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Abstract—Local differential privacy (LPD) is a distributed
variant of differential privacy (DP) in which the obfuscation of
the sensitive information is done at the level of the individual
records, and in general it is used to sanitize data that are
collected for statistical purposes. LPD has the advantage it
does not need to assume a trusted third party. On the other
hand LDP in general requires more noise than DP to achieve
the same level of protection, with negative consequences on
the utility. In practice, utility becomes acceptable only on very
large collections of data, and this is the reason why LDP is
especially successful among big companies such as Apple and
Google, which can count on a huge number of users. In this
paper, we propose a variant of LDP suitable for metric spaces,
such as location data or energy consumption data, and we
show that it provides a much better utility for the same level
of privacy.

Keywords-Local differential privacy, dX -privacy, Kan-
torovich lifting.

I. INTRODUCTION

With the ever-increasing use of internet-connected de-
vices, such as computers, IoT appliances (smart meters,
home monitoring devices), and GPS-enabled equipments
(mobile phones, in-car navigation systems), personal data
are collected in larger and larger amounts, and then stored
and manipulated for the most diverse purposes. For example,
the web browsing history can be used for profiling the user
and sending him targeted publicity. Power-consumption data
from smart meters can be analyzed to extract typical daily
consumption patterns in households [1], or to identify the
right customers to target for demand response programs [2].
Location data can be used to find the most frequented public
areas (for instance, to deploy hotspots) [3], or to provide
traffic information [4].

Undeniably, the Big Data technology provides enormous
benefits to individuals and society, ranging from helping the
scientific progress to improving the quality of service. On
the other hand, however, the collection and manipulation
of personal data raises alarming privacy issues. Not only
the experts, but also the population at large are becoming
increasingly aware of the risks, due to the repeated cases
of violations and leaks that keep appearing on the news. It
is particularly disturbing when personal data are collected
without the user’s consent, or even awareness. For instance,

in 2011 it was discovered that the iPhone was storing
and collecting location data about the user, syncing them
with iTunes and transmitting them to Apple, all without
the user’s knowledge [5]. More recently, the Guardian has
revealed, on the basis of the documents provided by Edward
Snowden, that the NSA and the GCHQ have been using
certain smartphone apps, such as the wildly popular Angry
Birds game, to collect users’ private information such as age,
gender and location [6], again without the users’ knowledge.

Another related problem is that users often do not have
the possibility to control the precision and the amount of
personal information that is being exposed. For instance the
Tinder application was found sharing the exact latitude and
longitude co-ordinates of users as well as their birth dates
and Facebook IDs [7], and even after the initial problem
was fixed, it was still sharing more accurate location data
than intended, as users could be located to within 100
feet of their present location [8]. The leakage of precise
personal information is particularly problematic, especially
when considering that various kinds of personal data from
different sources can be linked and aggregated into a user
profile [9], [10], and can fall in the hands of malicious
parties.

Until recently, the most popular and used data sanitization
technique was anonymization (removal of names) or slightly
more sophisticated variants like k-anonymity [11] ensuring
indistinguishability within groups of at least k people, and
`-diversity, ensuring a variety of values for the sensitive data
within the same group [12]. Unfortunately, these techniques
have been proved unable to provide an acceptable level of
protection, as several works have shown that individuals in
anonymized datasets can be re-identified with high accuracy,
and their personal information exposed (see for istance [13],
[14]).

In the meanwhile, differential privacy (DP), has emerged
and imposed itself as a convincing alternative to anonymity.
Together with its distributed version local differential pri-
vacy, it represents the cutting-edge of research on privacy
protection.

DP was developed in the area of statistical databases, and
it aims at protecting the individuals’ data while allowing to
make public the aggregate information [15]. This is obtained



by adding controlled noise to the query outcome, in such a
way that the data of a single individual will have a negligible
impact on the reported answer. More precisely, let M be
a (noisy) mechanism for answering a certain query on a
generic database D, and let P [M(D) ∈ S] denote the
probability that the answer given by M to the query, on
D, is in the (measurable) set of values S. We say that
M is ε-differentially private if for every pairs of adjacent
databases D and D′ (i.e., differing only for the value of
a single individual), and for every measurable set S, we
have P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S]. DP has two
important advantages with respect to other approaches: (a)
it is independent from the side-information of the adversary,
thus a differentially-private mechanism can be designed
without taking into account the context in which it will
have to operate, and (b) it is compositional, i.e., if we
combine the information that we obtain by querying two
differentially-private mechanisms, the resulting mechanism
is also differentially-private. Furthermore, (c) differentially-
private mechanisms usually provide a good trade-off be-
tween utility and privacy, i.e., they preserve the privacy of
the individuals without destroying the utility of the collective
data.

Local differential privacy (LDP) is a distributed variant
of differential privacy in which users obfuscate their per-
sonal data by themselves, before sending them to the data
collector [16]. Technically, an obfuscation mechanism M is
locally differentially private with privacy level ε if for every
pair of input values x, x′ ∈ X (the set of possible values
for the data of a generic user), and for every measurable
set S, we have P [M(x) ∈ S] ≤ eε · P [M(x′) ∈ S]. The
idea is that the user provides M(x) to the data collector,
and not x. In this way, the data collector can only gather,
stock and analyze the obfuscated data. Based on these he
can infer statistics (e.g., histograms, or heavy hitters [17])
of the original data. LPD implies DP on the collected data,
and has the same advantages of independence from the side-
information and compositionality. Furthermore, with respect
to the centralized model, it has the further advantages that
(a) each user can choose the level of privacy he wishes, (b)
it does not need to assume a trusted third party, and (c) since
all stored records are individually-sanitized , there is no risk
of privacy breaches due to malicious attacks. LDP is having
a considerable impact, specially after large companies such
as Apple and Google have started to adopt it for collecting
the data of their customers for statistical purposes [18].

The disadvantage of LDP is that it can spoil substantially
the utility of the data. Even in those cases where the trade-off
with utility is most favorable, namely the statistical appli-
cations, it is usually necessary to have a huge collection of
data in order for the statistics to be significant. Fortunately,
however, the data domains are often equipped with structures
that could be exploited to improve utility. In these notes, we
focus on data domains that are provided with a notion of

distance. This is the case, for instance, of location data,
energy consumption in smart meters, age and weight in
medical records, etc. Usually, when these data are collected
for statistical purposes, the accuracy of the distribution is
measured also with respect to the same notion of distance. In
such scenarios, we argue that the trade-off between privacy
and utility can be greatly improved by exploiting the concept
of approximation intrinsic in metrics.

Following this intuition, we propose a variant of lo-
cal differential privacy based on the notion of dX -privacy
intoduced in [19]. An obfuscation mechanism M is ε · dX -
private if for every pair of input values x, x′ ∈ X , and
for every measurable set S, we have P [M(x) ∈ S] ≤
eε·dX(x,x′) · P [M(x′) ∈ S]. In other words, dX -privacy
relaxes the privacy requirement by allowing two data to
become more and more distinguishable as their distance
increases. Thus, it allows the adversary to infer some ap-
proximate information about the true value, but it does not
allow him to infer the exact true value. As explained in [19],
dX -privacy can be implemented by using an extended notion
of Laplacian noise, or of geometric noise.

The original motivation for the notion of dX -privacy was
for real-time punctual applications. In particular, the instance
of dX -privacy in which dX is the geographical distance has
been used in the context of location privacy, under the name
of geo-indistinguishability, to protect the location of the user
during the interaction with location-based services (LBSs)
[20], [21]. These are services that provide the user with
certain desired information which depends on the location
communicated by the user, like for instance points of interest
(POI) near the location. The idea is that the user does not
need to communicate his exact coordinates, an approximate
location should suffice to obtain the requested information
without too much degradation of the quality of service.

Geo-indistinguishability has been quite successful, and
its implementation via the Laplacian mechanism has been
adopted as the basis or as a component of several tools
and frameworks for location privacy, including: LP-Guardian
[22], LP-Doctor [23], STAC [24], Location Guard [25],
and the SpatialVision QGIS plugin [26]. Here, we want to
show that geo-indistinguishability, and more in general dX -
privacy, can also be used to protect privacy when collecting
data for statistical purposes, and that if the statistics are
distance-sensitive, then dX -privacy preserves the utility of
the data better than the standard LDP methods.

In the rest of these notes, we will discuss the improve-
ment on trade-off utility-privacy compared to standard LDP
methods, and show some experimental results based on the
Gowalla dataset [27], [28]. For simplicity we will restrict
the analysis to the case of discrete metric spaces. We will
consider, in particular, the mechanisms of K-ary Random-
ized Response (K-RR) [29] for LPD, and the (discretized)
Laplacian and geometric mechanisms for dX -privacy.

These notes are meant to stimulate the discussion on the



issue of utility in LDP. The interested reader can find the
technical details in the report version of this paper [30].

II. UTILITY

We consider a notion of utility suitable for statistical
applications. The scenario is the following: let X (the
universe) be a set of secrets, endowed with a notion of
distance dX , and let DX be the set of distributions on X .
Let D be an unsanitized dataset on X , namely a multiset of
elements of X (i.e., an histogram), determining a distribution
π ∈ DX . Assume that each individual element x in D
gets sanitized by injection of noise, thus producing a noisy
dataset D̂. From D̂ we then try to reconstruct the distribution
π as well as we can, assuming that we only know D̂ and
the mechanism M for noise injection.

In order to reconstruct as precisely as possible the original
π, we propose to use the Expectation-Maximization (EM)
method [31], also known as Iterative Bayesian Update,
which iteratively estimates the distribution until convergence
to a fixed point. The feature of this method is that the
final estimate (converged value) is equal to the Maximum
Likelihood estimate in the probability simplex, and it is
shown in [31] that it significantly outperforms the other
known techniques like the matrix inversion method.

Let π̂ ∈ DX be the output of the EM method. Intu-
itively, the utility loss with respect to the original database
should reflect the expected difference between the statistical
properties based on the noisy data and those based on the
real data. To formalize the notion of expectation, we can
regard M, in abstract terms, as a device that inputs π and
output a set of possible distributions π̂1, π̂2, . . . π̂i . . ., each
with a certain probability p1, p2, . . . pi . . .. In other words,
M can be seen as a transformation that associates to each
π a function ∆ which assigns a probability mass to every
distribution, i.e, ∆(π̂i) = pi. This type of functions ∆ are
called hyperdistributions in [32], [33]. Note that also π can
be seen as a hyperdistribution: it is the function that assigns
1 to π, and we will denote it by [π].

Concerning the difference between statistical properties:
in very general terms, we can represent a statistical property
as a functions f : DX → R, where R is the set of reals. We
want to capture as many f ’s as possible, but it is reasonable
to assume that the difference between f(π) and f(π′)
must be bound by the distance between the distributions
π and π′, for some “reasonable” notion of distance dDX . In
other words, we want to avoid that negligible differences
on the distributions may produce unbound differences in
the statistics. For this reason, we restrict the statistics of
interest, F ⊆ (DX → R), to be the set of 1-Lipshitz1

functions with respect to dDX . Hence, F = {f : DX →

1The requirement of 1-Lipshitz is not really essential, it could be k-
Lipshitz for an arbitrary k. The important constraint is that the difference
on the statistics is bound in some uniform way by the difference on the
distributions.

R | f is 1-Lipshitz w.r.t. dDX }. Finally, since we want to
abstract from the peculiarity of any particular statistics, we
will consider the maximum difference induced by the noise
on all the statistics in F. Summarizing, we can define the
utility loss as:

UL(M, π, dDX ) = max
f∈F

|
∑
π̂

∆(π̂)f(π̂)− f(π) | (1)

where ∆ = M(π). It is worth noting that the rhs of
this definition is the distance between ∆ and [π] obtained
as the Kantorovich lifting of dDX , which we will denote
as K(dDX )(∆, [π]). Following the same intuition, we can
define the distance dDX as the Kantorovich lifting of dX , thus
establishing a link with the ground distance on the domain
of secrets.

III. TUNING PRIVACY

The notions of LDP and of dX -privacy both depend on
privacy parameters ε’s, but these ε’s do not represent the
same level of privacy in the two definitions. They are not
even of the same type: the ε in LDP is a pure number, while
the ε in dX -privacy is the converse of a distance. Therefore,
in order to compare the utility of an LDP mechanism M

with that of a dX -private mechanism M′, we have first to
tune their privacy parameters so to ensure that M and M′

provide the same privacy protection. To this end, we consider
the notion of location privacy proposed in [34], defined as
expected distance between the reported location and the real
location. 2 Generalizing to dX -privacy, we require that M

and M′ give the same expected distance between x ∈ D and
the corresponding reported datum. Namely:∑

x,y∈X π(x)P [M(x) = y]dX (x, y)

=
Ed
=∑

x,y∈X π(x)P [M′(x) = y]dX (x, y)

(2)

where Ed represents the desired level of protection, ex-
pressed in terms of the expected distance of the reported
location from the real one.

IV. THE MECHANISMS

We now recall the definition of the K-ary RR mecha-
nism [29], representative of LPD, and the Laplacian and
geometric mechanisms, representative of dX -privacy.

2The definition in [34] also takes into account the knowledge of the
prior, and the possibility to remap the reported location in the most most
likely one according to the additional information provided by the prior.
In our case, we want a definition that does not depend on the knowledge
of the prior (since π is supposed to be unknown), and without the prior
information, for the mechanisms we consider, the most likely location is
always the reported one. Hence we do not need remapping.



A. The Laplacian mechanism

The Laplacian mechanism ML is used when (X , dX ) is a
continuous metric space. Given a real location x, it reports a
location y with a probability density function (pdf) defined
as:

dPx(y) = λL e
−ε·dX (x,y)

where λL is a normalization factor.
In case we want to work in a discrete setting, we can

first discretize the metric space by partitioning X into cells
and defining the distance between two cells as the dX
between the centers of the cells. Then we can discretize
the mechanism by defining the probability of a cell C as
the probability mass obtained by the integration of the pdf
over C.

B. The geometric mechanism

The geometric mechanism MG is used when (X , dX ) is
a discrete metric space. It is defined similarly to Laplacian
mechanism, with the exception that now x and y represent
discrete locations, and we have a (discrete) probability
distribution rather than a pdf:

P [MG(x) = y] = λG e
−ε·dX (x,y)

where λG is a normalization factor.
If (X , dX ) is the result of a discretization of a continuous

metric space, then the discretized laplacian is very similar,
but not identical to the geometric mechanism.

V. THE K-RR MECHANISM

The K-RR mechanism, aka flat mechanism, MF is one
of the simplest LPD mechanisms. The idea is that the result
of the sanitization is a bit more likely to be the true value
x than any other value in the domain (taken individually),
and that on the other values the probability is distributed
uniformly :

P [MF (x) = y] =


eε

|X|−1+eε if y = x

1
|X|−1+eε if y 6= x

In [29], the k-RR mechanism has been shown to be
optimal in the low privacy regime for a large class of
information theoretic utility functions.

VI. EXPERIMENTAL RESULTS

In this section we compare the utility of the privacy
mechanisms MF , MG and the (discretized) ML introduced
in previous section, using a distribution derived from the
Gowalla dataset, which contains location data (check-ins)
relative to a certain population of users.

We consider an area of 4.5 Km × 4.5 Km in Paris,
centered in 5 Boulevard de Sébastopol, near Le Halles. We
discretize that area by considering a grid of 30×30 cells, so
that every cell is 150 m ×150 m, see Figure 1. These cells

Figure 1. The area of Paris considered for evaluating the utility of the
three mechanisms.

represent the elements of X , and the distance dX is defined
as the geographic distance between the centers of the cells.

We consider 750 check-ins from Gowalla in this area,
selected randomly, and we consider the multiset D obtained
by counting the number of check-ins in each cell. Let π be
the corresponding distribution.

We now tune the privacy parameters of MF , MG and
ML so that the expected distance Ed of the reported
location from the real one is the same for all of them (cfr.
Requirement (2)). We set Ed to be 3 times the size of a cell,
namely 450 m. The values of ε that we derive are: 8.24797
for MF , 0.00398441 for MG, and 0.00404249 for ML.

In order to compute the utility loss for these three mech-
anisms, we use the well-known fact that the Kantorovich
distance is equal to the earth mover’s distance (EMD)
also known as the Wasserstein metric. Namely, we can
equivalently rewrite (1) as

UL(M, π, dDX ) = min
α

∑
π̂∈dom(∆)

α(π̂, π)dDX (π̂, π) (3)

where ∆ = M, α ranges on the couplings that have as
marginals ∆ and [π], and dDX = K(dX ). In conclusion, to
determine the utility loss we need to compute the expectation
of the Kantorovich distance between the reported location
and the real location. We have done it for an increasing
sequence of dataset ∅ ⊆ D1 ⊆ D2 ⊆ . . . ⊆ Dn ⊆ . . . ⊆ D
constructed incrementally by adding each time 10 elements
from the 750 check-ins, selected randomly, until all of them
are inserted. The results are reported in Figure 2.

As we can see from this figure, the geometric and the
discretized Laplacian have similar utility, and perform much
better (in terms of utility) than the flat mechanism. In fact,
if we consider statistics that are somehow coherent with the
ground distance dX , then the fact that the geometric and the
discretized Laplacian tend to assign a negligible probability
to locations that are far away from the real one means that
those locations do not significantly contribute to the loss of



Figure 2. The utility loss for an increasing sequence of datasets taken from
the Gowalla check-ins in the area illustrated in Figure 1. The numbers in
the horizontal axis represent the number of check-ins × 10. The numbers
in the vertical axis represent the distance, expressed in meters.

utility. In contrast, the flat mechanism treats in the same
way all locations, independently from their distance from
the real one. Consequently there are several locations that
are far away and still carry a significant probability mass,
thus taking a heavy toll on the utility.

Furthermore, we can see that the utility loss of the Flat
mechanisms, although showing a tendency to diminish as
the numbers of check-ins increases, it does so very slowly.
Finally, at the beginning (for less than 2000 check-ins) the
behavior of the flat mechanism is extremely unstable. This
is due again to the fact that the reported locations tend to
be scattered in the whole area with high probability, which
determine high fluctuations especially at the beginning when
the data are few, as the addition of new data can cause a big
change in the distributions.

VII. CONCLUSION

We have advocated the use of dX -privacy to protect
privacy when data are collected for statistical purposes on
domains of secrets endowed with a notion of distance, argu-
ing that in such context dX -privacy offers a better trade-off
between privacy and utility than traditional LPD methods.
We have confirmed this claim by performing experimental
evaluations of the utility of dX -private mechanisms and LPD
ones on real location data from the Gowalla dataset. The
results show that the gap in terms of utility (for the same
level of privacy) is actually quite significant.
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