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Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS,
Laboratoire de Physique, F-69342 Lyon Cedex 7, France

(Dated: July 2, 2019)

Due to large scale flow inhomogeneities and the effects of temperature, turbulence small-scale
structure in thermal convection is still an active field of investigation, especially considering sophis-
ticated Lagrangian statistics. Here we experimentally study Lagrangian pair dispersion (one of the
canonical problems of Lagrangian turbulence) in a Rayleigh-Bénard convection cell. A sufficiently
high temperature difference is imposed on a horizontal layer of fluid to observe a turbulent flow.
We perform Lagrangian tracking of sub-millimetric particles on a large measurement volume in-
cluding part of the Large Scale Circulation (LSC) revealing some large inhomogeneities. Our study
brings to light several new insights regarding our understanding of turbulent thermal convection:
(i) by decomposing particle Lagrangian dynamics into the LSC contribution and the turbulent fluc-
tuations, we highlight the relative impact of both contributions on pair dispersion; (ii) using the
same decomposition, we estimate the Eulerian second-order velocity structure functions from pair
statistics and show that after removing the LSC contribution, the remaining statistics recover usual
homogeneous and isotropic behaviours which are governed by a local energy dissipation rate to be
distinguished from the global dissipation rate classically used to characterise turbulence in thermal
convection; and (iii) we revisit the super-diffusive Richardson-Obukhov regime of particle dispersion
and propose a refined estimate of the Richardson constant.

I. INTRODUCTION

Various natural and industrial flows are buoyancy-driven. Atmospheric or oceanic dynamics, Earth’s mantle flows
and heat exchangers are some examples where the natural thermal convection – without mechanical forcing – has
a dramatic influence on the flow. The main model system is the Rayleigh-Bénard cell. A horizontal layer of fluid,
confined in a cell is cooled from above and heated from below. If the thermal forcing is large enough, the flow is
turbulent and the fluid is well mixed. A consequence is that the temperature is nearly homogeneous on average,
and thermal gradients are confined in boundary layers, close to the horizontal plates. Boundary layers are thermally
unstable, which leads to the emission of coherent structures, named thermal plumes. Despite the significant progress
of the modelling of turbulent thermal convection in the past decade [1–3], the link between these structures and the
global heat flux is still not fully understood. Examples of open questions are the dynamics of the turbulent plumes
[4], the interactions between the mean flow and the boundary layers, and the influence of the inhomogeneity on the
heat transport.

The system is controlled by two non dimensional parameters. (i) The Rayleigh number, Ra, is the balance of the
buoyancy effects and the dissipative ones. It accounts for the thermal forcing,

Ra =
gα∆TH3

νκ
, (1)

where g is the acceleration due to gravity, ∆T is the temperature difference between the cooling and the heating plates,
H is their separation distance, α represents the thermal expansion coefficient of the fluid, ν the fluid’s kinematic
viscosity and κ its thermal diffusivity. (ii) The Prandtl number, Pr, compares the two dissipative processes (thermal
and viscous diffusion):

Pr =
ν

κ
. (2)

The response of the system is estimated by the Nusselt number, Nu, which compares the heat flux through the
convection cell to the purely diffusive one,

Nu =
QH

λ∆T
, (3)
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where Q is the heat flux and λ the thermal conductivity of the fluid.

High-resolution spatio-temporal Lagrangian measurements in turbulent flows are now possible thanks to improved
digital imaging techniques and computing resources [5, 6]. Flows with important mixing and transport properties
deserve to be studied with a Lagrangian approach [7]. Moreover, the Lagrangian point of view is relevant to stochastic
models which describe some aspects of the turbulence, such as finite-Reynolds effects [8, 9], and intermittency [10].
Important transport properties of turbulent flows are related to multi-particle dispersion [11], among which pair
dispersion is the most fundamental and has been pioneered by Sir Richardson [12]. The way two particles go away from
each other has been largely studied in turbulent flows simultaneously experimentally, numerically and theoretically
(see e.g. the review articles by Sawford [13] and Salazar et al. [14]). It has important applications including oceanic
plankton or atmospheric pollutant dispersion [15, 16] for which thermal convection is a key ingredient. Three regimes
can be distinguished. (i) For time scale shorter than t∗ = (∆2

0/ε)
2/3, where ∆0 is the initial separation, as represented

in Fig. 4, and ε the kinetic energy dissipation rate, a ballistic regime is observed. It is called the Batchelor regime,
and the squared pair dispersion D2

∆0
(t) (as defined in Eq. 6) scales as t2 [17]. (ii) For t∗ < t < TL, where TL is the

Lagrangian correlation time, the super-diffusive or Richardson-Obukhov regime appears and D2
∆0

(t) ∝ t3 [12]. (iii)

For t > TL, a diffusive regime is reached and D2
∆0

(t) ∝ t [15].

Nevertheless these three regimes are poorly investigated in turbulent thermal convection, contrary to isothermal
turbulence. Indeed, the presence of thermal plumes and the strong inhomogeneities of the flow should lead to
turbulent statistics far from the usual Homogeneous and Isotropic Turbulence (HIT) framework. To our knowledge,
few experimental works were reported. The first one used a single large particle with embedded thermistors to combine
Lagrangian temperature and velocity measurements [18–20]. The second one [21, 22] used sub-millimeter particles,
focusing on the very center of convection cells where the flow is quite homogeneous and isotropic. Recently we reported
on a Lagrangian study of the velocity and acceleration statistics in a large measurement volume of a Rayleigh-Bénard
cell where the mean flow is highly inhomogeneous [23]. Very recently, a study focused on the aspect ratio influence on
Lagrangian statistics [24]. Some experimental studies have been performed in rotating Rayleigh-Bénard turbulence
[25–28]. Moreover, heat flux and particle dispersion were numerically studied by Schumacher and co-workers all along
the decade. Among these previous studies, the pair dispersion was explored numerically in thermally-driven flows
[29, 30]. The Batchelor and Richardson-Obukhov regimes were observed. In experimental studies, mostly the case
of initial separations close to the dissipative length-scale was investigated [22], with some evidence of the Richardson
regime.

The purpose of this paper is to explore how flow inhomogeneity observed in a wide central zone of a thermal flow
affects the turbulence. We deliberately place this study out of the HIT scope and address the role of the Large Scale
Circulation (LSC) on Lagrangian transport. The Lagrangian tracking of particle pairs in a turbulent Rayleigh-Bénard
cell is presented. A significant part of the LSC is observed thanks to the size of the measurement volume. The growth
of the mean-square separation of particles is analysed. The main aspect of this article concerns the influence and
the modelling of the inhomogeneous mean flow on pair dispersion. We also discuss the estimation of the Richardson
constant in the Richardson-Obukhov regime.

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES

The convection cell consists of an octagonal-shaped setup with eight transparent polymethylmetacrylate vertical
walls. The two horizontal plates are made of anodised aluminium. They are 40 cm in diameter, tangent to the octagon
made by the walls and vertically spaced 30 cm apart. A custom-made 40 cm in diameter spiral electrical resistance
imposes the heat flux from the bottom while the top plate temperature is regulated by a glycol circulation pump. The
temperature of the plates is monitored using eight PT100 temperature sensors – four inside each plate. The working
fluid is deionised and degased water, with a density ρf = 0.99. The imposed heat power is 800 W, the mean tem-
perature is fixed to 40 ◦C and the temperature difference reaches ∆T = 19.2 K. The corresponding control parameter
values are Ra = 2.0× 1010 and Pr = 4.3. The Nusselt number is consistent with the Grossmann-Lohse theory [1, 31],
and is Nu = 139 (after removing 15 % of thermal losses). In these conditions the flow is turbulent. The subsequent
Large Scale Circulation (LSC) consists in a convection roll confined between two diametrically opposite sides of the
octagonal cell. We observe using shadowgraphs that the convection roll orientation can change spontaneously with
a typical time of few hours. Nevertheless, we do not observe such reversals on the time scale of our acquisitions
(180 s, which is confirmed by the shape-similar velocity distributions of each run [23]. However, LSC sloshing in the
x-direction is observed during the acquisitions [23].

The flow is seeded with thousands of polystyrene particles. Their diameter is d = 250 µm and their density is
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FIG. 1. Convection cell and camera position viewed from above. The gray zone corresponds to the field of view observed by
the three cameras. More details about dimensions and camera specifications are in the text.

ρp = 1.03. The Stokes number in a turbulent flow can be estimated as [32, 33]:

St =
ρp

18ρf

(
d

η

)2

. (4)

In our case we get St ≈ 7× 10−3, which means that particles can be considered as tracers. Nevertheless we observe a
decrease of suspended particle concentration on a typical time of few dozen minutes, probably due to the entrapment
by the thermal boundary layers. This problem is solved by splitting the acquisitions into six runs with re-seeding
between each one.

The fluid volume is illuminated by two sets of four vertical LED bars of 864 lumens, put in front of two different
vertical walls, as shown in Fig. 1. Moreover, to improve the particle visibility, the vertical wall on the far side of
the tank from where the camera is situated is covered with black paper. Thus only three faces are still available to
place the cameras. To avoid any angle between the camera lens and the wall and to have the largest volume captured
by all the cameras, we choose to use only one camera per free face. Consequently, three cameras are positioned in
the horizontal plane situated at mid-height of the walls, at polar angles ψ = 0◦, 135◦ and 270◦, as illustrated in
Fig. 1). The measurement volume where we perform 3D Lagrangian tracking is about 11 cm per side, 17 cm high
and is centered in the cell (see Fig. 1 and 2). The cameras have a resolution of 1088 × 2048 pixels2. The maximum
resolution is 6 pixels per Kolmogorov length, defined as η = (ν3/〈ε〉)1/4 where 〈ε〉 is the average mass rate of kinetic
energy dissipation, estimated as [34]:

〈ε〉 =
ν3

H4
RaPr−2(Nu− 1). (5)

The acquisitions are split in six independant runs of 180 s. The total measurement time is about 2880 times the
Kolmogorov time – τη =

√
ν/〈ε〉 ≈ 0.36 s – and 575 times the free-fall time – τf =

√
H/gα∆T . We can therefore

consider that the flow is fairly averaged as long as no LSC orientation change occurs. The sampling frequency is
fixed to 200 Hz (about 70 times the dissipative time scale), which ensures a good resolution of small scale Lagrangian
dynamics with sufficient oversampling to filter noise on reconnected tracks [6]. A Gaussian kernel is used to filter the
trajectories and their temporal derivatives; its width (0.3 τη) does not affect the smallest turbulent scales.

The measurement volume is wide enough to capture a significant part of the LSC. Figure 2 presents the part of
the convection roll captured by the measurement volume within the convection cell. To visualise the inhomogeneity
of the flow we compute pseudo-Eulerian maps from the Lagrangian data. They are averaged over a spatial grid, and
the resulting velocity field is interpolated. We call vEk (k = x, y, z) the resulting average velocity. Figures 3 (a) and
(b) show three-dimensional representations of the average velocity vectors field, with two distinct viewing angles. In
the y-direction, we observe a very inhomogeneous flow with large positive velocities at the top of the measurement
volume, large negative ones at the bottom and null velocities at the centre. The other horizontal average velocity
component (vEx ) and the vertical one (vEz ) are both nearly null, as highlighted in Fig. 3 (b) and (a) respectively.
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FIG. 2. Scheme of the convection roll and the measurement volume captured by the experimental acquisition setup, compared
to the whole convection cell.

FIG. 3. Three-dimensional visualisations of the mean velocity field
−→
vE = vEx −→x + vEy −→y + vEz −→z . The two plots corresponds to

two different viewing angles. The arrow size is proportional to velocity magnitude, going from 0 and 12 mm/s.

III. PAIR DISPERSION AND INHOMOGENEITY

We address the question of the impact of large scale inhomogeneities on pair dispersion. Figure 4 shows the principle
of the pair dispersion: we study the evolution of the separation between pairs of particles with time by defining

D2
∆0

(t) =

〈(−→
∆(t)−−→∆0

)2
〉

0

, (6)
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R2
∆0,k(t) =

〈
(∆k(t)−∆0,k)

2
〉

0
, (7)

where
−→
∆(t) and

−→
∆0 are respectively the vectors connecting two particles at times t and t0 and ∆k and ∆0,k their

projections along the
−→
k axis (

−→
k = −→x ,−→y ,−→z ); 〈·〉0 represents the statistical mean over pairs with an initial separation

∆0 (see Fig. 5).

−→
∆0

−→
∆(t)

t0 t

FIG. 4. Sketch of the pair dispersion principle. At time t0, two particles are separated with an initial distance
∣∣∣∣−→∆0

∣∣∣∣ while at

time t > t0, they are separated by
∣∣∣∣−→∆∣∣∣∣.

The leading term of the Taylor development at short time of Eq. 6 leads to a ballisitic (or Batchelor [17]) regime:

D2
∆0

= S2−→v (∆0)t2 +O(t3) (8)

where S2−→v (∆0) is the second-order Eulerian velocity structure function for a separation ∆0. This regime is expected

to last for times t <∼ t∗ = (∆2
0/〈ε〉)1/3. For time larger than t∗ the super-diffusive (or Richardson-Obukhov [12]) regime

appears [15]. It corresponds to a t3 dependence of D2
∆0

(t) and was observed in turbulent convection both numerically
[29] and experimentally [22].

At a given 〈ε〉, the observation of the super-diffusive regime requires several conditions. (i) t∗ must be significantly
smaller than the Lagrangian correlation time TL, otherwise the ballistic regime transitions directly to the diffusive
regime. (ii) Experimental tracks of particle pairs must be longer than t∗. Both conditions imply that the observation
of the Richardson-Obukhov regime is most favourable for small initial separations ∆0, as confirmed in numerical
simulations for both isothermal [35] and thermal [29] turbulence. Experimentally, in high Reynolds turbulence, this
regime is hard to observe [16]. This is mostly due to the difficulty to access long tracks and to have good statistical
convergence for small initial separations (which require high seeding densities making the tracking more complex and
noisy). In thermal convection, Ni & Xia [22] used very small initial separations (0.9–1.3 η) in a small measurement
volume and observed a fleeting super-diffusive regime. In our case we choose to track long trajectories over a large
measurement volume (up to 30 s corresponding to 85 τη) but with initial separations starting from 2.7 η (η ≈ 0.7 mm).

We present in Fig. 5 (a) and (b) the mean-square separation D2
∆0

versus t/t∗ for short (range 1.9–2.9 mm) and larger
(range 4.3 mm–80.3 mm) initial separations respectively. In terms of Kolmogorov scale, the ranges are respectively
[2.7 η–4.0 η] and [6.0 η–114 η]. For all initial separations we observe the early ballistic (t2) regime. For the shortest
separations (Fig. 5 (a)), the trajectories are long enough compared to t∗ to observe the transition towards the super-
diffusive (t3) regime. This regime will be discussed further in this paper. For the larger initial separations (Fig. 5 (b)),
the Richardson-Obukhov regime could not be reached.

As described by Eq 8, the short term pair dispersion is dominated by the t2-(ballistic) regime. The pre-factor is
given by the second-order Eulerian structure function S−→v which in non-homogeneous thermal flows, embeds both the
statistics of the turbulent spatial fluctuations and the spatial inhomogeneities of the LSC. We compute the structure
functions with a ∆0 separation for each velocity component from:

R2
∆0,k

(t) = S2
vk

(∆0)t2 +O(t3), (9)

where S2
vk

(∆0) corresponds to the Eulerian second-order longitudinal structure function of the k-component of the
velocity for an initial separation ∆0.

Figure 6 shows these structure functions compensated by ∆
2/3
0 following classic HIT scaling. We observe a strong

anisotropy. S2
vx(∆0) and S2

vz (∆0) present the same plateau which is in agreement with the Kolmogorov scaling,
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FIG. 5. Pair dispersion for (a) short and (b) larger initial separations ∆0 ranging in {1.9 mm, 2.1 mm, 2.3 mm, 2.6 mm, 2.9 mm}
and {4.3 mm, 5.4 mm, 7.0 mm, 8.9 mm, 11.4 mm, 14.6 mm, 17.7 mm, 23.7 mm, 30.3 mm, 38.7 mm, 49.3 mm, 62.9 mm, 80.3 mm}
respectively.
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FIG. 6. Second-order Eulerian structure functions of each velocity component versus the total initial separation ∆0. The black
line represents the model from eq. 14. The dashed part corresponds to the range where the model validity decreases. In the
insert, the same axes and data are plotted, except for S2

vy for which the LSC term β2∆2
0/3 from eq. 14 is subtracted to isolate

the small-scale turbulent contribution. Only the part corresponding to the solid black line in the main plot is shown in the
insert.

S2
vk
∝ ∆

2/3
0 [36]. From this plateau (1.8± 0.1 mm4/3/s2) we can estimate the local average kinetic energy dissipation

rate 〈ε〉loc in the sub-domain delimited by the measurement volume – instead of 〈ε〉 for the whole cell computed using

Eq 5. Indeed, in the Kolmogorov theory we have S2
vk

= (11/9)C2〈ε〉2/3loc with C2 the Kolmogorov constant [36]. In our
case of weak turbulence – the Reynolds number based on the Taylor microscale reaches Rλ ≈ 75, we take C2 = 1.7
[37]. We obtain 〈ε〉loc = 0.8± 0.05× 10−6 m2/s3. We can compare this value to the estimation of 〈ε〉 in the whole cell
using Eq 5, corrected by inhomogeneity effects. Kunnen et al. [38] performed numerical simulations in a cylindrical



7

cell for Pr = 6.4 and Ra = 1 × 109. From this work we estimate that in the center of the cell 〈ε〉loc is about 20 %
to 30 % of its mean value calculated with Eq. 5. Assuming these corrections we choose 〈ε〉loc = (0.25± 0.05) 〈ε〉 and
we finally have 〈ε〉loc = 1.3 ± 0.3 × 10−6 m2/s3, which is quite consistent with the experimental deductions. Note
that the kinetic energy dissipation rate value used to estimate t∗ is computed as 25% of the value given by Eq 5 –
〈ε〉loc ≈ 1.3× 10−6 m2/s3.
S2
vy (∆0) is dramatically different. It does not match with the Kolmogorov theory at all, but can be explained by the

influence of the mean flow. First we decompose the velocity components, in a manner similar to previous Lagrangian
works in von Kármán and thermal turbulent flows [20, 39]. The flow velocity at a given time t and position (x, y, z)
can be seen as the superposition of the time average velocity at this position and a time-dependent fluctuation. Since
we use tracers, their velocity at a given time and position can be decomposed in the same way. Practically, the local
time average velocity corresponds to the pseudo-Eulerian velocity vEk whose computation is explained at the end of
section II. The Lagrangian fluctuation v′k(t) is the difference between actual particle velocity and pseudo-Eulerian
velocity at the particle position. This can be formulated as:

vk(t) = vEk (x(t), y(t), z(t)) + v′k(t), (10)

where k = x, y, z. Using this decomposition, we can develop the structure function S2
vy as:

S2
vy (∆0) =

〈(
vEy (−→r +

−→
∆0)− vEy (−→r )

)2
〉
−→r

+

〈(
v′y(−→r +

−→
∆0)− v′y(−→r )

)2
〉
−→r

(11)

+2

〈(
vEy (−→r +

−→
∆0 − vEy (−→r )

)(
v′y(−→r +

−→
∆0)− v′y(−→r )

)〉
−→r
,

where −→r is a position in space. Since S2
vy (∆0) is an Eulerian quantity, 〈·〉−→r represents the spatial average over all

the accessible positions. The third term of Eq. 11 is a cross-correlation term between the local mean flow and the
fluctuations. In a previous study [20], a sensor-embedded particle was used to explore the flow in a parallelepipedic
cell for similar Pr and Ra. We observed that the correlations between the mean flow and the Lagrangian fluctuations
are very small compared to the auto-correlations of the mean flow and the fluctuations. Consequently we neglect
the third term. The second term corresponds to the second order Eulerian structure function of the fluctuations.
We have seen (section II), for k = x, z that vEk ≈ 0, which means that vk ≈ v′k according to Eq 10. Consequently,

S2
vk
≈
〈(

v′k(−→r +
−→
∆0)− v′k(−→r )

)2
〉
−→r

. We also assume isotropy of turbulent fluctuations as supported by our recent

investigation of single particle statistics [20]. The large similarity of S2
vx and S2

vz in Fig 6 reinforces the hypothesis for

two-particle statistics. From this observation, we assume that the second term of S2
vy from Eq. 11 is similar to S2

vx :

〈(
v′y(−→r +

−→
∆0)− v′y(−→r )

)2
〉
−→r
≈
〈(

v′x(−→r +
−→
∆0)− v′x(−→r )

)2
〉
−→r
≈ S2

vx . (12)

Finally, the first term of Eq. 11 is related to the mean flow structure. As we observe in Fig 3, inside our measurement
volume the mean flow is mostly a shear flow in the {~y, ~z} planes for every x, with zero-velocity in the center of the
cell. Thus we have vEy (−→r ) = βz (within a constant) where β is a shear rate defined from the y-component velocity

gradient in the z direction (which is about uniform). We estimate it to β ≈ 0.14 s−1 from mean vertical velocity
profile. The mean flow structure is sketched in Fig. 7. Then the first term in Eq. 11 can be written as:〈(

vEy (−→r +
−→
∆0))− vEy (r)

)2
〉
−→r

= β2∆2
0,z. (13)

Furthermore, the initial pair separations are assumed to have three similar ∆0,k in order to avoid considering particles
with a very large separation in one direction and a very short separation in an other one. Consequently we have
∆0 ≈

√
3∆0,z. Finally we can write:

S2
vy (∆0) ≈ β2

(
∆2

0

3

)
+ S2

vx(∆0). (14)

The black line in Fig. 6 compares this no-free-parameter model to experimental data. It is valid while the three
components of the initial separation are similar. Since the volume is larger in the ~z direction than in the horizontal
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FIG. 7. Sketch of the mean flow in the {~y, ~z} plane. The red arrow represents the mean streamlines. The green arrows represent
the velocity vectors of two particles separated by ∆0.

ones, this condition is violated for ∆0
>∼ 50 mm. The solid part of the line corresponds to the zone where the model

is expected to be valid, whereas the dashed part, which departs from experimental data, corresponds to a range of
initial separations where the condition ∆0 ≈

√
3∆0,k is not satisfied anymore. Fig. 6 and its insert show the same

experimental results, except for S2
vy . In the insert, the mean-flow component in Eq. 14, β2∆2

0/3 is subtracted from

experimental data S2
vy . This leads to a collapse of the curve on the S2

vx and S2
vz on the model validity domain. This

collapse shows that the Eulerian second-order structure function S2
vy recovers the HIT behaviour if the mean flow

influence is removed.

IV. ABOUT THE RICHARDSON-OBUKHOV REGIME

The observation of the Richardson-Obukhov regime is experimentally subtle in turbulent convection. Moreover, the
super-diffusive regime could include extra diffusion due to the LSC-generated shear rate. For short initial separations,
we observe in Fig. 5 (a) a transition towards a t3 regime similar to that of Richardson-Obukhov. In this regime, the
expected pair separation expression is:

D2
∆0

= g〈ε〉loct
3, (15)

where g is called the Richardson constant [14, 16]. In homogeneous isotropic turbulence (HIT), the expected value
is g ∈ [0.65 − 0.7] in the range of Reynolds number Rλ corresponding to our experiment [14]. Figure 8 shows the
pair separation compensated by 〈ε〉loc t

3 for the smallest initial separations (corresponding to Fig. 5 (a)). A plateau
is well defined for t between 0.7 t∗ and 1.1 t∗ with g ∈ [2 − 4]. This range is consistent although a bit larger than
HIT value. However it is significantly larger than values reported in turbulent convection by Ni & Xia [22] (g ≈ 0.1
for ∆0 ∈ [0.9 η − 1.3 η]). Moreover, the plateau is observed for lower t/t∗ than in Ni & Xia. Aditionally we find a
systematic dependency on the plateau in Fig. 8 with the initial separation, ∆0.

Both observations can be explained from the peculiar behaviour of pair dispersion for initial separation close to the
dissipative scale, and by the value of the average kinetic energy dissipation rate used. The shift in the time value for
the occurrence of the plateau between our data and that of Ni & Xia can be explained by our use of 〈ε〉loc to compute
t∗ which leads to a higher t∗ than when using 〈ε〉. Concerning the plateau value, numerical simulations performed by
Boffetta & Sokolov [40] and Sawford et al. [13, 41] show that for initial separations of the order η, the t3 Richardson-
Obukhov regime is preceded by a local minimum, leading to an apparent short t3 lower plateau. This phenomenon
disappears for higher ∆0. This is attributed to a contamination of the initial range by dissipation effects [13, 40].
Based on the ballistic cascade model proposed by Bourgoin [16], we plot in Fig. 9 the pair separation compensated
by (εt3) in HIT for initial separations between η and 10 η. The local minimum zone before the super-diffusive plateau
is clearly visible for an initial separation ∆0 ∼ η. A progressive disappearance of the minimum zone is observed
as ∆0 increases. This highlights that tracks too short can lead to a biased (misleadingly too small) estimation of
the Richardson constant, misleadingly taken as the apparent plateau observed for small ∆0 near the local minimum
between ballistic and super-diffusive zone in the D2

∆0
/(〈ε〉loct

3) plot. In this zone the apparent plateau also leads to
an erroneous dependency of g on ∆0. Figure 9 suggests that the plateau due to the local minimum zone is nearly
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FIG. 8. Compensated plot of the pair dispersion D2
∆0
/(〈ε〉loct

3) for short initial separations: 2.7 η, 3.0 η, 3.3 η, 3.7 η, 4.0 η.

level with the actual Richardson plateau for ∆0
>∼ 4 η. These observations very likely explain the apparent initial

separation dependency observed in Fig. 8 and also reported in previous work by Ni & Xia [22]. As in both studies,
due to the limited track length, it is likely that the local minimum zone is explored, rather than the actual plateau
of the Richardson regime. Ni & Xia proposed an estimation of the Richardson constant based on the smallest initial
separation they had (∆0

<∼ η), for which the plateau related to the local minimum zone significantly under-estimates
the actual value of g. In this previous pioneering study, the tracks for an initial separation larger than η were too
short and not usable to estimate g. In our study, the tracks of pairs with initial separations in the range [2.7 η − 4 η]
are marginally longer and allow for computation of the plateau due to the local minimum zone. Since we have larger
initial separations, the plateau related to the local minimum zone is naturally higher (see Fig. 9) than for Ni & Xia.
Based on the previous discussion, the plateau around the minimum zone roughly levels to the actual Richardson
plateau for initial separations close to 4η. Considering the range of initial separations in Fig. 8 ([2.7 η − 4 η]) we can
therefore expect that the observed plateau leads to a reasonable estimate of the actual Richardson constant, hence
g ∈ [2− 4]. Note that the use of 〈ε〉 instead of 〈ε〉loc also further under-estimates the plateau value in the work by Ni
& Xia [22].

10−1 100 101 102
10−2

10−1

100

101 Increasing ∆0

from η to 10 η

t/t∗

〈∆
2
(t

)〉
0
/
(ε
t3

)

FIG. 9. Pair separation 〈∆2(t)〉0 for HIT computed from the ballistic-cascade model (adapted to account for the dissipative
scaling of S2 at small initial separations) [16], compensated by (εt3). The initial separations rise linearly in the range [η, 10 η].

V. DISCUSSION AND CONCLUSION

To explore the influence of inhomogeneity and anisotropy on turbulent statistics, an experimental study of pair
dispersion in a turbulent thermal flow was performed. Our experimental setup and analysis/post-processing tools
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allow us to obtain long trajectories, compared to the Kolmogorov time, and exceeding Batchelor time t∗ in some
cases.

The quantitative analysis of the ballistic regime of pair dispersion highlights the influence of the Large Scale Circula-
tion on the turbulent transport and gives a way to measure the mean kinetic energy dissipation rate in the considered
volume. Given its spatial inhomogeneity, a measurement of this rate is necessary to compare thermal convection
turbulence to HIT. This assessment is in good agreement with an estimation from global and Eulerian approaches.
We also used pair dispersion to access Eulerian velocity structure functions using only particle displacement (without
needing to derive their velocity). This is a way to study the influence of the inhomogeneity on thermal flow turbulence.
The particle dispersion in the ~y direction is highly influenced by the convection roll. This is visible on the Eulerian

velocity structure function which departs from the ∆
2/3
0 Kolmogorov scaling. We proposed a model to describe the

shape of this structure function which mixes a phenomenological approach of the mean flow, and experimental data
from the other horizontal velocity structure functions, not affected by the mean flow. This last point is useful to take
into account the shape of the velocity structure function at low initial separations before reaching the Kolmogorov
scaling. With this choice, the non-negligible viscous dissipation for initial separations close to the Kolmogorov scale is
considered. This model is in good agreement with experimental data, except for large initial separations, due to the
loss of the hypothesis of equipartition for initial separation components. While turbulent convection is intrinsically
inhomogeneous and anisotropic, this approach demonstrates that we can recover statistics from usual HIT simply by
removing the mean flow. This is not trivial, especially for two-particle statistics. This also shows that there is no
temperature influence on the turbulence organisation, which is important for understanding the temperature role in
thermal turbulent flows. Our experiments validate this point in the center part of the convection cell, where plumes
are scarce.

For the smallest initial separations, we obtain trajectories longer than t∗ and we are able to observe the transition
from ballistic to super-diffusive regime with a Richardson constant comparable but larger than HIT. For short initial
separations, this non-trivial transition reveals some complex behaviours even in HIT. Moreover, the extra diffusion
due to LSC-generated shear rate could affect the observations of the super-diffusive regime. The difference with
other experimental results could be explained from a well-predicted short plateau due to a local minimum zone which
appears between ballistic and super-diffusive zones at short initial separations on compensated plots.

To summarise, our study shines a light on three new physical insights about turbulent thermal convection. Using
a decomposition between Large Scale Circulation and turbulent fluctuations, we can compute the relative impact
of each contribution to pair dispersion. Then, we compute Eulerian second-order velocity structure functions from
pair separations. Using the same decomposition to remove LSC contribution, we reveal that the remaining statistics
recover usual HIT behaviours, being careful to use a local estimation of the kinetic energy dissipation rate. Finally,
we propose a revisited and more precise estimation of the Richardson constant.

In addition to these points, the pair separation is a good statistical tool to study the transport properties of
turbulent thermal flows, especially in the presence of an inhomogeneous mean flow. Because of the large field of view
in our experiment, we are able to study the effects of inhomogeneity due to Large Scale Circulation specific to the
Rayleigh-Bénard convection. In future studies we aim to explore an even wider measurement volume and be able to
study the jets where a high concentration of thermal plumes is observed. These coherent structures should affect the
different components of the pair dispersion [29]. Furthermore, measurements of particle dispersion in the jets could
give information on thermal transfer in the Rayleigh-Bénard convection. Possible analysis would look at the next
order of the Taylor expression of Eq. 8. This can be done by computing the difference between the forward-in-time
and the backward-in-time pair dispersions [42], and would open new perspectives to study the energy cascade in
turbulent convection.
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[18] Y. Gasteuil, W. L. Shew, M. Gibert, F. Chillá, B. Castaing, and J.-F. Pinton, “Lagrangian temperature, velocity, and

local heat flux measurement in Rayleigh-Bénard convection,” Phys. Rev. Lett. 99, 234302 (2007).
[19] O. Liot, F. Seychelles, F. Zonta, S. Chibbaro, T. Coudarchet, Y. Gasteuil, J.-F. Pinton, J. Salort, and F. Chillà, “Simulta-
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