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Highlights 

• The cortical maturation was studied in infants between 1 and 5 months of age. 

• Diffusion and relaxometry MRI were analyzed in univariate and multivariate manner. 

• Clustering analyses provided reliable results both at the subject and group levels. 

• Distinct maturation profiles were shown across regions of the infant cortex. 
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Abstract 

While the main neural networks are in place at term birth, intense changes in cortical 

microstructure occur during early infancy with the development of dendritic arborization, 

synaptogenesis and fiber myelination. These maturational processes are thought to relate to 

behavioral acquisitions and the development of cognitive abilities. Nevertheless, in vivo 

investigations of such relationships are still lacking in healthy infants. To bridge this gap, we 

aimed to study the cortical maturation using non-invasive Magnetic Resonance Imaging, over 

a largely unexplored period (1 to 5 post-natal months). In a first univariate step, we focused 

on different quantitative parameters: longitudinal relaxation time (T1), transverse relaxation 

time (T2), and axial diffusivity from diffusion tensor imaging (λ//). These individual maps, 

acquired with echo-planar imaging to limit the acquisition time, showed spatial distortions 

that were first corrected to reliably match the thin cortical ribbon identified on high-

resolution T2-weighted images. Averaged maps were also computed over the infants group 

to summarize the parameter characteristics during early infancy. In a second step, we 

considered a multi-parametric approach that leverages parameters complementarity, avoids 

reliance on pre-defined regions of interest, and does not require spatial constraints. Our 

clustering strategy allowed us to group cortical voxels over all infants in 5 clusters with 

distinct microstructural T1 and λ// properties. The cluster maps over individual cortical 

surfaces and over the group were in sound agreement with benchmark post mortem studies 

of sub-cortical white matter myelination, showing 1) a progressive maturation of primary 

sensori-motor areas, 2) adjacent unimodal associative cortices, and 3) higher-order 

associative regions. This study thus opens a consistent approach to study cortical maturation 

in vivo. 
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1 Introduction 

Since the seminal post mortem descriptions of Brodmann (Brodmann, 1909), Flechsig 

(Flechsig, 1920) and others, mapping the microstructural properties of human cortical areas 

has been a major challenge in vivo. In the recent years, different Magnetic Resonance Imaging 

(MRI) modalities and approaches have been tentatively used to propose proxy maps of the 

myelin content, based on the ratio between T1- and T2-weighted signals (noted T1w/T2w 

ratio) (Glasser et al., 2014; Glasser and Van Essen, 2011; Kuehn et al., 2017), T1/T2* ratio 

(De Martino et al., 2015), quantitative R1 (=1/T1) (Lutti et al., 2014; Sereno et al., 2013), T2* 

(Stüber et al., 2014), or Magnetization Transfer Ratio (MTR) (Sanchez-Panchuelo et al., 

2014), as well as  proxy maps of cytoarchitectural properties using diffusion MRI (Fukutomi 

et al., 2018). These maps show spatial gradients and relatively sharp transitions between 

regions, with primary and unimodal association cortices displaying higher apparent 

myelination or more complex microstructure than multimodal association areas. 

Nevertheless, the exact sources of observed MRI contrasts are not straightforward (Glasser 

and Van Essen, 2011) and might reflect myelin, i.e. concentrations in free and myelin-bound 

water, related to phospholipid content, but also iron (Stüber et al., 2014) or the spatial 

arrangement of neuronal cell bodies, cell types in layers and columns (Fukutomi et al., 2018). 

This overall pattern observed across cortical regions in the adult brain is strikingly 

similar to the primal sketch of sub-cortical white matter myelination described in post 

mortem studies of infants’ brains (Brody et al., 1987; Flechsig, 1920; Kinney et al., 1988). 

These studies showed that fibers in primary sensory and motor regions myelinate first, 

followed closely by fibers in non-primary regions that are heavily myelinated in the adult 

brain (including the orbito-frontal region, retrosplenial cortex, the subiculum, a heavily 

myelinated region in the intraparietal sulcus IPS, the middle temporal motion-related area 

MT, and the cingulate motor area), and later on by lightly myelinated regions (including 

prefrontal, inferior parietal, middle and inferior temporal, and anterior cingulate regions). 

During the first post-natal weeks and months, the development of cortical microstructure 

also depends on the intense growth of dendritic arborization and synaptogenesis 

(Huttenlocher and Dabholkar, 1997; Travis et al., 2005), which both show heterogeneity 

across cortical regions. 

While these post mortem benchmark approaches have provided the community with 

detailed descriptions of cortical maturation, in vivo MRI assessments at the individual level 

have been rather scarce throughout development so far. A few years ago, Leroy and 

colleagues highlighted the differential maturation of linguistic regions in infants based on an 

index comparing T2w signal in the cortex to surrounding cerebro-spinal fluid (CSF) (Leroy 

et al., 2011a). Changes with age in T1w intensity (Travis et al., 2014; Westlye et al., 2010) and 

T1w/T2w ratio (Grydeland et al., 2013) have also been mapped over the cortical surface. 

Recently, a few studies used quantitative parameters that do not depend on the scanner’s 
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properties or on the pulse sequence, such as T1 (Deoni et al., 2015; Friedrichs-Maeder et al., 

2017), myelin water fraction (Deoni et al., 2015) or magnetic susceptibility (W. Li et al., 

2014). Although the global pattern of changes from 1 to 6 years of age reflected the 

progressive maturation of cortical regions, some discrepancies were observed at the level of 

cortical sulci (Deoni et al., 2015). Parameters from diffusion MRI (notably diffusion tensor 

imaging DTI) have also been described as good markers of the cortical microstructure, 

especially during the preterm period when the immature radial organization (with limited 

dendritic arborization, predominance of neuronal apical dendrites, and presence of radial 

glia fibers) leads to an early diffusion anisotropy that decreases afterwards until term age 

(Ball et al., 2013; McKinstry et al., 2002; Ouyang et al., 2018). During later development, mean 

diffusivity seems to reflect cortical maturation in a different way than T1 (Friedrichs-Maeder 

et al., 2017) and T1w/T2w ratio (Grydeland et al., 2013). These changes in DTI anisotropy 

and mean diffusivity are notably relying on age-related decreases in axial diffusivity (λ//, 

primary eigenvalue of the diffusion tensor) (Ouyang et al., 2018). Altogether, these 

quantitative parameters provide complementary information on the cortex microstructure 

and maturation. Combining them might thus provide a more accurate description than 

univariate approaches, as previously suggested for white matter bundles (Dubois et al., 

2014a; Kulikova et al., 2015; Nossin-Manor et al., 2015; Yeatman et al., 2014). 

In this study, we aimed to evaluate the cortical maturation based on these complementary 

quantitative MRI parameters. We focused on early infancy (first 6 post-natal months), which 

is a largely unexplored period given the difficulty of imaging healthy babies and processing 

MRI images with low grey / white matter contrast. Because of inter-individual differences in 

brain size and folding (Dubois et al., 2018), we avoided common approaches based on regions 

of interest, and the study was conducted without spatial constraints over the cortical surface. 

In a first analysis step, we described individual maps of longitudinal relaxation time (T1), 

transverse relaxation time (T2), and DTI axial diffusivity (λ//). This latter parameter was 

preferred to DTI anisotropy (Ball et al., 2013; McKinstry et al., 2002) or mean diffusivity 

(Grydeland et al., 2013; Friedrichs-Maeder et al., 2017) because it provided the best contrast 

between cortex and white matter in the developing brain (Dubois et al., 2014a), and it could 

be specifically measured within the cortical ribbon which shows lower values than the 

underlying white matter regardless of the maturational stage. We expected a maturation-

related decrease of T1, T2 and λ// in each region of the cortex, while we assumed that these 

parameters could provide complementary information on its microstructural properties. To 

limit the acquisition time in infants, these parametric maps were acquired with echo-planar 

imaging (EPI) (Poupon et al., 2010), which required to implement a dedicated strategy to 

correct spatial distortions and reliably match the maps with the thin cortical ribbon for each 

infant. Averaged maps over the infant group were also computed based on a registration 

method that took into account the cortical morphology (Lebenberg et al., in revision). In a 

second step we considered a multi-parametric approach: like a previous study that 
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segmented tissues of the adult brain based on multiple MRI parameters (de Pasquale et al., 

2013), we set up a clustering strategy to group cortical voxels, over all infants, according to 

their relative microstructural properties based on MRI parameters.  We then tested whether 

one or several parameters among T1, T2 and λ// would be relevant. The best solution of 

cortical clusters showed distinct patterns of maturation and a spatial distribution in notable 

agreement with benchmark post mortem studies of sub-cortical white matter myelination.  

2 Material and Methods 

2.1 MRI data 

2.1.1 Image acquisition 

The study was conducted in 17 healthy term-born infants (10 boys, 7 girls), aged between 3 

and 21 weeks (maturational age, corrected for gestational age at birth, with a reference 

gestational period of 41 weeks) (Supplementary Figure 1a). The protocol was approved by 

the Institutional Ethical Committee, and all parents gave written informed consent. Infants 

were spontaneously asleep along the imaging protocol, thus making the MRI acquisitions 

possible. Particular precautions were taken to minimize noise exposure by using customized 

headphones and covering the magnet tunnel with a special noise protection foam.  

Acquisitions were performed on a 3T-MRI Trio system (Siemens HealthCare, Erlangen, 

Germany) using a 32-channel head coil. Sequences dedicated to infants were used to 

maintain reduced acquisition times. For parametric mappings (T1 and T2 relaxometry, DTI), 

spin-echo EPI sequences were acquired in less than 11min, with a 1.8mm isotropic spatial 

resolution, and using the y-axis as the phase-encoding direction as detailed in (Kulikova et 

al., 2015). For T1 and T2 mappings, 8 inversion times (TI: 250→2500ms) and 8 echo times 

(TE: 50→260ms) were used respectively. For DTI, 30 diffusion gradient orientations were 

used at b=700s.mm-2 (Dubois et al., 2016b). Regarding anatomy, T2-weighted images (T2w) 

were acquired with a fast-spin echo sequence providing a high spatial resolution of 

1x1x1.1mm3 (Kabdebon et al., 2014) (Figure 1a). 

2.1.2 Processing of anatomical images  

As detailed below, anatomical images were used to delineate the cortical ribbons which are 

the purpose of this study (Paragraph 2.2.1), and to perform an inter-subject registration 

required by the group analysis (Paragraph 2.2.1). Images were semi-automatically processed 

using BrainVISA software (http://brainvisa.info/web/index.html, (Cointepas et al., 2001)), 

with a Morphologist-like pipeline adapted to infant T2-w MRI (Fischer et al., 2012; Leroy et 

al., 2011b). Briefly, this pipeline allows for the segmentation of grey and white matters (GM 

and WM respectively) through histogram analyses and morphological operations applied to 

bias-corrected T2-w images. Interactive manual corrections were performed for each infant, 

http://brainvisa.info/web/index.html
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sequentially by two operators (JL and JD), in regions displaying low contrast between cortex 

and WM because of ongoing myelination (mainly in primary sensorimotor regions, like 

around the central sulcus and the calcarine scissure). 3D reconstructions of inner and outer 

cortical surfaces were generated from these segmentations (Dubois et al., 2016a), and we 

computed hemispheric brain volume, cortical surface and sulcation index (Dubois et al., 

2018). To perform inter-subject registration (Paragraph 2.2.1), cortical sulci were further 

extracted (Mangin et al., 2004) and semi-automatically labelled using a machine learning 

approach (Perrot et al., 2011). 

2.1.3 Processing of EPI images  

Regarding the EPI images, motion-related artifacts were corrected both within each volume 

and across volumes, as detailed in (Dubois et al., 2014b). T1, T2 and DTI parameters (focusing 

on fractional anisotropy FA and axial diffusivity λ//) were estimated in each voxel of semi-

automated extracted brains using the Connectomist and Relaxometrist toolboxes (Duclap et 

al., 2012; Kulikova et al., 2015). CSF was automatically removed from these parametric maps 

using a histogram analysis (threshold fixed at Q3+1.5*IQR, with Q3, the 3rd quartile of the 

range of parameter values, and IQR, the interquartile range, i.e. the difference between the 

3rd and the 1st quartiles) (Figure 2). 

When comparing anatomical images and parametric maps (Paragraph 2.2.1), an important 

difficulty was related to the distortions in the latter maps, induced by magnetic field 

inhomogeneities all along the phase-encoding direction and by large differences in magnetic 

susceptibility close to the interfaces between air, skull and brain such as the occipital and 

frontal parts (Greve and Fischl, 2009). Precise correction of these distortions was required 

to reliably study the cortical ribbon (Paragraph 2.2.1). Because of limited acquisition time in 

unsedated infants, we could not apply the common approach used to correct the geometrical 

deformations observed on EPI images, based on field map calibration (Jezzard, 2012) (such 

field maps were not acquired because of time constraints). Here, we directly registered 

distorted T1, T2 and λ// maps onto undistorted anatomical images for each infant, since they 

showed better tissue contrasts than the raw EPI images. Parametric maps were 

independently aligned, one after the other, on undistorted anatomical T2w images as 

proposed in (Bhushan et al., 2012; Huang et al., 2008; Lebenberg et al., 2015). The 

transformation estimated on λ// map was also applied to FA map, obtained from the same 

DTI acquisition.  

All maps and images were first masked to extract the brain, by excluding subarachnoid CSF. 

A global rigid transformation based on mutual information (MI) was estimated between each 

parametric map and T2w images. An elastic deformation, based on cubic B-splines and using 

MI as a similarity criterion, was then estimated to locally improve the correction (Rueckert 

et al., 1999). This algorithm uses coarse-to-fine uniform 3D grids of control points to estimate 
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the registration locally. Adult brain studies based on a similar approach often restricted the 

deformation of EPI images along the phase-encoding direction, where geometrical 

distortions appear due to inhomogeneities related to frontal sinuses and the accumulating 

dephasing along EPI read echotrains (Bhushan et al., 2012). Here, a supplementary difficulty 

came from the fact that distortions appeared in several directions because the baby's head 

was not perfectly aligned with the MR scanner axes. Moreover, the infant brain is often not 

perfectly centered within the skull: the distance between brain and skull varies across 

regions, e.g. it is very thin in occipital regions (Erreur ! Source du renvoi introuvable.a and 

(Kabdebon et al., 2014)). The elastic deformation was consequently estimated in all 

directions. A quantitative evaluation of the distortion correction was performed in 4 infants 

with regularly-spaced ages (3, 6, 13 and 19 weeks) using manual landmarks delineated on 

parametric maps before and after the non-linear registration, at the level of frontal and 

occipital lobes and on the lateral ventricles. Geometric Chamfer distances were computed 

between these landmarks and similar marks pinned on anatomical T2w images.  

Figure 1: Correction of geometric distortions in parametric maps. T2w-MRI of a 6 week-old 

infant is presented with (a) and without the skull (b). The yellow arrows point to the direct 

contact between cerebral tissues and skull (no CSF). The linearly registered T1 map (c: with 

superimposition of a homogeneous grid) shows important geometrical distortions (red 

circles), that are mostly corrected in the non-linearly registered T1 map (d: note the large 

deformations of the grid in frontal and occipital regions, showing the local corrections of 

distortions). Mean Chamfer distances and standard-deviations were computed on 4 infants 

(e), between landmarks delineated on T2w-MRI and T1 (resp. T2 and λ//) maps before (red 

cross) and after (green circle) the non-linear registration. Distances reached less than a 

millimeter after the registration step. 
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2.2 Univariate analysis of parametric maps 

As detailed in the next two sections, properties were first evaluated for each subject based 

on T1, T2 and λ// parameters, focusing on an estimate of the cortical ribbon that was 

extracted from both T2w images and parametric maps (Paragraph 2.2.1). In a second step, 

analyses were performed over the infant group (Paragraph 2.2.2). 

2.2.1 Analysis of individual images  

The cortical ribbon is very thin in the developing brain (Li et al., 2015; Lyall et al., 2015; Meng 

et al., 2017). Here it was identified in each infant using a 2-step procedure. The cortex 

segmentation resulting from T2w images was first dilated (morphological radius of 1.1mm) 

to compensate for residual mismatch between parametric maps and T2w images. The FA 

map was secondly used to select only cortical voxels, corresponding to values below a 

threshold experimentally fixed for each infant (between 0.18 and 0.25 with a median value 

equal to 0.20) (Figure 2a,b). 

For visualization purposes, we aimed to display T1, T2 and λ// values in each point of the 

inner cortical surface for each infant. We identified and projected reliable measures in the 

following way, by screening values of the cortical ribbon within a cylinder perpendicular and  

on either side of the apparent boundary between cortex and white matter (total height = 4 

voxels). Since λ// values are lower in the cortex than in the underlying WM at any stage of 

maturation (Dubois et al., 2014a) (Figure 2e), we considered the minimal λ// value over the 
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cylinder. This strategy was more complex for T1 and T2 since the cortex shows lower T1 and 

T2 values than the underlying WM in immature regions, while the reverse is true in mature 

regions (Dubois et al., 2014a) (Figure 2c,d) (this pattern of changes in the developing brain 

leads to the contrast inversion observed in T1w and T2w images during the first post-natal 

year). To project T1 and T2 values on the cortical surface in the same way for all infants and 

for all cortical regions regardless of their maturation, we thus computed mean values over 

the cylinder intersecting the cortical ribbon. Although a small proportion of WM values might 

have been included in addition to cortical values, we expected that these maturational 

markers change locally in a synchronous and coherent way (Croteau-Chonka et al., 2016; 

Friedrichs-Maeder et al., 2017).  

Figure 2: Anatomical images and parametric maps. Data are shown for 4 infants with 
regularly-spaced ages (3, 6, 13 and 19 weeks). Cortical ribbons are represented on 
anatomical images (a) and FA maps (b) (red contours). For T1 (c), T2 (d) and λ// (e) maps, 
values were also projected on the inner cortical surface (left hemisphere shown). Note that 
the maturational asynchrony across cortical regions was hardly visible for the youngest 
infant on T1 map, and for the oldest infant on T2 and λ// maps. 
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2.2.2 Analysis at the group level 

We further aimed to compute averaged representations of maturational patterns over the 

infants group, which required inter-subject registration. To accurately align individual 

cortical ribbons, we used a 2-step registration strategy whose efficiency has been 

demonstrated on different databases, including infants data (Lebenberg et al., in revision). 

The first step was based on DISCO (for DIffeomorphic Sulcal-based Cortical) (Auzias et al., 

2011), a toolbox that will soon be available in the BrainVISA software 

(http://brainvisa.info/web/index.html, (Cointepas et al., 2001)). It consisted of 1) creating 

an empirical template by linearly registering sulcal imprints from each subject, 2) registering 

each individual sulcal imprint onto the resulting template using smooth invertible 

deformations, and 3) updating the sulcal template (steps 2 and 3 are iterated until 

convergence). The second step used the DARTEL algorithm (Ashburner, 2007) (tool available 

in the SPM software) which improved the alignment of cortical segmentations across 

individuals. 

To drive the DISCO registration, we chose thirteen cortical sulci, easily recognizable in infant 

brains and covering the overall surface: the central sulcus, the posterior lateral fissure, sulci 

in the frontal lobe (superior and inferior frontal sulci, inferior and intermediate precentral 

sulci, olfactory sulcus), in the parietal lobe (intraparietal sulcus), in the temporal lobe 

(superior temporal sulcus, collateral fissure), and on the medial surface (calloso-marginal 

anterior and posterior fissures, parieto-occipital fissure) (Figure 3a,b). The cortical 

segmentations provided by the Baby-Morphologist pipeline (see Paragraph 2.1.2) were 

considered as inputs for the DARTEL algorithm. All transformations were estimated using 

MATLAB (R2014a, The Mathworks, Inc.) and SPM12 software with default parameters.  

Figure 3: Inter-subject registration. The DISCO algorithm used 13 sulci to drive the 
registration (a, b), and it provided a correct alignment of sulci (c, d). Improved by the DARTEL 
algorithm, the cortical superimposition was robust, as observed on anatomical images and 
illustrated for 4 infants with regularly-spaced ages (3, 6, 13 and 19 weeks) (e) (red cross). 

http://brainvisa.info/web/index.html
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Based on this 2-step registration, we computed average parametric maps over the infants 

group. We first computed individual quantitative parameters (T1, T2 and λ//) within the 

cortical ribbon: in order not to combine residual registration errors relative to distortions 

(intra-subject level) and spatial alignment (inter-subject level), we considered values that 

were projected on the cortical surface with the cylinder-based approach (mean values for T1 

and T2, minimal values for λ//), and we projected these values back to the cortical ribbon 

based on the closest surface values to each voxel. Second, the DISCO+DARTEL deformations 

were applied to those parametric segmentations. Third, average maps were computed over 

the group by only selecting voxels with non-null values in at least 50% of infants. For 



13/38 
 

visualization purposes, these maps are shown on the inner cortical surface of a 6-week old 

infant.  

2.3 Clustering analysis of multi-parametric maps 

In parallel to the univariate analysis, we performed a clustering analysis over the infants 

group based on T1, T2 and λ// parameters to take advantage of their complementarity 

regarding microstructural properties. This multi-parametric analysis was conducted on 

parametric maps corrected for geometric distortions and over all voxels of all cortical ribbons 

(cf. Paragraph 2.2.1), regardless of the infants’ age and the brain region localization (the 

inter-subject registration was not required in this analysis).  A Gaussian Mixture Models 

(GMM) algorithm was used in our experiments; in the absence of priors, it solely maximizes 

the likelihood, and does not bias the cluster means and sizes. 

2.3.1 Clustering algorithm settings  

We used the GMM clustering algorithm available in the scikit-learn Python library 

(http://scikit-learn.org/stable/index.html, v.0.18). T1, T2 and λ// maps were first scaled in 

intensity to normalize the default weight of each quantitative parameter in the clustering 

process. A combination of these parameters was then used: each voxel x to be clustered was 

represented by a vector with one to three dimensions V(x)=(.T1(x), .T2(x), .λ//(x)) where 

,  and  were adjustable weightings. Since k-means algorithm is known to provide 

reasonably good initialization for GMMs, we determined the best k-means initialization 

among 10 tests for a fixed number of clusters k, by minimizing the inertia of the cluster 

representation. As GMM algorithm minimizes the negative log-likelihood of the data under 

the mixture model, we computed it after 10 iterations of an Expectation-Maximization 

algorithm (Dempster et al., 1977). To estimate the features of each cluster (in terms of T1, 

T2, // depending on the input combination) while saving computation time, the GMM 

clustering was trained based on 10% of all input data, randomly selected over all infants to 

provide a representative sampling. The resulting cluster features were further applied to all 

voxels in order to provide maps of clusters in all infants. We tested the influence of the 

following settings:  

• the covariance matrix model to separate clusters from each other: 4 models were 

available (diagonal, full, spherical and tied). 

• the input parameters based on T1, T2 and λ//: we tested different combinations, 

including one to three parameters. 

• the number of clusters: we arbitrarily assumed that 3 to 10 clusters would be relevant 

to describe the maturation asynchrony that is expected across infants and across 

cortical regions given the developmental period (considering a higher number may 

trigger an over-parcellation with several non-significant clusters).  

http://scikit-learn.org/stable/index.html


14/38 
 

As each T1, T2 and λ// parameters constituted a smooth continuum across voxels, across 

cortical regions and across infants with different ages, the commonly used BIC criterion 

(Schwarz, 1978) was not relevant to determine the optimal model and the number of 

clusters. So we computed the Silhouette coefficient (Rousseeuw, 1987) defined as the 

normalized difference between the minimal inter-cluster dissimilarity (minimal dissimilarity 

distance across all vectors V(x) from different clusters) and the mean intra-cluster 

dissimilarity (average dissimilarity distance across all V(x) from the same cluster). This score 

ranges between -1 and 1: the higher this score is, the better the assignment of voxels to 

clusters; a negative score implies a misclassification. The volume of each cluster relatively to 

others as well as the percentage of negative Silhouette coefficients were also estimated. We 

computed these different scores to sequentially select: 1) the model for the covariance matrix 

(considering the whole combination of parameters (T1, T2, λ//) and 3 to 10 clusters), 2) the 

combination of input parameters (considering the best model and 3 to 10 clusters), and 3) 

the number of clusters (considering the best model and the best combination of parameters). 

2.3.2 Clusters description in relation to cortical maturation  

Once the clustering was run over all cortical voxels of all infants with the optimal settings, we 

interpreted the cluster results in terms of microstructural properties and then cortical 

maturation. Clusters were labeled a posteriori based on the averaging of quantitative 

parameters used for clustering over each cluster and for each infant. The intra-cluster 

homogeneity over the group was assessed using the quartile coefficient of dispersion (ratio 

between the difference of the third and the first quartiles, and their sum). In order to make 

the link between microstructural and maturational properties, we further evaluated the 

relative evolution of clusters over the developmental period, expecting that the youngest 

(resp. the oldest) infants should mostly display clusters representing the most immature 

(resp. mature) regions.  

To show the cluster distribution and the cortical parcellation in each infant, we used a 

representation on the inflated inner cortical surface by considering the majority label 

measured locally over the cortical ribbon (as previously, based on a cylinder perpendicular 

to the surface). This enabled us to qualitatively describe the maturational asynchrony across 

brain regions and along ages. Similarly, to average parametric maps, we computed an average 

map of the cluster distribution over the infant group, based on the DISCO+DARTEL 

registration and by taking into account cortical voxels with non-null values for 50% of infants 

(see Paragraph 2.2.2). 
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3 Results 

3.1 Univariate analysis of cortical microstructure and maturation 

3.1.1 Validation of intra-subject and inter-subject registrations  

For each infant, geometric distortions in parametric maps were mainly visible in the frontal 

and occipital regions, especially for the T1 map (Erreur ! Source du renvoi introuvable.). 

The proposed non-linear approach of registration correctly amended these distortions, as 

assessed by visual inspections and quantitative evaluations (Erreur ! Source du renvoi 

introuvable.). After registration, differences between T1, T2, λ// maps and T2w images were 

less than the spatial resolution of T2w images (1mm), and the best improvements were 

observed at the level of peripheral landmarks, confirming previous visual observations. In 

each infant, we could further identify a suitable cortical ribbon based on T2w images and FA 

maps (see red contours in Erreur ! Source du renvoi introuvable.a,b). 

At the group level, the proposed approach based on DISCO+DARTEL enabled us to register 

anatomical images over all infants, in terms of cortical sulci (Figure 3c,d) and cortical ribbons 

(Figure 3e). 

3.1.2 Analysis of quantitative parameters over the cortical ribbon 

For each quantitative parameter, we first observed differences across cortical regions at the 

individual level (Figure 2c-e). Basically, T1, T2 and λ// values were higher in the youngest 

than in the oldest infants, which confirmed that they depend on the maturation degree. 

Values were also higher in the frontal, lateral occipital and temporal lobes than in primary 

cortices (around the central sulcus, calcarine scissure and Heschl gyrus). Nevertheless, the 

intra-subject contrast, illustrating the microstructural differences across cortical regions at 

the individual level, was hardly visible even when the scales were tuned for each infant (e.g. 

in Figure 2: for the youngest infant on T1 map and for the oldest on T2 and λ// maps).  

These spatial differences were better highlighted at the group level, based on averaged 

parametric maps over all infants (Figure 4). Although we did not take into account that 

parameters also vary across regions at the mature stage in the adult brain, these individual 

and group results suggested an asynchrony of maturation across cortical regions, with 

advanced maturation of primary cortices compared with associative cortices. Nevertheless, 

we could not disentangle which parameter better described the maturation process, since 

each of T1, T2 and λ// maps provided slightly different information. The global distribution 

of mature vs immature cortical regions was equivalent in the three maps, but some 

substantial mismatches were observed locally (see arrows in Figure 4). For instance, the 

inferior temporal region showed high T1 and T2 values but intermediate λ// values. Similarly, 

the precentral region showed high T2 values but intermediate T1 and λ// values. This 
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observation was rather consistent with a recent high-resolution mapping of the adult brain, 

highlighting that the temporal region has specific properties, with low myelin content but 

low values of mean diffusivity (Fukutomi et al., 2018). As a whole, our results might suggest 

that T1 mainly reflects the myelin content whereas axial diffusivity rather provides 

microstructural information on neuronal cytoarchitecture. 

Also, note that the distribution of parametric values differed in some aspects (right column 

in Figure 4). For instance, while the T2 and λ// distributions were quite symmetrical (with 

absolute values of skewness measure very close to zero), the T1 distribution was clearly left-

skewed (with a higher proportion of long than short T1 values, skewness = -0.42). On the 

other hand, the λ// distribution looked like to a normal distribution, whereas the T1 and T2 

distributions were rather platykurtic (meaning that extreme values were less frequent). 

Altogether, these observations suggested that these quantitative parameters provide 

different information on cortical microstructure although the overall trend across regions is 

rather similar. 

Figure 4: Average maps of quantitative parameters over the infants group. For T1 (a), T2 (b) 

and λ// (c) parameters, average 2D maps were computed within the cortical ribbon and over 

the 17 infants after the DISCO+DARTEL registration. They were further projected in 3D on 

the left cortical surface of a 6w-old infant. The distribution of parametric values over these 

maps is plotted on the right column, highlighting that each modality shows a different 

distribution. Gray arrows point out some substantial mismatches across parametric maps 

(temporal and precentral regions respectively). 
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3.2 Clustering analysis of cortical maturation 

3.2.1 GMM settings 

We performed clustering analyses with the GMM algorithm considering all voxels of the 

cortical ribbons for the 17 infants altogether, and we tested different settings. Considering 

the {T1-T2-λ//} combination as input data, Silhouette coefficients suggested that the 

“spherical” model outperformed other models regardless of the number of clusters (it 

showed higher mean value and lower standard deviation across different experiments; 

Figure 5a). Fixing this model as covariance matrix, we further evaluated the effect of the 

parameter combination. Silhouette coefficients were the highest for single parameters {λ//}, 

{T1}, {T2}, followed successively by combinations of 2 parameters {T1- λ//} and {T1-T2}, then 

{T2- λ//}, and finally the combination of 3 parameters {T1-T2-λ//} (Figure 5b). Nevertheless, 

when we computed the normalized volumes to evaluate the cluster balance (Figure 5c), we 

observed that analyses of single parameters, as well as the combinations {T2- λ//} and {T1-

T2}, provided clusters with higher volume variability than the combinations {T1- λ//} and 

{T1-T2-λ//}, meaning that one cluster was over represented compared to others for some 

infants. As a whole, the input combination {T1- λ//} showed good Silhouette coefficient and 

low variability in the cluster normalized volumes. To further analyze the potential of this 

combination, we tested different weightings attributed to T1 and λ//. The weighted 

combination {T1- ¼ λ//} appeared as the best compromise based on a similar reasoning with 

Silhouette coefficients and variability in the cluster volumes (Supplementary Figure 2). 

Figure 5: Selection of GMM settings. Silhouette coefficients were computed for a) different 

covariance matrices (considering the {T1-T2-λ//} combination as input, and 3 to 10 clusters) 

and b) different input combinations (considering the “spherical” model as covariance matrix, 

and 3 to 10 clusters). Dotted lines represent mean values of each series. c) Standard 

deviations (SD) of the clusters normalized volumes (Vn) were also computed for the latter 

settings. 
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Once the model setting and the combination were fixed, we evaluated the impact of the 

number of clusters (Supplementary Figure 3). Based on Silhouette coefficients, we first 

observed that the setting with 4 clusters was not reliable as it led to obvious voxel mislabeling 

(one cluster showed a high proportion of negative Silhouette coefficients). Besides, no 

relevant information was added when considering 6 or more clusters (in those cases, at least 

one cluster was under represented in terms of volume, with less than 2% of the total volume). 

For the two remaining numbers of clusters, we compared the cluster balance (i.e. the 

variability in the cluster normalized volumes) according to the infants’ age (Supplementary 

Figure 3b), and we finally selected the analysis with 5 rather than 3 clusters, as it provided 

clusters with more homogeneous volumes across all infants.  

3.2.2 Differences in microstructure and asynchrony of maturation across cortical 

regions 

Once the clusters were identified based on the previous optimal settings (spherical model, 

combination {T1- ¼ λ//}, 5 clusters), we labeled them in terms of microstructural properties, 

with the assumption that both T1 and λ// parameters should decrease with the tissue 

myelination and the cytoarchitectural complexity. When T1 and λ// values were averaged 

over each cluster for each infant (Figure 6a-b), the inter-cluster separation was clear 

(particularly for T1), and the intra-cluster homogeneity was good, leading to an easy ordering 

of the clusters in terms of microstructural stages (1 to 5). To interpret these stages in terms 
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of maturation, we further measured age-related changes in the normalized volumes of 

clusters (Figure 6c). We showed that, over the 5 clusters, the first two had immature patterns 

(age-related decreases), the last two had mature patterns (age-related increases), and the 

middle one had an intermediate pattern (inverse U-shape). This suggested that this 

clustering based on microstructural properties could be interpreted in terms of maturation 

over the infants group. 

Figure 6: Characterization of the 5 clusters properties for the combination {T1- ¼ λ//}. The 

average of T1 (a) and λ// (b) parameters over each individual cluster (1 point by infant) 

enabled us to order the clusters in terms of microstructural stages (decreasing values). 

Quartile coefficients of dispersion (Qc) suggested a good intra-cluster homogeneity. c) 

Normalized volumes (%) were computed for each cluster as a function of the infants’ age (in 

weeks, dotted lines represent a 3-order polynomial fit for each cluster), linking 

microstructural and maturational stages. 

 

The spatial distribution of the 5 clusters clearly illustrated maturation differences across 

cortical regions in each infant, and also age-related progression across infants (Figure 7 and 

Supplementary Figure 4 for the 2D maps). Basically, primary sensorimotor regions were the 

most mature regions in all infants, around the calcarine fissure in primary visual cortex V1 

[1], Heschl gyrus in primary auditory cortex A1 [2], around the central sulcus in primary 

somatosensory cortex S1 [3] and primary motor cortex M1 [4]. Surrounding regions such as 
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the internal occipital region [5] or the planum temporale [6] also seemed to mature early on. 

In some infants, a temporo-occipital region that might correspond to the motion-related MT 

area appeared as relatively mature [7]. In some of the oldest infants, the superior parietal 

lobule [8] reached a high maturation level, at least higher than the close supramarginal and 

angular regions [9]. In almost all infants, associative regions such as the superior temporal 

gyrus [10] or the inferior frontal region [11] were immature in comparison with previous 

regions, the least mature being the middle pre-frontal [12], and the superior frontal [13] 

regions. On the ventral part of the brain, the fusiform region [14] seemed to have an 

intermediate maturation, in-between the advanced maturation of occipital and 

parahippocampic regions and the delayed maturation of the inferior temporal lobe and pole. 

On the medial surface, the middle part of the cingulate gyrus [15] seemed to mature before 

its anterior part [16].  

Although all these observations concerned most of the infants and were relatively coherent 

spatially over the developmental period, we observed some inter-individual variability that 

was not related to age. Indeed, spatial patterns of the cluster distribution varied across 

infants of similar ages. Note for instance in Figure 7 that 2 infants (highlighted in red) might 

have an advanced maturation, whereas 2 infants (highlighted in blue) might have a delayed 

maturation. This suggested that each infant brain might follow its own maturation trajectory. 

Although the small group size prevented us to statistically assess the influence of different 

subject factors, inter-individual variability in cortical maturation did not seem to be related 

to sex and gestational age at birth, but might partially relate to other morphometric 

parameters of brain growth and cortical folding (see Supplementary Figure 1). 

Figure 7: 3D individual distributions of the 5 maturational clusters for all infants. The 

majority labels were measured over a cylinder perpendicular to individual cortical surfaces 

(inflated surfaces are here shown for visualization purposes). Left (a, c) and right (b, d) maps 

are shown with lateral (a, b) and medial (c, d) views. Note that the clusters numbering is the 

same across infants. Some anatomical regions are outlined: 1) primary visual cortex V1 

around the calcarine fissure, 2) primary auditory cortex A1 in the Heschl gyrus, 3) primary 

somatosensory cortex S1 around the central sulcus, 4) primary motor cortex M1, 5) internal 

occipital region, 6) planum temporal region, 7) motion-related of the middle temporal area, 

8) superior parietal gyrus, 9) supramarginal and angular regions, 10) superior temporal 

gyrus, 11) inferior frontal gyrus, 12) middle pre-frontal gyrus, 13) superior pre-frontal gyrus, 

14) fusiform gyrus, 15) middle part of the cingulate gyrus, 16) anterior part of the cingulate 

gyrus. Doted red (resp. blue) boxes highlight infants that might have an advanced (resp. 

delayed) maturation compared to infants of similar age.  
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Finally, the average map of the cluster spatial distribution, computed over the infants group 

after the DISCO+DARTEL registration, summarized these patterns of maturation (Figure 8). 

These representations are rather similar to the illustrations provided by Pr Flechsig about a 

century ago (Flechsig, 1920), displaying the maturation ordering of cortical regions based on 

post mortem myelin staining of sub-cortical white matter.  

Figure 8: Average clustering map over the infants group. Average 2D map was computed 
within the cortical ribbon and over the 17 infants after the DISCO+DARTEL registration. For 
visualization purposes, it was projected in 3D on the left cortical surface of a 6w-old infant.  

 

4 Discussion 

In this study, we mapped the cortical microstructure with in vivo MRI in infants between 1 

and 5 months of age. This topic has not been much addressed so far compared with the largely 

studied maturation of the white matter (see (Dubois et al., 2014a) for a review), due to 

constraints inherent to the cortex immaturity and morphology (small thickness but complex 

folding patterns). We analyzed multiple parameters over the whole cortex, which enabled us 

to identify clusters with different microstructural properties, and to characterize the 

temporal profiles and spatial patterns of maturation across cortical regions both at the intra-

individual and group levels. 

4.1 Mapping the cortical maturation in infants with MRI: methodological 

considerations on univariate and multi-parametric approaches 

So far, only a few studies have evaluated the cortical microstructure in the newborn and 

infant brain. Here, we used quantitative parameters that could be reliably compared across 

brain regions and across subjects without requiring spatial bias correction or signal 

normalization as it might be the case for T1w (Travis et al., 2014; Westlye et al., 2010) and 

T2w (Leroy et al., 2011a) intensity, or T1w/T2w ratio (Grydeland et al., 2013). Contrarily to 

derived parameters (e.g. myelin water fraction (Deoni et al., 2015), magnetic susceptibility 

(W. Li et al., 2014)), we focused on direct parameters that could be quantified in a short 

acquisition time: T1 (Deoni et al., 2015; Friedrichs-Maeder et al., 2017) and T2 relaxation 
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times, and DTI axial diffusivity //. This latter parameter was preferred to DTI anisotropy 

(Ball et al., 2013; McKinstry et al., 2002) or mean diffusivity (Grydeland et al., 2013; 

Friedrichs-Maeder et al., 2017) because it provided the best contrast between grey and white 

matter, and it could be specifically measured within the cortical ribbon, which displays 

minimal // values regardless of the maturational stage. The plausible microstructural 

significance of those parameters is discussed below in Section 4.2. Besides, whereas all 

previous studies were based on single parameters, we performed multi-parametric analyses 

in addition to univariate ones. 

To keep the acquisition time reasonable for spontaneously asleep infants, we used dedicated 

EPI sequences to acquire parametric maps (Poupon et al., 2010). A posteriori corrections of 

geometric distortions were thus required to measure those parameters within the cortical 

ribbon in a reliable way with anatomical T2w images as reference. T1 maps showed the 

highest distortions probably because the related sequence did not use parallel imaging. Our 

post-processing approach based on linear and non-linear registrations was successful to 

correct local distortions in all parametric maps, leading to residual distances below the 

spatial resolution of anatomical images. Although these results were satisfactory, alternative 

approaches based on readout-segmented EPI (Porter and Heidemann, 2009) or field maps 

(Jezzard, 2012) might be considered in the future to deal with such distortions.  

To reliably analyze the cortical microstructure, the next issue was to identify the cortical 

ribbon precisely on each parametric map and for each infant. This was particularly 

challenging given the small cortical thickness (expected to be less than 2mm in some regions) 

(Geng et al., 2017; Li et al., 2015; Lyall et al., 2015; Meng et al., 2017) and the spatial resolution 

of T1, T2 and // maps (1.8mm isotropic). Since we aimed not to miss cortical voxels due to 

residual local errors of registration, we used a semi-automatic procedure based on 

anatomical images and FA maps. While it was rather robust to exclude CSF voxels, the 

resulting cortical ribbon might have included some voxels of sub-cortical white matter. 

Nevertheless, we checked visually that the proportion of those voxels was small compared 

with the proportion of cortical voxels. Furthermore, adjacent tissues of cortex and white 

matter are expected to show related maturational patterns. Indeed, Flechsig’s maps on sub-

cortical white matter myelination are often interpreted in terms of cortical maturation. A 

recent study based on the myelin water fraction also showed strong correlations between 

cortical and white matter values (in 63 of 66 identified regions (Croteau-Chonka et al., 

2016)). Another study reported that the grey matter regions and the underlying WM 

connections have inter-related advancement of maturation (Friedrichs-Maeder et al., 2017). 

This suggests that inevitable small contamination by WM values in our study would not 

significantly change our results and interpretation of cortical maturation. 

To visualize single parameters on 3D cortical surfaces, we measured local values over a small 

cylinder screening the inner surface and intersecting the cortical ribbon, as proposed in a 
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previous study (Leroy et al, J. Neuroscience 2011). We did not consider the middle surface of 

the cortex as often done in adults and children studies because of the small cortical thickness 

in infants with variability across regions (Geng et al., 2017; Li et al., 2015; Lyall et al., 2015; 

Meng et al., 2017), the limited spatial resolution of parametric maps (1.8mm) and anatomical 

T2w images (1mm), and the residual spatial mismatches between the cortical segmentation 

and quantitative measures. Over the local cylinder, we computed either minimal values for 

//, or mean values for T1 and T2. The // approach might be more specific of cortical 

maturation than those based on T1 and T2, which might be slightly influenced by a small 

proportion of sub-cortical white matter voxels. Nevertheless, we expected the possible bias 

to be small, to the extent that both tissues are supposed to mature in a synchronous and 

coherent way. 

For all parameters, the whole-brain progression of cortical maturation across infants was 

observed as a global decrease with age. However, the differential microstructure across 

cortical regions (discussed below in Section 4.3) was much more visible over the infant group 

than at the individual level. In addition, we observed differences in the distribution of T1, T2 

and // values over the whole cortex and over the group, suggesting that each parameter 

differently reflects the cortical microstructure. Besides, the clustering approach benefitted 

from the complementarity of MRI parameters. While it was performed on volumes, the 3D 

visualization of the results on cortical surfaces was based on the identification of cluster 

majority labels. Although we did not take into account the parameters variability across 

regions at the mature stage in the adult brain (Fukutomi et al., 2018; Glasser et al., 2014; 

Sereno et al., 2013), we interpreted our findings in infants in terms of maturation as we 

observed age-related variations in each parameter and in each cluster volume. As a whole, 

this study enabled us to highlight the local maturation of cortical voxels, and to show the 

differential progression across cortical regions at both the individual and group levels. These 

successive observations supported the potential of a multi-parametric approach against 

univariate approaches.  

Its technical implementation consisted of a clustering analysis with a GMM algorithm using a 

k-means initialization and an Expectation-Maximization iterative process. While other 

clustering algorithms (e.g. k-means) might be tested in future studies, we chose the GMM 

algorithm because it is the main generative clustering model, making the testing of clustering 

quality and generalizability easier. Here, the covariance matrix model, the input data 

combination, and the number of clusters were selected sequentially using the Silhouette 

coefficient as a discriminant index, and the variability in the cluster volumes as a marker of 

under- or over-representation. Experiments showed that the clustering performances were 

optimized with the {T1- ¼ λ//} combination. This supported the multi-parametric approach 

against univariate ones, replicating our previous findings on white matter maturation 
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(Kulikova et al., 2015). Nevertheless, if only a single MRI parameter can be acquired, T1 

mapping might be preferred rather than DTI and T2, to assess the cortical maturation.  

With regard to the clustering analysis, selecting the optimal number of clusters might be 

problematic as it might influence the correct interpretation of results. Here we observed that 

the variability in cortical T1 and λ// parameters over this infant group was accurately 

characterized based on 5 clusters which showed three distinct patterns of microstructure 

and maturation: either immature (age-related decreases for 2 clusters), mature (age-related 

increases for 2 clusters), or intermediate (inverse U-shape for 1 cluster). These three 

patterns might still be detected with the 3-cluster setting, whereas their reliable distribution 

into 4 clusters might be problematic, perhaps resulting in the misclassification issue that we 

observed with this middle number. As a whole, we cannot exclude that different numbers of 

clusters might be relevant when considering other or broader developmental periods than 

early infancy.  

4.2 Microstructural and morphological correlates of cortical maturation  

Once methodological aspects were fixed, we identified 5 clusters of cortical voxels over the 

whole infant group, independently of both the infants’ age and the voxel localization, and we 

labeled them in terms of maturational stage. The clustering implementation implied that 

these clusters were characterized by distinct T1 and λ//. After averaging these parameters 

over each cluster and for each infant, we considered that the cluster maturational stage 

increased when T1 and λ// values decreased, given the expected maturation-related changes 

in these parameters. We further observed that the clusters normalized volumes varied over 

this developmental period, coherently with the labelling of maturational stages (i.e. the 

proportion of immature clusters decreased with the infants’ age, and vice versa for mature 

regions).  

MRI parameters are known to relate to several microstructural properties of the adult cortex, 

such as the neural, glial and fiber density, the intra-cortical myelination, the layers 

proportions, the columnar properties, and others. In the infant cortex, they also provide 

distinct and complementary information on both the maturation and microstructure. T1 

mainly provides information on the myelin content, as suggested in adults (Lutti et al., 2014; 

Sereno et al., 2013). Axial diffusivity λ// might rather provide microstructural information on 

neuronal cytoarchitecture and reflect the intense development of both dendritic arborization 

and synaptogenesis during infancy (Huttenlocher and Dabholkar, 1997), in the continuity of 

observations during the preterm period (Ball et al., 2013; McKinstry et al., 2002). These 

regional properties might be consistent throughout development, as our specific measures 

in the inferior temporal region (high T1 and T2 values but intermediate λ// values) agreed 

with a recent mapping of the adult brain (Fukutomi et al., 2018). Nevertheless, similarly to 

previous studies of white matter bundles (Dubois et al., 2014a; Kulikova et al., 2015), further 
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work is required in order to relate our results with the adult regions variability, and to test 

the hypothesis that regions with the highest myelination (Glasser et al., 2014) or the most 

complex microstructure (Fukutomi et al., 2018) at the mature stage are the first to mature 

and to display such properties throughout development (Flechsig, 1920). In our study, T2 

appeared less informative than T1 and λ// to characterize cortical differences over infants, 

either because T2 relies on the same mechanisms as T1 and λ//, or because the other 

determinants of T2 signal (e.g. iron content) do not change intensively over this age range. 

Although all parameters probably fluctuate radially within the cortical ribbon, it was not 

possible to distinguish cortical layers given the spatial resolution of parametric maps. In the 

future, imaging approaches at ultra-high field (e.g. 7T) might provide the mapping of finer-

grained features in the developing brain.  

In parallel to microstructural changes, the cortex also demonstrates intense growth and 

morphological development throughout infancy. The cortical volume increases mainly 

because of surface expansion (Gilmore et al., 2007, 2011; Hill et al., 2010; Knickmeyer et al., 

2008; Li et al., 2013; Makropoulos et al., 2016), in relation with the increasing folding 

complexity (Dubois et al., 2018; Kim et al., 2016; G. Li et al., 2014). Cortical thickness also 

consistently increases during the first post-natal year (Geng et al., 2017; Li et al., 2015; Lyall 

et al., 2015; Meng et al., 2017), with different patterns of growth than the cortical folding (Nie 

et al., 2014). We might thus wonder to what extent these morphological changes affect our 

microstructural observations. A previous study in children between 1 and 6 years old showed 

that the cortical maturation (measured with the myelin water fraction) is negatively 

correlated to cortical thickness in 16 of 66 identified regions (Croteau-Chonka et al., 2016). 

Given the spatial resolution of parametric maps (1.8mm isotropic), we cannot exclude that 

partial volume effects between cortex and white matter exist within the identified cortical 

ribbon. Some variations might further exist across regions, with a higher WM contamination 

in thinner than thicker cortices. Unfortunately, we could not address this issue practically 

since a reliable estimation of cortical thickness is highly challenging in infants given its low 

values (Geng et al., 2017; G. Li et al., 2014; Lyall et al., 2015; Meng et al., 2017) and because 

of the tissue contrast inversion on anatomical MRI (Walhovd et al., 2017). Besides, based on 

visual observations, our univariate and multi-parametric results did not seem to be related 

to the cortical surface curvature or to the folding patterns. This convinced us about the 

reliability of our approach while we were surprised by previous T1 observations highlighting 

a mismatch in maturation between the main sulci and surrounding regions (Deoni et al., 

2015). In brief, while the identified cortical clusters relied on complementary 

microstructural maturation mechanisms (intra-cortical myelination, neuronal 

differentiation, dendritic arborization and synaptic growth…), they seemed to be weakly 

affected by the macroscopic changes related to cortical morphology throughout infancy.  
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4.3 Mapping the spatial progression of cortical maturation throughout infancy with 

multi-parametric MRI 

Our original clustering approach allowed us to observe differences across cortical regions 

both at the individual and group levels, with maturation proceeding first in primary sensori-

motor areas, then in adjacent unimodal associative cortices, and finally in higher-order 

associative regions. This pattern of progression strongly  agreed with benchmark post 

mortem studies (Brody et al., 1987; Flechsig, 1920; Kinney et al., 1988) which showed high 

variability in fiber myelination within and across fiber systems, with a few discrepancies in 

some regions (e.g. in the frontal and temporal lobes). In fact, the time-related sequence of 

myelination mechanisms (i.e. the onset, the rate, the interval of progression) differs across 

functional regions during the first two post-natal years (Brody et al., 1987; Kinney et al., 

1988), and including all these relevant factors is required to highlight complex myelination 

patterns. Considering complementary MRI parameters measured at different ages might be 

a first step in this direction. The maturational clusters that we observed were also consistent 

with patterns of cortical synaptogenesis (Huttenlocher and Dabholkar, 1997) and with 

regional variations of the basilar dendritic complexity of lamina V pyramidal neurons 

showing that the developmental time course from birth to adulthood is more protracted for 

supramodal (BA10) than for primary or unimodal cortical areas (BA4, BA3-1-2, BA18) 

(Travis et al., 2005). In addition to major regional differences, we could also show local 

discontinuities for specific regions such as the MT area for some infants.  

Apart from these regional differences observed both in each infant and over the group, we 

highlighted substantial inter-individual variability in the maturational patterns. Although the 

cortical maturation mainly depends on age, some infants showed delayed or advanced brain 

maturation in comparison with other babies of similar ages. We suspected that these 

differences might be partially related to global inter-individual variability in brain growth 

and development, independently of sex or gestational age at birth. In particular, complex 

patterns of maturation across functional regions (Brody et al., 1987; Kinney et al., 1988) 

interacting with the variable behavioral acquisitions might contribute to these differences 

across infants. Nevertheless we cannot exclude that an incorrect estimation of the conception 

day (and so of the gestational length) might be responsible for part of these discrepancies.  

While our results suggested the potential of studying the cortical maturation in vivo, we could 

not validate them quantitatively since benchmarks on the whole brain maturation are still 

lacking in infants over this developmental period. This first study should thus be confirmed 

by future studies on other cohorts, notably with longitudinal imaging of infants over the first 

post-natal year. One interesting aspect to be tested would be whether the progression of 

cortical maturation is related to the growth in cortical surface throughout infancy (Hill et al., 

2010). In fact, we might expect that the cortex at birth is less mature in high-expansion 
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regions than in low-expansion regions since the cortical growth is related to dendritic 

arborization and myelination that spread the cortical columns. 

5 Conclusion 

In this study, we characterized the differential microstructure and the asynchronous 

maturation of cortical regions in vivo, using multi-parametric MRI (T1, T2 and λ//) in infants 

over the first post-natal months. The main contributions relied on 1) the whole-brain analysis 

opposed to a priori spatially localized regions, and 2) the clustering of complementary 

parameters that are impacted by different maturational mechanisms such as intra-cortical 

myelination and dendritic arborization. In future studies, this approach might be extended to 

other developmental periods, and it might complement previous approaches uniquely based 

on cortical thickness. It also seems appropriate to evaluate the in vivo relationship between 

cortical maturation and the development of functional systems and behavioral capacities 

throughout infancy, as recent studies in children postulated microstructural bases of 

cognitive performances such as face recognition (Gomez et al., 2017). 

6 Supplementary Figures 

Supplementary Figure 1: Infants’ characteristics. a) Post-natal ages are represented as a 

function of maturational ages (= gestational age at birth + post-natal age, corrected for a 

reference gestational period of 41 weeks). The dotted black line shows the identity function. 

Boys and girls are symbolized by crosses and circles respectively. Averaged hemispheric 

brain volume (b), cortical surface (c) and sulcation index (d) are plotted as a function of 

infants’ age as described in (Dubois et al., 2018). Dotted black lines represent linear fits for 

each measure. Red (resp. blue) marks highlight infants that might have an advanced (resp. 

delayed) cortical maturation according to the clustering results illustrated in Figure 7.  



29/38 
 

 

Supplementary Figure 2: Selection of T1 and λ// weightings for the clustering analysis. a) 

Silhouette coefficients were computed for different T1 and λ// weighted inputs (considering 

3 to 10 clusters). Dotted lines represent mean values of each series. b) Standard deviations 

(SD) of the clusters normalized volumes (Vn) were also computed for these different 

weighted inputs. Similarly to the reasoning related to Figure 5, the combination {T1- ¼ λ//} 

appeared as the most relevant across the different cluster numbers, as it showed on average 

the highest Silhouette coefficient and the lowest volume variability across clusters. 
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Supplementary Figure 3: Selection of the number of clusters for the optimized setting with 

“spherical” model as covariance matrix, and the weighted combination {T1- ¼λ//} 

(optimization resulting from Figure 5 and Supplementary Figure 2). a) Silhouette coefficients 

(s) are plotted for various numbers of clusters. Blue dotted lines represent the average 

Silhouette coefficients. For the setting with 4 clusters, the black ellipsoid outlines a cluster 

with a high proportion of negative Silhouette coefficients meaning that many voxels of this 

cluster (63%) were mislabeled. For settings with 6 clusters or more, black asterisks highlight 

clusters representing less than 2% of the total volume. According to these plots, only settings 

with 3 and 5 clusters seemed to be relevant. b) Standard deviations (SD) of the clusters 

normalized volumes (Vn) are shown as a function of the infants’ age for 3 and 5 clusters. The 

variability is lower for this latter number, suggesting its higher relevance.  
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Supplementary Figure 4: 2D individual maps for the 5 clusters of maturation. The 

maturational differences across cortical regions are clearly visible in each infant, as well as 

the age-related progression across infants observed in 3D (Figure 7 and 8).  
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