to recall some base notions
on bisimulation semantics and generalized bisimulation metrics.

4.1 Generalized bisimilarity metric

Probabilistic (bi)simulations. A probabilistic bisimulation is an equivalence
relation over S that equates processes s, t ∈ S if they can mimic each other’s
transitions and evolve to distributions that are in turn related by the same bisim-
ulation. To formalize this, we need to lift relations over processes to relations
over distributions. Informally, given a relation R on processes we say that two
distributions π, π′ ∈ ∆(S) are related by the lifting of R , denoted by R† , iff
they assign the same probabilistic weights to the same equivalence classes in R .

Definition 12 (Relation lifting, [15]). Let X be a set. The lifting of a re-
lation R ⊆ X ×X is the relation R† ⊆ ∆(X) ×∆(X) with πR† π′ whenever
there is a set of indexes I s.t.

(i) π =
∑
i∈I piδxi , (ii) π′ =

∑
i∈I piδyi , and (iii) xi R yi for all i ∈ I.

Definition 13 (Probabilistic bisimulation, [33]). Assume a PTS. A binary
relation R ⊆ S × S is a probabilistic bisimulation if whenever sR t
– if s

a−→ πs then there is a transition t
a−→ πt such that πsR† πt;

– if t
a−→ πt then there is a transition s

a−→ πs such that πtR† πs;
The union of all probabilistic bisimulations is the greatest probabilistic bisimula-
tion, denoted by ∼ and called bisimilarity, and is an equivalence.

Generalized bisimulation metrics. For our purposes, we need to lift a pseu-
dometric over processes to a pseudometric over distributions over processes. We
follow the approach of [12], that considers the generalized Kantorovich lifting.
Take a generic metric space (V, dV ), with V ⊆ R is a convex subset of the reals.

A function f : X → V can be lifted to a function f̂ : ∆(X) → V by taking its

expected value, i.e., f̂(π) =
∑
x∈X π(x)f(x) (requiring V to be convex ensures

that f̂(π) ∈ V ). Then, for each V , we define the lifting of a pseudometric dX over
X to a pseudometric over ∆(X) via the generalized Kantorovich metric KV .

Definition 14 (Generalized Kantorovich lifting, [12]). For a pseudomet-
ric space (X, dX) and a metric space (V, dV ) with V ⊆ R convex, the general-
ized Kantorovich lifting of dX w.r.t. (V, dV ) is the pseudometric KV : ∆(X) ×
∆(X)→ [0,+∞] defined, for all π, π′ ∈ ∆(X) by
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KV (dX)(π, π′) = sup
{
dV (f̂(π), f̂(π′)) | f ∈ 1-Lip[(X, dX), (V, dV )]

}
.

Bisimulations answer the question of whether two processes behave precisely
the same way or not. Bisimulation metrics answer the more general question
of how far the behavior of two processes is. They are defined as the least fixed
points of a suitable functional on the following structure. Let (V, dV ) be a metric
space and let D be the set of pseudometrics d on S such that �d(S) ≤ �dV (V ).
Then (D,�) with d1 � d2 iff d1(s, t) ≤ d2(s, t) for all processes s, t ∈ S, is a
complete lattice. In detail, for each set D ⊆ D the supremum and infinimum
are sup(D)(s, t) = supd∈D d(s, t) and inf(D)(s, t) = infd∈D d(s, t) for all s, t ∈ S.
The bottom element is function 0 with 0(s, t) = 0 for all s, t ∈ S, and the top
element is function 1 with 1(s, t) = �dV (V ) if s 6= t, and 1(s, t) = 0 otherwise.

The quantitative analogue of bisimulation is defined by means of a functional
BV over the lattice (D,�). By means of a discount factor λ ∈ (0, 1], BV allows
us to specify how much the behavioral distance of future transitions is taken into
account to determine the distance between two processes [2,17]. λ = 1 expresses
no discount, so that the differences in the behavior of s and t are considered
irrespective of after how many steps can be observed.

Definition 15 (Generalized bisimulation metric functional, [12]). Let
(V, dV ) be a metric space, with V ⊆ R convex. Let BV : D→ D be the function
defined for all d ∈ D and s, t ∈ S by

BV (d)(s, t) = sup
a∈A

H(λ ·KV (d))(der(s, a),der(t, a)).

Remark 1. It is easy to show that for any pseudometric d the lifting KV (d) is an
extended pseudometric for any choice of (V, dV ). However, in general the lifting
does not preserve the boundedness properties of d. To guarantee KV (d) to be
bounded we need to assume that the metric dV is ball-convex, namely the open
balls in the generated topology are convex sets. This is not an issue for this
paper, since all the considered metrics satisfy the ball-convex property. Thus,
henceforth, whenever we consider a metric space (V, dV ) with V ⊆ R convex, we
subsume also the ball-convex property for the metric dV .

We can show that BV is monotone [12]. Then, as (D,�) is a complete lattice,
by the Tarski theorem BV has the least fixed point. Bisimulation metrics are
the pseudometrics being prefixed points of BV and the bisimilarity metric dλ,V
is the least fixed point of BV and its kernel is probabilistic bisimilarity [12].

Definition 16 (Generalized bisimulation metric, [12]). A pseudometric
d : S ×S → [0,+∞] is a bisimulation metric iff BV (d) � d. The least fixed point
of BV is denoted by dλ,V and called the bisimilarity metric.

4.2 The modal logic L

We introduce the modal logic L of [14], which extends HML [28] with a prob-
abilistic choice modality that allows us to express the behavior of probability
distributions over processes.
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Fig. 2. The classic bisimilarity distance between s, t is dλ(s, t) = 1/2 · λ.

Definition 17 (Modal logic L, [14]). The logic L = Ls ∪Ld is given by the
classes of state formulae Ls and distribution formulae Ld over A defined by:

Ls : ϕ ::= > | ¬ϕ |
∧
j∈J

ϕj | 〈a〉ψ Ld : ψ ::=
⊕
i∈I

riϕi

where: (i) ϕ ranges over Ls, (ii) ψ ranges over Ld, (iii) a ∈ A, (iv) J 6= ∅ is a
countable set of indexes, (v) I 6= ∅ is a finite set of indexes and (vi) ri ∈ (0, 1]
for all i ∈ I and

∑
i∈I ri = 1.

We shall write ϕ1∧ϕ2 for
∧
j∈J ϕj with J = {1, 2}, and 〈a〉ϕ for 〈a〉

⊕
i∈I riϕi

with I = {i}, ri = 1 and ϕi = ϕ. We use > instead of
∧
∅ to improve readability.

Formulae are interpreted over a PTS. A distribution π satisfies the formula⊕
i∈I riϕi if, for each i ∈ I, π assigns probability (at least) ri to processes

satisfying the formula ϕi. This is formalized by requiring that π can be rewritten
as a convex combination of distributions πi, using the ri as weights, such that
all the processes in supp(πi) satisfy the formula ϕi.

Definition 18 (Semantics of L, [14]). The satisfaction relation |=⊆ (S ×
Ls) ∪ (∆(S)× Ld) is defined by structural induction on formulae in L by
– s |= > always;
– s |= ¬ϕ iff s |= ϕ does not hold;

– s |=
∧
j∈J

ϕj iff s |= ϕj for all j ∈ J ;

– s |= 〈a〉ψ iff s
a−→ π for a distribution π ∈ ∆(S) with π |= ψ,

– π |=
⊕
i∈I

riϕi iff π =
∑
i∈I

riπi for some distributions πi ∈ ∆(S) such that for

all i ∈ I we have s |= ϕi for all states s ∈ supp(πi).

We introduce the relation of L-equivalence over formulae in L, which iden-
tifies formulae that are indistinguishable by their syntactic structure. Such an
equivalence is obtained as the greatest fixed point of a proper transformation E
of relations on state formulae.

Definition 19 ([9]). Let R ⊆ Ls×Ls be any equivalence relation on Ls. The
transformation E : Ls×Ls → Ls×Ls is defined as: (ϕ,ϕ′) ∈ E(R ) iff
– ϕ = ϕ′;
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– ϕ =
∧
j∈J

ϕj, ϕ
′ =

∧
j∈(J\{h})∪I

ϕj and (ϕh,
∧
i∈I

ϕi) ∈ R , for I ∩ J = ∅;

– ϕ =
∧
j∈J

ϕj, ϕ
′ =

∧
j∈(J\{i})

ϕj and (ϕi,
∧
j∈I

ϕj) ∈ R , for I ⊆ J \ {i};

– ϕ =
∧
j∈J

ϕj, ϕ
′ =

∧
i∈I

ϕi and there is a bijection f : J → I with (ϕj , ϕf(j))∈

R , ∀ j ∈ J ;
– ϕ = ¬ϕ1, ϕ′ = ¬ϕ2 and (ϕ1, ϕ2) ∈ R ;
– ϕ = 〈a〉ψ, ϕ′ = 〈a〉ψ′ and (ψ,ψ′) ∈ R† .

It is easy to check that the transformation E is monotone on the complete
lattice (Ls×Ls,⊆) and hence, by Tarski’s theorem E has a greatest fixed point.
We define the L-equivalence of formulae as such a greatest fixed point.

Definition 20 (L-equivalence). The L-equivalence of formulae ≡L⊆ Ls×Ls

is defined as ≡L= max{R ⊆ Ls×Ls | R ⊆ E(R )}.

4.3 The mimicking formulae

In [14] it was proved that the logic L is adequate for bisimilarity, i.e., two pro-
cesses are bisimilar iff they satisfy the same formulae in L. The drawback of
this valuable result is in that to verify the equivalence we would need to test
all the formulae definable in the logic, that is infinitely many formulae. As an
alternative, in [15] a characterization of bisimilarity was given in terms of char-
acteristic formulae [26] of processes, i.e., particular formulae that alone capture
the entire equivalence class of the related process: if φs is the characteristic for-
mula of process s for bisimilarity, then s ∼ t iff t |= φs. This is the so called
expressive characterization of an equivalence and allows us to establish process
equivalence by testing a single formula. Unfortunately, also in this case there is
a little drawback: to guarantee the possibility of constructing the characteristic
formulae we need a very rich logic. For instance, [15] uses the probabilistic µ-
calculus which, differently from L, allows for arbitrary formulae to occur after
the diamond modality and includes fixpoint operators.

Recently, [9,10] proposed a different technique for the characterization. When
we compare the behavior of two processes, we compare those properties that are
observable for them w.r.t. the considered semantics. The idea is to introduce a
special formula, called mimicking formula, for each process expressing all and
only its observable properties. In a broader sense, the mimicking formula of a
process can be regarded as its specification. [9,10] showed that semantic equiva-
lence of processes holds iff their mimicking formulae are syntactically equivalent
(Thm. 4 below). Hence, to establish process equivalence we need only two for-
mulae. Moreover, the logic on which the mimicking formulae are constructed is
always minimal w.r.t. the chosen semantics, i.e., it only includes the operators
necessary to express the observable properties w.r.t. that semantics.

Here, we recall the definition of mimicking formula and the weak expressive
characterization of bisimilarity from [9]. Mimicking formulae are defined induc-
tively over the depth of formulae as up-to-k mimicking formulae. Intuitively,
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the up-to-k mimicking formula of process s, denoted by ϕks , characterizes the
branching structure of the first k-steps of s by specifying which transitions are
enabled for s as well as all the actions that it cannot perform.

Definition 21 (Mimicking formula, [9]). For a process s ∈ S and k ∈ N,
the up-to-k mimicking formula of s, notation ϕks , is defined inductively by

ϕ0
s = >

ϕks =
∧

(s,a,π)∈→

〈a〉
⊕

t∈supp(π)

π(t)ϕk−1t ∧
∧

b 6∈init(s)

¬〈b〉>

Then, the mimicking formula of s, notation ϕs, is defined as ϕs = limk→∞ ϕks .

Example 5. Consider s in Fig. 2 and assume that A = {a, b, c}. We aim to
construct the mimicking formula of s. We have

ϕnil = ¬〈a〉> ∧ ¬〈b〉> ∧ ¬〈c〉> ϕs1 = 〈b〉ϕnil ∧ ¬〈a〉> ∧ ¬〈c〉>
ϕs2 = 〈b〉ϕnil ∧ 〈c〉ϕnil ∧ ¬〈a〉> ϕs3 = 〈c〉ϕnil ∧ ¬〈a〉> ∧ ¬〈b〉>

ϕs3 = ϕs4
ϕs = 〈a〉ϕs1 ∧ 〈a〉(1/2ϕs2 ⊕ 1/2ϕs3) ∧ 〈a〉ϕs4 ∧ ¬〈b〉> ∧ ¬〈c〉>.

Mimicking formulae allow us to characterize probabilistic bisimilarity.

Theorem 4 ([9]). Given any s, t ∈ S we have that ϕs ≡L ϕt iff s ∼ t.

4.4 L-characterization of a family of bisimilarity metrics

In this Section we exploit the relation between the semantic properties of a
process and the syntactic structure of its mimicking formula to provide a logical
characterization of the family of bisimilarity metrics introduced in Sect. 4.1. The
idea follows that of [9, 10]: 1. Firstly we transform the logic L into a family of
metric spaces by defining a suitable syntactic distance over formulae. Intuitively,
since distribution formulae are defined as probability distributions over state
formulae, we can exploit the generalized Kantorovich metric to lift the distance
over state formulae to a distance over distribution formulae. 2. Then we lift these
syntactic distances to a family of pseudometrics over processes, called logical
distances. Briefly, the logical distance `λ,V between two processes is defined as
the syntactic distance between their mimicking formulae. 3. We show that the
logical distance `λ,V coincides with the bisimilarity metric dλ,V (Thm. 5 below).

The family of syntactic distances over formulae is defined inductively over
the depth of formulae and their structure.

Definition 22 (Up-to-k distance on L). Let λ ∈ (0, 1] and let (V, dV ) be
a metric space with V ⊆ R convex. For k ∈ N, the up-to-k distance on state
formulae is the mapping dkλ,V : Ls×Ls → [0,+∞] defined by:

d0λ,V (ϕ1, ϕ2) = 0 for all ϕ1, ϕ2 ∈ Ls
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dkλ,V (ϕ1, ϕ2) =



0 if ϕ1 = >, ϕ2 = >
dkλ,V (ϕ′1, ϕ

′
2) if ϕ1 = ¬ϕ′1, ϕ2 = ¬ϕ′2

λ ·KV (dk−1λ,V )(ψ1, ψ2) if ϕ1 = 〈a〉ψ1, ϕ2 = 〈a〉ψ2

H(dkλ,V )({ϕj}j∈J , {ϕi}i∈I) if ϕ1 =
∧
j∈J

ϕj , ϕ2 =
∧
i∈I

ϕi

�dV (V ) otherwise.

Clearly, the mapping dkλ,V is a pseudometric and it is bounded whenever KV

is bounded. The discount factor λ ∈ (0, 1] allows us to specify how much the
distance between state formulae at the same depth is taken into account. For
this reason, the discount factor λ is introduced in the evaluation of the distance
between equally labeled diamond modalities.

We define the family of syntactic distances over formulae, denoted by dλ,V ,
as the limit of their up-to-k distances. Since we consider only the metric spaces
(V, dV ) for which KV is bounded (cf. Remark 1), the existence of such a limit is
ensured by the following two results.

Lemma 2. For each k ∈ N and for all ϕ,ϕ′ ∈ Ls, dk+1
λ,V (ϕ,ϕ′) ≥ dkλ,V (ϕ,ϕ′).

Proposition 5. The mapping dλ,V : Ls×Ls → [0,+∞] defined, for all ϕ,ϕ′ ∈
Ls, by dλ,V (ϕ,ϕ′) = limk→∞ dkλ,V (ϕ,ϕ′) is well-defined.

We are now ready to lift the metric on L to a metric on S. To this aim, we
exploit the close relation between processes and their own mimicking formulae.

Definition 23 (Logical distance). For any k ∈ N, the up-to-k logical distance
`kλ,V : S × S → [0,+∞] over processes is defined for all s, t ∈ S by `kλ,V (s, t) =

dkλ,V (ϕks , ϕ
k
t ). Then, the logical distance `λ : S × S → [0,+∞] over processes is

defined, for all s, t ∈ S by `λ,V (s, t) = dλ,V (ϕs, ϕt).

The next Theorem gives us the logical characterization of the generalized
bisimilarity metrics in terms of the logical distances over processes.

Theorem 5. Let λ ∈ (0, 1]. For any s, t ∈ S we have `λ,V (s, t) = dλ,V (s, t).

4.5 A logical bound on dX -privacy: the logical distance

We exploit the multiplicative variant of the logical distance over processes to ob-
tain a logical bound on dX -privacy. In detail, we model randomized mechanisms
as LMCs and then: 1. We show that the multiplicative variant of the logical
distance on the states of the LMC is an upper bound to the multiplicative total
variation distance on the trace distributions induced by them. 2. We rephrase the
dX -privacy property as an upper bound on the logical distance between states
corresponding to the considered secrets.

We remark that since we will use traces as a mere representation of the
information on secrets, the actual length of the trace should play no role in the
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evaluation of the distances. More precisely, the depth of the mimicking formula
of the process that induces those traces in the LMC should not interfere in the
evaluation of the distance as we are not interested in keeping track of the number
of computation steps performed by a process, but, rather, in the possibility of
executing them and the related execution probability. Hence, in the remaining
of this Section we assume the discount factor λ = 1 and we omit it.

As shown in [12], we can express the multiplicative total variation distance
in terms of the multiplicative variant of the Kantorovich lifting K⊗ of the dis-
crete metric over traces. More precisely, we let dm�V be the �dV (V )-valued
discrete metric over A? which is defined as dm�V (α, α′) = 0 if α = α′ and
dm�V (α, α′) = �dV (V ) otherwise. To define K⊗, we need to consider V = [0, 1]
and d⊗(x, y) = | ln(x)− ln(y)|. In [12] it has been proved that for �d⊗([0, 1]) =
+∞ it holds tv⊗ = K⊗(dm�⊗). Hence, from dλ,⊗ ≥ K⊗(dm�⊗) (cf. [12]) and
Thm. 5 we obtain the following result.

Proposition 6. Assume a LMC and let s, t be two processes in it. Let πs =
Pr(s, ·) and πt = Pr(t, ·). Then tv⊗(πs, πt) ≤ `⊗(s, t).

We remark that Prop. 2, Thm. 5 and Prop. 6 imply that dT⊗ � d⊗.
We can then restate Def. 5 in terms of an upper bound on the multiplicative

logical distance, thus obtaining the logical bound on dX -privacy.

Theorem 6 (Logical bound on dX -privacy). Let M be a randomized mech-
anism defined by M(x)(α) = Pr(sx, α) for all x ∈ X , α ∈ A?. Then, given ε > 0,
M is ε · dX -private if `⊗(sx, sx′) ≤ ε · dX (x,x′) ∀ x,x′ ∈ X .

The following example illustrates a case of standard differential privacy.

Example 6. Consider two medical databases x and x′, both of size n,4 and as-
sume that they are adjacent, i.e. that they differ only for one individual record.
Assume that we ask a counting query of the form a =“How many people in the
database have the disease da?”. Assume that, to sanitize the answer, we use a
geometric mechanism [24], namely a probabilistic function that reports as an-
swer the integer j with a probability distribution of the form pa(j) = c e−|i−j|ε,
where i is the true answer, ε is the desired privacy level, and c is a normalization
factor. In order to obtain a finite support, we can truncate the mechanism in the
interval [0, n], namely accumulate on 0 all the probability mass of the interval
(−∞, 0], and on n all the probability mass of the interval [n,+∞). It is well
known that the resulting mechanism is ε-differentially private. Consider now a
new counting query of the form b =“How many people in the database have
the disease db ?”, and again, assume that the answer is sanitized by a truncated
geometric mechanism of the same form, with probability distribution pb.

From the differential privacy literature we know that the combination of both
mechanisms, in which the second query is asked after having obtained the answer
from the first one, is 2ε-differentially private. However, we can obtain a better

4 We recall that we are using a notion of privacy in which all databases have the same
number of records n, and the absence of a record is represented by a special value.
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bound by looking at the various situations. To this purpose, let us consider the
systems s and s′ corresponding to the two databases x and x′ respectively, and
let pa, pb, p

′
a and p′b the probability distributions for the queries a and b in x and

x′ respectively. We can completely describe them by the mimicking formulae
(which in this case are also characteristic formulae) ϕ and ϕ′ defined as (for
simplicity we omit the negative parts and the probabilities when they are 1):

ϕs = 〈a〉
⊕
j∈[0,n]

pa(j)〈j〉〈b〉
⊕

m∈[0,n]

pb(m)〈m〉>

ϕs′ = 〈a〉
⊕
j∈[0,n]

p′a(j)〈j〉〈b〉
⊕

m∈[0,n]

p′b(m)〈m〉>

Consider now the four scenarios obtained by combining the various cases that
the individual corresponding to the new record in x′ has or does not have the
diseases da and db.
– If he does not have either of them, then pa coincides with p′a and pb coincides

with p′b, which means that the distance between ϕs and ϕs′ is 0: the two
systems are indistinguishable (0-differentially private).

– If he has da but not db, or vice versa, then either pa coincides p′a and the
ratio between pb and p′b is bound by ε, or vice versa. The distance between
ϕs and ϕs′ is ε: the two systems are ε-differentially private.

– If he has both da and db, then the ratio between pa and p′a, and that between
pb and p′b, are bound by ε. The distance between ϕs and ϕs′ is 2ε: the two
systems are 2ε-differentially private.

5 Conclusions

We have provided a logical characterization of generalized bisimulation met-
rics, based on the notions of mimicking formulae, i.e., formulae capturing the
observable behavior of a particular process, and distance on formulae, i.e., a
pseudometric on formulae measuring their syntactic disparities. Moreover, we
have used the distance on formulae to obtain logical bounds on differential pri-
vacy properties. Then we have applied the same method to a simpler class of
formulae expressing the trace semantics, thus obtaining a logical characterization
of differential privacy and a classic logical characterization of weak anonymity.

As future work, we will further investigate the relation between the distance
on formulae and real valued semantics on richer classes of formulae, by providing
a thorough comparison with the real-valued semantics proposed in [17, 18] for
the characterization of bisimulation semantics. Moreover, we aim at using the
metrics and logical properties explored in this paper to reason about privacy
in concurrent systems. This will require to deal with nondeterminism, which is
already considered in the present paper, but probably we will need to reason
explicitly about the scheduler and to restrict its capabilities, in order to avoid
the problem of the “omniscient scheduler”, which could break any privacy de-
fense. Finally, we aim at developing quantitative analysis techniques and tools
for proving privacy properties.
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