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Abstract Closed-form expressions for generalized entropy rates of Markov chains
are obtained through pertinent averaging. First, the rates are expressed in terms
of Perron-Frobenius eigenvalues of perturbations of the transition matrices. This
leads to a classification of generalized entropy functionals into five exclusive types.
Then, a weighted expression is obtained in which the associated Perron-Frobenius
eigenvectors play the same role as the stationary distribution in the well-known
weighted expression of Shannon entropy rate. Finally, all terms are shown to bear
a meaning in terms of dynamics of an auxiliary absorbing Markov chain through
the notion of quasi-limit distribution.
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1 Introduction

The concept of entropy was introduced in probability theory in [29] by defining

S(m) = −
∑

i∈E

mi logmi, (1)

with the convention 0 log 0 = 0, for any distribution m taking values in a set E,
either finite or denumerable up to convergence restrictions. Apart from information
theory to which it gave birth, entropy is an essential tool in all scientific fields
involving probability measures; see e.g., [6]. Shannon’s original entropy naturally
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generalizes to various entropy functionals, such as Rényi’s, Tsallis’, etc., introduced
in the literature for a better fit to complex systems. Most of them belong to the
class of (h, ϕ)-entropy functionals Sh(z),ϕ(x), defined by

Sh(z),ϕ(x)(m) = h

(
∑

i∈E

ϕ(m(i))

)
; (2)

see [26] and [2]. In particular, Rényi entropy functionals – defined in [23] and
depending on a parameter q > 0 – are given by

S 1

1−q
log z,xq(m) =

1

1− q
log

(
∑

i∈E

mq

i

)
, q 6= 1,

and for q = 1 by S(m) defined in (1).
The entropy of a random variable is the entropy of its distribution. Thus, for

any random vector Xn
0 = (X0, . . . , Xn−1) defined on a probability space (Ω,A,P)

with distribution mn

0 , we get Sh(z),ϕ(x)(X
n
0 ) = Sh(z),ϕ(x)(m

n

0). For a random se-
quence X = (Xn)n≥0, averaging per time unit leads to

Hh(z),ϕ(x)(X) = lim
n→∞

1

n
Sh(z),ϕ(x)(X

n
0 );

this limit – when well defined – is called the entropy rate of the process.
Markov chains and entropy are linked since [29]. The Shannon entropy rate

H(X) = Hz,−x log x(X) of any ergodic (homogeneous aperiodic irreducible) Markov
chain is the sum of the entropic values of the transition probabilities pij = P(Xn =
j|Xn−1 = i) weighted by the probability of occurrence of each state according to
the stationary distribution π of the chain; in mathematical words,

H(X) = −
∑

i∈E

πi
∑

j∈E

pij log pij . (3)

The convergence of 1
nS(X

n
0 ) to (3) is proven in [29] for ergodic finite chains, by

the chain rule specific to Shannon entropy. It has since been extended to the
denumerable case, and then proven to hold under hypotheses weakened in many
directions; see [6], and [11].

Another closed-form expression for the Shannon entropy rate of any ergodic
Markov chain is

H(X) = λ′(1), (4)

where λ(s) denotes the dominant eigenvalue of the perturbed matrix

P (s) = (psij)(i,j)∈E2 , s > 0; (5)

see [31] for links to dynamical systems theory. Note that λ(s) is a short-hand
notation for λ(P, s) – a function of both P and s, that will be used thereafter when
no ambiguity may arise on P .

The Rényi entropy rates of finite state space ergodic Markov chains have been
shown in [21] and [22] to be well-defined and given by

H 1

1−q
log z,xq(X) = (1− q)−1 log λ(q), q 6= 1. (6)
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Extension to denumerable Markov chains is proven to hold in [12]. Further, a
closed form weighted expression similar to (3) is established in [24], involving the
normalized left eigenvector u(s) of P (s) associated to λ(s), namely

H 1

1−q
log z,xq(X) =

1

1− q
log


∑

i∈E

ui(q)
∑

j∈E

pqij


 . (7)

The proof relies on a chain rule specific to Rényi entropy, that is based on the
concept of escort distributions of the marginal distributions of Markov chains. As
pointed out in [24], no chain rule can hold for other entropy functionals, hindering
to obtain by following similar steps such weighted expressions for other (h, ϕ)-
entropy functionals.

In [5], generalized entropy rates per time unit of a wide class of random se-
quences including Markov chains are shown to be trivial – either null or infinite –
out of a threshold where they are equal to either Shannon or Rényi entropy rates,
up to a multiplicative factor. In [12], non trivial divergence rates are obtained
through considering suitable averaging sequences r = (rn)n∈N instead of n; en-
tropy appears only as a by-product of divergence, mainly through examples, with
rates defined by

Hh,ϕ,r(X) = lim
n→∞

1

rn
Sh(z),ϕ(x)(X

n
0 ) = lim

n→∞

1

rn
Sh(z),ϕ(x)(m

n
0 ). (8)

The present paper focuses on closed-form expressions of such generalized entropy
rates for Markov chains, closely linked to the dynamics of the chains. Highlighting,
particularizing and completing the results of [12] for the special case of entropy
will lead us to obtain formulas similar to (3) and (4), and then to (6) and (7), for
a large class of (h, ϕ)- entropy functionals.

First, formulas extending (4) and (6) will be obtained, based on the functions
that map s > 0 to the dominant eigenvalue λ(s) of (5) and to its derivative. A
classification in five classes of generalized entropy functionals, that holds true for
a large class of Markov chains, is derived, depending on the asymptotic behavior
of the marginal entropy Sh(z),ϕ(x)(X

n
0 ). The transition matrices of the considered

ergodic Markov chains are only required to satisfy easy to check assumptions,
inducing the marginal entropy to behave like the power of some analytic function.
Then a relation between λ(s) and the left and right eigenvectors u(s) and v(s) of
P (s) associated to λ(s) leads to weighted formulas extending (3) and (7), in which
u(s) and v(s) replace the stationary distribution π.

Finally, all involved quantities are interpreted in terms of dynamics of Markov
chains. In particular, the probability distributions defined by u(s) and v(s) are
respectively the quasi limit distribution (QLD) and the asymptotic odds of an
auxiliary absorbing Markov chain, that is naturally linked to the original chain
and to the parameter s. Furthermore, the probability distributions defined by u(s)
and v(s) and hence all involved quantities are also interpreted in terms of marginals
of escort distributions.

The availability of these closed-form expressions opens the way to extend to
generalized entropy functionals the sophisticated classical toolbox linked to (3) and
(4), including maximum entropy methods and other statistical tools, that require
entropy rates to be written as smooth functions of the transition matrix of the
chain.



4 Valérie Girardin et al.

For example, [9], [15] and [10] address the problem of maximization of the
entropy rate of Markov chains, subject to a large variety of constraints. Most
results rely on the method of Lagrange multipliers and hence make intensive use
of the expression (3) of the entropy rate as a function of the transition matrix
P . Application of the maximum entropy principle to various frameworks follows;
see, e.g., [5] in queueing theory, or [25] in control in networks, with the so-called
randomized shortest-path problem. Many applications in information theory are
detailed in [6], especially for computing the capacity of communication channels.
From a statistical point of view, the closed form expression (3) allows plug-in
estimation of H(X) from the estimation of P ; see [4] for the asymptotic properties
of these estimators. Plug-in estimation is extensively used in applications. See for
instance [7] and the references therein for computation of the entropy rate of paths
connecting two states. See also [17] for plug-in estimation of the entropy rate of
Markov trajectories between two states, conditional to given intermediate states,
a quantity used as a discriminant measure in classification procedures.

Both (4) and (6) are central in coding theory. (4) is an important tool in
dynamical systems theory, associated to Dirichlet series; see [31]. (6) is developed
in [21] with application to search algorithms. Finally, statistical estimators of Rényi
entropy rates for parametric Markov chains are determined in [5] by making use
of (6).

The paper is organized as follows. The considered class of (h, ϕ)-entropy func-
tionals is detailed in Section 2. In Section 3, the (h,ϕ)-entropy rates are derived as
explicit functions of the dominant eigenvalue λ(s) of P (s). In Section 4, the classi-
fication of (h, ϕ)-entropy functionals into five exclusive classes is derived from the
asymptotic behavior of the marginal entropy of the considered Markov chain. In
Section 5, the (h, ϕ)-entropy rates are derived as explicit weighted expressions of
the same kind as (3) and (7). All involved quantities are interpreted in terms of
marginals of escort distributions in Section 6.1 and in terms of dynamics of an
auxiliary absorbing Markov chain in Section 6.2.

2 Quasi power log entropy functionals

In the literature, most (h, ϕ)-entropy functionals Sh(z),ϕ(x) defined by (2), with

ϕ : [0, 1] → R+ and h : R+ → R, are such that either ϕ is concave and h increasing
or ϕ is convex and h decreasing. Moreover h and ϕ behave such that Sh,ϕ takes only
non-negative values. For most functionals of interest, h and ϕ are locally equivalent
to products of power and logarithmic functions, which leads us to define the class
of QPL entropy functionals.

Definition 1 Any (h, ϕ)-entropy functional is called a quasi power log (QPL) entropy

if a ∈ R
∗, s ∈ R, δ ∈ {0, 1}, b ∈ R

∗
+, α ∈ N and ε ∈ {0, 1} exist such that ϕ is QPL

at 0, in the sense that

ϕ(x)∼
0
axs (logx)δ , (9)

and h is QPL at Φ, i.e.,

h(z)∼
Φ
bzα(log z)ε, (10)
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where

Φ =





0 if s > 1,
a if s = 1, δ = 0,
S(a)∞ if s < 1, δ = 0,
−S(a)∞ if s ≤ 1, δ = 1,

(11)

with S(a) denoting the sign of a.

Of course, (10) makes sense only if zα(log z)ǫ is well defined in a neighborhood
of Φ, inducing the following restrictions on the parameters:

(δ = 0) ⇒ (a > 0) or (α ∈ Z, ǫ = 0),
(δ = 1) ⇒ (a < 0) or (α ∈ Z, ǫ = 0),

(12)

that will be supposed to hold thereafter.
Table 2 shows various QPL entropy functionals that are of theoretical or

practical interest in the literature. The most classical ones are Shannon entropy
S(m) = Sh(z),ϕ(x)(m), with h(z) = z and ϕ(x) = −x logx, and Rényi entropy with

h(z) = (1−q)−1 log z and ϕ(x) = xq, where q > 0, q 6= 1. The subclass for which h is
the identity includes the well-known ϕ-entropy functionals – also called Csiszár’s.
Note that for ϕ(x) = ax, the ϕ-entropy collapses to a constant Sz,ϕ(x)(m) = a, for
all m; this degenerate case is excluded thereafter.

3 Rates as functions of Perron-Frobenius eigenvalues

This section is devoted to extending the closed form expression (4) from Shannon
entropy to other QLD entropy functionals. This presentation will allow us to obtain
a classification of QPL entropy functionals in Section 4 and will lead to weighted
expressions extending (3) in Section 5.

First of all, although (4) is standard in analytic combinatorics for finite Markov
sources, no original reference seems to be available for its proof. Since this formula
is of paramount importance in the following, we will now detail a proof, relying
on the asymptotic behavior of the Dirichlet series associated to X,

Λn(s) =
∑

in0 ∈En

[m(in0 )]
s, for s ∈ R. (13)

Obviously, S(Xn
0 ) = −Λ′

n(1), so that H(X) = limn→∞ −Λ′
n(1)/n. We can write

Λn(s) =
tµs.P (s)n−1.1, (14)

where µ = (µi)i∈E denotes the initial distribution of the chain, µs = (µs
i )i∈E its

perturbation, P (s) is given by (5) and 1 is the unit vector – with all components
equal to 1. Note that all vectors are column vectors, and that the dot stands for
matrix multiplication.

If X is ergodic and finite, then P (s) is positive, irreducible and aperiodic, and
hence the Perron-Frobenius theorem applies; see e.g., [20]. A unique positive eigen-
value λ(s) exists – called Perron-Frobenius or dominant eigenvalue, with a spectral
gap, i.e., a positive difference in modulus between the two largest eigenvalues; pre-
cisely

λ(s)− sup{|λ| : λ eigenvalue of P (s), λ 6= λ(s)} > 0. (15)
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Moreover, left and right positive eigenvectors u(s) and v(s) for P (s) associ-
ated to λ(s) exist – the so-called Perron-Frobenius eigenvectors of P (s), such that
t
u(s).P (s) = λ(s)tu(s) and P (s).v(s) = λ(s)v(s).

Hence, the n-th power of P (s) can be written

P (s)n = λ(s)nC(s) +Rn(s), (16)

where C(s) = v(s).tu(s) is the matrix (in the canonical basis) of the Perron-
Frobenius projector – the projector on the linear subspace spanned by v(s).

The spectral gap induces that

ρ(s) =
1

λ(s)
sup{|λ| : λ eigenvalue of P (s), λ 6= λ(s)} ∈ (0,1).

It also induces that the subordinated (with respect to the ℓ1-norm) matrix norm
of the matrix remainder Rn(s) is of order O([ρλ(s)]n) as n tends to infinity, for
all ρ satisfying ρ(s) < ρ < 1, where ℓ1 = {u = (ui)i∈E :

∑
i∈E |ui| < ∞}. In other

words,
Λn(s) = λ(s)n−1c(s) +O([ρλ(s)]n−1), (17)

where
c(s) = tµs.v(s).tu(s).1 = tµs.C(s).1. (18)

Thus, differentiating (14) with respect to s at s = 1 is justified, and yields Λ′
n(1) ∼

(n− 1)λ′(1)c(1). Finally, observing that P (1) = P is a stochastic matrix, so that
v(1) = 1 and c(1) = 1, leads to (3).

A corner stone for the results to follow is (17), known as the quasi-power
property (QPP); see [31], [5] and [12]. For denumerable Markov chains, a Perron-
Frobenius eigenvalue λ(s) for P (s) again generally exists. Still, a sequence of other
eigenvalues converging to λ(s) may hinder the existence of a spectral gap. The
following sufficient conditions for the QPP to hold are easy to check. Determining
optimal conditions is still an open question.

Assumptions 1 Let X be an ergodic Markov chain with finite or denumerable state

space E, transition matrix P = (pij)(i,j)∈E2 , and initial distribution µ = (µi)i∈E .

C1. sup(i,j)∈E2 pij < 1;
C2. some σ0 < 1 exists such that for all s > σ0, supi∈E

∑
j∈E psij < ∞ and∑

i∈E µs
i < ∞;

C3. for all ε > 0 and all s > σ0, some A ⊂ E exists, with a finite number of

elements, such that supi∈E

∑
j∈E\A psij < ε.

If E is finite, then both Conditions C2 and C3 are satisfied with σ0 = −∞,
thus leading to (17). In the denumerable case, necessarily σ0 > 0. Condition C1
ensures mixing between the states of the chain, hindering that a few very probable
paths may asymptotically capture the chain. Condition C3 forbids the probability
mass to escape to infinity, and hence the asymptotic distribution of the chain to
be a degenerate Dirac distribution at +∞.

Thanks to C2, P (s) induces an operator on ℓ1: if u ∈ ℓ1, then
tu.P (s) ∈ ℓ1 too.

All together, Assumptions 1 ensure that it is a compact operator, and hence are
sufficient to induce both a spectral gap and the QPP. This is precisely stated in
the next proposition, whose proof is a straightforward consequence of [5, Lemma 1
and Theorem 2].
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Proposition 1 Let X be an ergodic Markov chain satisfying Assumptions 1. Then the

perturbed matrix P (s) defined by (5) has a unique positive dominant eigenvalue λ(s),
with a spectral gap (15). Moreover, positive left and right eigenvectors u(s) and v(s)
exist satisfying

t
u(s).P (s) = λ(s)tu(s) and P (s).v(s) = λ(s)v(s).

These Perron-Frobenius eigenvectors can be chosen such that

∑

i∈E

ui(s) = 1 and
∑

i∈E

ui(s)vi(s) = 1. (19)

Finally, the QPP (17) holds true for all real number s > σ0 and all integer n ≥ 1.

The next lemma – see [31, Proposition 8] – will be of use first for the proof
of Theorem 1 below, then for making explicit entropy rates associated to classical
entropy functionals, and finally for their classification in Section 4. For clarity of
statement, the eigenvalue λ(s) is here fully denoted by λ(P, s).

Lemma 1 For any transition matrix P satisfying Assumptions 1, the dominant eigen-

value function s 7→ λ(P, s) is differentiable, with λ′(P, s) < 0 for all s > σ0. In partic-

ular, it is a decreasing function and λ(P, 1) = 1.

The next theorem makes explicit both the averaging sequences and the ensuing
expressions of the related entropy rates as functions of the dominant eigenvalue of
the perturbed transition matrix and initial distribution of the chain. Even though
it is formally a special case of the divergence rates determined in [12], no general
expressions are developed therein for Markov chains, and only a few examples of
classical entropy functionals are presented for generic sequences of random vari-
ables satisfying the QPP. Note that the averaging sequence is defined up to the
asymptotic equivalence r′n ∼∞ rn; also, Hh(z),ϕ(x),kr(X) = 1

kHh(z),ϕ(x),r(X) for all
constant k 6= 0.

Theorem 1 Let Sh(z),ϕ(x) be a QPL entropy. Let X be an ergodic Markov chain

satisfying Assumptions 1. The entropy rate Hh(z),ϕ(x),r(X) given by (8) is well defined
and non degenerate (neither zero nor infinite) for the averaging sequence

rn =

{
(n− 1)δα+ǫλ(s)α(n−1) if s 6= 1,

(n− 1)δα (log(n− 1))δǫ if s = 1.
(20)

Precisely

Hh(z),ϕ(x),r(X) = (21)




b aαc(s)α [log λ(s)]
ε

if s 6= 1, δ = 0,

b c(s)α
[
aλ′(s)λ(s)−1

]α
[log λ(s)]

ε
if s 6= 1, δ = 1,

b aα [log a]ε if s = 1, δ = 0,

b
[
aλ′(1)

]α
if s = 1, δ = 1.
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s < 1 s = 1 s > 1

δ = 0 S(a)∞ a 0 Φ

λ(s)n−1 1 λ(s)n−1 rn
ac(s) a ac(s) Hz,ϕ(x),r(X)

δ = 1 −S(a)∞ −S(a)∞ 0 Φ

(n− 1)λ(s)n−1 n− 1 (n− 1)λ(s)n−1 rn

ac(s)λ
′(s)

λ(s)
aλ′(1) ac(s)λ

′(s)
λ(s)

Hz,ϕ(x),r(X)

Table 1 Asymptotic value Φ = limn Sz,ϕ(x)(X
n
0 ) of the ϕ-entropy, averaging sequence r =

(rn)n∈N, and ϕ-entropy rate Hz,ϕ(x),r(X), according to the values of a, s, δ, and sign S(a)
of a.

Proof Thanks to Assumptions 1, for any sequence in0 , the probability m(in0 ) con-
verges to 0 as n tends to infinity. Since, by (9), ϕ is QPL at 0, and thanks to the
QPP (17),

Sz,ϕ(x)(X
n
0 ) =

∑

in
0
∈En

ϕ(m(in0 ))

∼∞





aΛn(s)∼
∞

λ(s)n−1ac(s) if δ = 0,

aΛ′
n(s)∼

∞
(n− 1)λ(s)n−1a

λ′(s)

λ(s)
c(s) if δ = 1.

Together with Lemma 1, the above equivalence implies that Sz,ϕ(x)(X
n
0 ) converges,

as n goes to infinity, to Φ given by (11). Note that the limit does not depend on
the dynamics of X, but only on the parameters a, s and δ. For instance, if δ = 0
and s < 1, then λ(s) > 1, so that Sz,ϕ(x)(X

n
0 ) = ac(s)λ(s)n−1 converges to ±∞

according to the sign of a.

For QPL entropy functionals, h satisfies (10) and hence, for s 6= 1,

Sh(z),ϕ(x)(X
n
0 )∼

∞





λ(s)(n−1)αb aαc(s)α if δ = 0, ε = 0,

(n− 1)λ(s)(n−1)αb aαc(s)α log λ(s) if δ = 0, ε = 1,

(n− 1)αλ(s)(n−1)αb c(s)α
[
aλ′(s)

λ(s)

]α
if δ = 1, ε = 0,

(n− 1)α+1λ(s)(n−1)α

× b c(s)α
[
aλ′(s)

λ(s)

]α
logλ(s) if δ = 1, ε = 1,

and for s = 1,

Sh(z),ϕ(x)(X
n
0 )∼

∞





b aα if δ = 0, ε = 0,
b aα log a if δ = 0, ε = 1,

(n− 1)αb
[
aλ′(1)

]α
if δ = 1, ε = 0,

(n− 1)α log(n− 1)b
[
aλ′(1)

]α
if δ = 1, ε = 1.

The expression of Hh(z),ϕ(x),r(X) immediately follows by taking the limit, for
r given by (20).

For the special case of ϕ-entropy, (20) reduces to

rn = λ(s)n−1(n− 1)α, (22)
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and hence the ϕ-entropy rate

Hz,ϕ(x),r(X) = lim
n→∞

1

rn
Sz,ϕ(x)(X

n
0 ) = a c(s)

[
λ′(s)

λ(s)

]δ

is well-defined and non degenerate. See Table 1 for closed-form expressions and
details.

Further, Table 2 shows with full details the expressions of the entropy rates
associated to the most classical entropy functionals.

4 Classification of QPL entropy functionals

A classification of all QPL (h, ϕ)-entropy functionals into five exclusive classes
derives from Lemma 1 and Theorem 1, according to the asymptotic behavior of the
marginal entropy Sh(z),ϕ(x)(X

n
0 ), or, equivalently, to the type of averaging sequence

r. The important point is that this classification depends only on the functions
ϕ and h – through the parameters [s, δ, α, ε] involved in the QPL properties (9)
and (10), and not on the specific dynamics of the chain – as soon as the latter
satisfies the QPP. In particular, the classification is valid for all finite Markov
chains.

The classification of ϕ-entropy functionals into four classes easily derives from
either Table 1 or Equation (22). Indeed, four types of behavior for the sequence of
marginal entropy (or, equivalently, rescaling sequence r), are possible, according
to the values of s and δ and independently of the transition matrix of the chain.
First, for s < 1, δ = 0 and s < 1, δ = 1, the rescaling sequences are respectively
λ(s)n−1 and (n − 1)λ(s)n−1. Lemma 1 states that λ(s) > 1 as soon as s < 1; the
marginal entropy explodes exponentially fast up to Φ = limn Sz,ϕ(x)(X

n
0 ). Second,

for s > 1 (and δ = 0 or 1), rn and the marginal entropy decrease (in absolute
value) exponentially fast to 0. Third, for s = 1 and δ = 0, the marginal entropy
converges to some finite value, and the rescaling sequence is constant. Fourth, for
s = 1 and δ = 1 (Shannon entropy), the marginal entropy Sh(z),ϕ(x)(X

n
0 ) increases

linearly with n and the rescaling sequence is the time averaging rn = n.
The above discussion easily extends to (h, ϕ)-entropy functionals through the

asymptotic behavior of marginal entropies or of the rescaling sequence rn given
by (20), as made explicit in Table 3. A classification of (h, ϕ)-entropy functionals
ensues, including the four previous classes plus a fifth one. Let us begin by the
so-called linear case, associated to classical averaging per time unit.

Linear case: rn = kn, with k ∈ R+.
The marginal entropy increases linearly with the number of variables of Xn

0 .
Intuitively, all variables contribute equally to the global information of the
chain. This is obtained for [δ = 1, s = 1, α = 1, ε = 0], [δ = 0, s 6= 1, α = 0, ε = 1]
and also [δ = 1, s 6= 1, α = 0, ε = 1]. The two first sets of parameters correspond
respectively to Shannon, Rényi and their two-parameter extensions of [32]:

V
1
p,q(m) =

1

p− q
log

(
∑

i∈E

mq−p+1
i

)
, V

2
p,q(m) =

1

p(p− q)
log

(
∑

i∈E

m
q/p
i

)
,

for p, q > 0, with q 6= p.
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Over-linear (or expanding) case: rn ∈ ω(n).
The marginal entropy increases faster than n, typically exponentially fast. This
is obtained for [δ = 0, s > 1, α < 0], [δ = 0, s < 1, α > 0], [δ = 1, s < 1, α > 0],
[δ = 1, s > 1, α < 0], [δ = 1, s = 1, α = 1, ε = 1], and [δ = 1, s = 1, α > 1].
Main examples are Sharma-Mittal and Sharma-Taneja for p < 1, Arimoto for
q > 1, and Taneja for q < 1. The marginal entropy explodes with the number of
variables. This explosive behavior is counter-balanced by a suitable averaging.
The resulting entropy rate focuses essentially on the initial behavior of the
chain, and hence depends mainly on the initial distribution.

Sub-linear case: rn = o(n) and rn ∈ ω(1).
The marginal entropy increases slowler than n, typically as nα or nα logn,
with 0 < α < 1. This is obtained for [δ = 1, s = 1, α = 0, ǫ = 1] and [δ = 1, s =
1,0 < α < 1]. The resulting rescaled entropy rate is either constant – does not
depend on the chain dynamics, or equals Shannon up to the power α and a
multiplicative constant. Interestingly, none of the classical entropy functionals
behaves in this way.

Contracting case: rn = o(1).
The marginal entropy decreases to 0, typically exponentially fast. This behavior
is obtained for [δ = 0, s < 1, α < 0], [δ = 0, s > 1, α > 0], [δ = 1, s ≤ 1, α < 0],
and [δ = 1, s > 1, α > 0]. Main examples are Sharma-Taneja for p > 1 and
Taneja for q > 1. The marginal entropy decreases with the considered number
of variables. Again, the resulting rescaled entropy rate depends mainly on the
initial distribution of the chain.

Constant case: |rn| = k ∈ R+.
The marginal entropy converges to a non degenerate value. This is obtained
when either α = 0 and ε = 0 – h is constant in a neighborhood of Φ, or δ = 0
and s = 1 – so that ϕ(x) ∼0 a. Classical examples are Arimoto for q < 1,
Sharma-Mittal for p > 1, Ferreri and Tsallis for q > 1. The resulting entropy
rates are degenerate, in the sense that they take the same value for all Markov
chains satisfying the QPP.

5 Rates as functions of Perron-Frobenius eigenvectors

Some relevant properties and relations between the quantities involved in the ex-
pression of Hh(z),ϕ(x),r(X) in (21) will allow us to obtain weighted expressions
extending (3) and (4) to all QPL entropy rates of Markov chains satisfying the
QPP. This will be mostly based on the following computational results.

Lemma 2 Let X be an ergodic Markov chain satisfying Assumptions 1. Let s > σ0.

The following relations hold true:

λ(s) =
∑

i∈E

ui(s)
∑

j∈E

psij , (23)

λ′(s) =
∑

i∈E

ui(s)
∑

j∈E

psij log pij +
∑

i∈E

u
′
i(s)

∑

j∈E

psij . (24)

c(s) =
∑

i∈E

µs
i vi(s). (25)
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Proof We compute t
u(s).P (s).1 = λ(s)tu(s).1 = λ(s), and (23) follows straightfor-

wardly. Differentiating with respect to s gives (24).
Thanks to the QPP, c(s) is given by (18). The normalizing condition in (19)

yields t
u(s).1 = 1, and hence (25).

All entropy rates obtained in Theorem 1 can thus be written as explicit func-
tions of the perturbed transition matrix P (s) and Perron-Frobenius eigenvectors
u(s) and v(s).

Theorem 2 Let X be an ergodic Markov chain satisfying Assumptions 1. For the

averaging sequence r defined by (20), the (h, ϕ)-entropy rate is

Hh(z),ϕ(x),r(X) = (26)




b aα
[∑

i∈E µs
i vi(s)

]α [∑i∈E ui(s)
∑

j∈E ps
ij log pij+

∑
i∈E u

′

i(s)
∑

j∈E ps
ij∑

i∈E ui(s)
∑

j∈E ps
ij

]α

×
[
log
∑

i∈E ui(s)
∑

j∈E psij

]ε
, if s 6= 1, δ = 1,

b aα
[∑

i∈E µs
i vi(s)

]α [
log
∑

i∈E ui(s)
∑

j∈E psij

]ε
, if s 6= 1, δ = 0,

b aα
[∑

i∈E ui(1)
∑

j∈E pij log pij

]α
, if s = 1, δ = 1,

Proof Plugging the expressions of c(s), λ(s) and λ′(s) of Lemma 2 into (21) readily
yields the result.

In particular, the ϕ-entropy rates (for b = α = 1 and ε = 0) are given by

Hh(z),ϕ(x),r(X) =a
[∑

i∈E ui(s)
∑

j∈E ps
ij log pij+

∑
i∈E u

′

i(s)
∑

j∈E ps
ij∑

i∈E ui(s)
∑

j∈E ps
ij

]∑

i∈E

µs
i vi(s),

for s 6= 1, δ = 1. Note that the above ratio is the logarithmic derivative of the
weighted sum

∑
i∈E ui(s)

∑
j∈E psij .

For Shannon entropy, b = α = s = δ = 1, and (23) and (25) for s = 1 amount
to λ(1) = 1 and c(1) = 1, yielding (3). For Rényi entropy, setting a = 1, s = q,
δ = 0, b = (1 − q)−1, α = 0, ǫ = 1, yields (7). Clearly, both (3) and (7) involve
the Perron-Frobenius eigenvectors too, and are simple particular cases of (26).
Therefore, the above extension to the generalized entropy functionals of the well-
known weighted expression for Shannon entropy rate opens the way to extension of
the associated toolbox, including maximum entropy methods; see the introduction
above for details. The interpretation in terms of dynamics of an auxiliary absorbing
Markov chain in the next section is also to take its part in connection to this
toolbox.

6 Dynamical interpretation of all spectral elements and entropy rates

The closed form expression (3) for Shannon entropy has a meaningful dynamical
interpretation as the average of entropy of transition probabilities weighted by the
stationary distribution of the chain. The expressions of entropy rates as weighted
sums obtained in Section 5, similar to (3) in their form, also have a dynamical
interpretation: the eigenvectors u(s) and v(s) will be proven in Section 6.1 to
be the limit distributions of sequences of escort distributions of the chain. In
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Section 6.2, these escorts are linked with the asymptotic behavior of some auxiliary
absorbing Markov chain associated to X, conditionally to non absorption. Relevant
interpretations of the spectral elements u(s), v(s) and λ(s), as well as c(s), ensue
in terms of dynamics of this auxiliary chain.

6.1 Eigenvectors as limits of marginals of escorts distributions

The escort distribution – in short escort – with parameter s of any probability
distribution m = (mi)i∈E is the distribution m∗s given by

m∗s
i =

ms
i∑

j∈E ms
j

, i ∈ E, (27)

when the sum
∑

j∈E ms
j is finite. Escort distributions, first introduced in [3], pro-

vide a tool for zooming at different parts of a distribution, or for adapting it to
constraints, through their ability to scan its structure. They also constitute the
geodesics of information geometry with respect to an affine connection naturally
induced by the Kullback-Leibler divergence; see [1], [28], and also [13] for an ap-
plication to hypothesis testing. In Section 6.2, they are shown to describe the
behavior, conditionally to non-absorption, of some absorbing Markov chain.

Little attention in the literature has been focused at the properties of escorts of
random vectors and sequences, but in [24]. We are interested here in the asymptotic
behavior of the escorts (mn

0 )
∗s associated to the n first coordinatesXn

0 of an ergodic
discrete Markov chain X, in terms of the left and right eigenvectors u(s) and v(s).
Interesting by itself, this behavior is also to be linked to the asymptotic behavior
of some auxiliary absorbing Markov in Section 6.2.

Proposition 2 Let X = (Xn)n∈N be an ergodic Markov chain with transition matrix

P and initial distribution µ satisfying Assumptions 1.

For any n ∈ N
∗ and s > σ0, let m

n
0 denote the distribution of Xn

0 and (mn
0 )

∗s its

escort distribution defined in (27). Then, as n tends to infinity:

1. the first marginal of (mn
0 )

∗s converges to µs
v(s)/c(s), where µs

v(s) denotes the

component by component product of the vectors µs and v(s).
2. the n-th marginal of (mn

0 )
∗s converges to u(s);

Proof 1. Thanks to Point 2 of Assumptions 1, the escort (mn
0 )

∗s of mn
0 is well-

defined for s > σ0 and is given by

(mn
0 )

∗s(in0 ) =
mn

0 (i
n
0 )

s

Λn(s)
,

where Λn(s) is the Dirichlet series defined in (13).
Let mar1((m

n
0 )

∗s) and marn((m
n
0)

∗s) denote respectively the first and n-th
marginal distribution of (mn

0 )
∗s, given by

mar1((m
n
0 )

∗s)(i) =
1

Λn(s)

∑

in1 ∈En−1

mn
0 (i, i

n
1 ),

marn((m
n
0 )

∗s)(i) =
1

Λn(s)

∑

in−1

0 ∈En−1

mn
0 (i

n−1
0 , i),
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where (i, in1 ) = (i, i1, . . . , in−1) and (in−1
0 , i) = (i0, . . . , in−2, i). Straightforward

linear algebra gives

∑

in1 ∈En−1

mn
0 (i, i

n
1 ) = µs

i (P (s)n−1.1)i and
∑

in−1

0 ∈En−1

mn
0 (i

n−1
0 , i) =

(
tµs.P (s)n−1

)
i
,

where (w)i denotes here the i-th component of the vector w. The above equalities
together with (14) yield

mar1((m
n
0 )

∗s)(i) =
µs
(
P (s)n−1.1

)

tµs.P (s)n−1.1
and tmarn

(
(mn

0 )
∗s) =

tµs.P (s)n−1

tµs.P (s)n−1.1
,

where µs
(
P (s)n−1.1

)
denotes the component by component product of the vectors

µs and P (s)n−1.1. From (16), we derive

P (s)n−1.1 = λ(s)n−1C(s).1+ Rn−1(s).1 = λ(s)n−1
v(s) +Rn−1(s).1,

and

tµs.P (s)n−1 = λ(s)n−1tµs.v(s).tu(s) + tµs.Rn−1(s)

= λ(s)n−1c(s).tu(s) + tµs.Rn−1(s),

where, thanks to the spectral gap (15), ‖Rn−1(s).1‖1 and ‖tµs.Rn−1(s)‖1 are
O((ρ(s)λ(s))n−1). The above relations together with the QPP imply that

mar1
(
(mn

0 )
∗s) = λ(s)n−1µs

v(s) +Rn−1(s).1

λ(s)n−1c(s) +O((ρ(s)λ(s))n−1)
=

µs
v(s)

c(s)
+ o‖.‖1

(1),

and

tmarn
(
(mn

0 )
∗s) = λ(s)n−1c(s).tu(s) + tµs.Rn−1(s)

λ(s)n−1c(s) +O((ρ(s)λ(s))n−1)
= t

u(s) + o‖.‖1
(1),

from which both points 1. and 2. immediately follow.

6.2 Rates through quasi-limit distributions and asymptotic odds

An interesting interpretation of the generalized entropy rates derives from the
notion of quasi-limit distribution (QLD) linked to the dynamics of an auxiliary
absorbing Markov chain. Specific concepts and results have first to be recalled for
full understanding.

As previously, X denotes an ergodic Markov chain on the finite or denumerable
set E, with transition matrix P and initial distribution µ satisfying Assumptions 1.
The transition matrix of the auxiliary chain is to be built from a sub-stochastic
matrix. If s > 1, the matrix P (s) associated is indeed sub-stochastic: all its coeffi-
cients are positive or null with all row sums less or equal to 1. If s < 1, consider the

matrix P̃ (s) = 1
‖P (s)‖P (s), for some matrix-norm ‖P (s)‖ of P (s); possible choices

are ‖P (s)‖ = |E|maxi,j∈E psij , ‖P (s)‖ =
∑

i,j∈E psij , or ‖P (s)‖ = maxi∈E(P (s).1)i.

The matrix P̃ (s) is sub-stochastic and has the same Perron-Frobenius eigenvectors

as P (s); see [16]. Then P̃ (s) can replace P (s) in the following.
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Let us add to E an absorbing state ⋄ – usually called coffin state – in order to

build a stochastic matrix T (s) from P (s) – or P̃ (s), specifically

T (s) =




1 0 · · · 0

q(s) P (s)


 , where q(s) =




1−
∑

j∈E ps1j
1−

∑
j∈E ps2j
...


 .

Then, let Z = (Zn)n∈N be a Markov chain taking values into E = E ∪ {⋄}, with
transition matrix T (s). This auxiliary chain has one absorbing state ⋄ and a tran-
sient class E. Time until absorption in ⋄ may be quite long; see [14] or [18] among
many others for examples in biology modeling, population processes, etc.. This
phenomenon gave birth to the notion of QLD, also called Yaglom limit; see [27] or
[19] for details. A probability distribution on E, say w = (wi)i∈E , is a QLD of Z
if for any i ∈ E, limn→∞ Pi(Zn = j|Zn 6= ⋄) = wj , for all j ∈ E, where Pi denotes
as usual conditional probability with respect to (Z0 = i); note that the QLD does
not depend on the initial state i.

For a finite state space E, [8] establishes that the QLD is the left Perron-
Frobenius eigenvector of P (s); in other words, with the notation of Theorem 1,

uj(s) = lim
n→∞

Pi(Zn = j|Zn 6= ⋄), j ∈ E. (28)

For a denumerable E, absorption in ⋄ may not be certain, in which case (28)
would not be true. However, [30] shows that absorption is certain provided that
P satisfies some weak conditions covered by Assumptions 1, and then u(s) indeed
satisfies (28).

Moreover, the right Perron eigenvector v(s) can be written in terms of asymp-
totic conditional odds; see [30] for details. Indeed, the ratio vj(s)/vi(s) quantifies
how much more asymptotically probable it is for Z not to be absorbed when start-
ing from j than i. In mathematical words,

vj(s)

vi(s)
= lim

n→∞

P(Zn 6= ⋄|Z0 = j)

P(Zn 6= ⋄|Z0 = i)
, i, j ∈ E. (29)

Interestingly, the behavior of Z conditional to non-absorption can be linked to
escort distributions as follows. For any n ∈ N

∗ and any in0 ∈ En,

P(Zn
0 = in0 |Zn−1 6= ⋄) =

νi0
∏n−2

l=0 psilil+1∑
jn0 ∈En ν0(j0)

∏n−2
l=0 psjljl+1

,

where ν is the initial distribution of Z. Assume that s > 1 and set νi = µs
i for all

i ∈ E and ν⋄ = 1−
∑

j∈E µs
j . Then,

P(Zn
0 = in0 |Zn−1 6= ⋄) = (mXn

0
)∗s(in0 ).

In other words, the distribution of Zn
0 conditional to non absorption at time n− 1

is the s-escort distribution of Xn
0 . As a consequence, the distribution of Zn−1

conditional to non absorption is the nth-marginal of (mXn
0
)∗s. Hence, (28) appears

as a straightforward consequence of Point 2 of Proposition 2.
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Similarly, the distribution of the initial state conditionally to non absorption
at time n − 1 is the first marginal of (mXn

0
)∗s. Hence, Point 1 of Proposition 2

yields

lim
n→∞

P(Z0 = i|Zn−1 6= ⋄) = lim
n→∞

mar1(mXn
0
)∗s(i) =

µs
i vi(s)

c(s)
, i ∈ E,

so that

lim
n→∞

P(Z0 = i|Zn−1 6= ⋄)

P(Z0 = j|Zn−1 6= ⋄)
=

µs
i vi(s)

µs
jvj(s)

, i, j ∈ E. (30)

The odds µs
i vi(s)/µ

s
jvj(s), i, j ∈ E, then quantify how much more asymptotically

probable it is for Z to have started from one state than from another one, con-
ditionally to non-absorption. Note that a simple use of Bayes’ theorem in (30)
yields (29).

The assumptions s > 1 and νi = µs
i , i ∈ E ensure in above results that the

distributions of Z0 and Zn−1 conditional to (Zn−1 6= ⋄) are respectively given by
the first and n-th marginals of m∗s

Xn
0
. Further, (28) and (30) can be proven for

arbitrary s > σ0 and ν by a straightforward extension of Proposition 2, that would
lead to the alternative limit νsi vi(s)/ν

s
j vj(s) in (30).

In conclusion, all the factors involved in the weighted expression (21) of the
generalized entropy rates get a natural interpretation in terms of dynamics of
Markov chains through the auxiliary chain Z:

λ(s) =
∑

i ui(s)
∑

j p
s
ij = limn→∞ P(Zn+1 6= ⋄|Zn 6= ⋄) is the asymptotic probabil-

ity for Z to transit from E to E;
λ′(s) =

∑
i ui(s)

∑
j p

s
ij log pij +

∑
i u

′
i(s)

∑
j p

s
ij is the growth rate of this asymp-

totic probability;
c(s) =

∑
i µ

s
i vi(s) is a residual information factor focusing on the initial behavior

of Z.
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Entropy
[a, s, δ] Φ [b, α, ε] h{Φ} rn Hh(z),ϕ(x),r Type

ϕ(x), h(z)

Shannon
[−1, 1, 1] +∞ [1, 1, 0] +∞ n− 1 −λ′(1) 2

−x log x, z

Rényi
[1, q, 0]

q>1: 0 [

1
1−q

, 0, 1
]

+∞ n− 1 1
1−q

log λ(q) 2
xq, 1

1−q
log z q<1: +∞

Tsallis
[1, q, 0]

q>1: 0
[

1
q−1

, 0, 0
]

1
q−1

1 1
q−1

0

xq, 1
q−1

(1− z) q<1: +∞
[

1
1−q

, 1, 0
]

+∞ λ(q)n−1 1
1−q

c(q) 3

Taneja
[−1, q, 1]

q>1: 0
[1, 1, 0]

0
(n− 1)λ(q)n−1 −c(q)λ

′(q)
λ(q)

-1

−xq log x, z q<1: +∞ +∞ 3

Arimoto [

1, 1
q
, 0
]

q>1: +∞
[

1
q−1

, q, 0
]

+∞ λ( 1
q
)(n−1)q 1

q−1
c( 1

q
)q 3

x1/q, 1
q−1

(zq − 1) q<1: 0
[

1
1−q

, 0, 0
]

1
1−q

1 1
1−q

0

Sharma-Taneja
q>p: [−1, p, 0]

p>1: 0
[

1
p−q

, 1, 0
]

0
λ(p)n−1 1

q−p
c(p)

-1

xq − xp, z
p−q

p<1: −∞ +∞ 3

q<p: [1, q, 0]
p>1: 0 0

λ(q)n−1 1
p−q

c(q)
-1

p<1: +∞ +∞ 3

Sharma-Mittal

[1, q, 0]

q>1: 0
p>1:

[

1
p−1

, 0, 0
]

1
p−1

1 1
p−1

0

xq, 1
1−p

(

z
p−1

q−1 − 1

)

p<1:
[

1
1−p

,
p−1
q−1

, 0
]

+∞ λ(q)
p−1

q−1
(n−1) 1

1−p
c(q)

p−1

q−1 3

q<1: +∞
p>1:

[

1
p−1

, 0, 0
]

1
p−1

1 1
p−1

0

p<1:
[

1
1−p

,
p−1
q−1

, 0
]

+∞ λ(q)
p−1

q−1
(n−1) 1

1−p
c(q)

p−1

q−1 3

Ferreri
[q, 1, 0] q

[b, 0, 0]
b 1 b 0(1 + qx) log(1 + qx), b = −1+

(

1 + 1
q

)

log(1 + q)− 1
q
z

(

1 + 1
q

)

log(1 + q)

Table 2 For classical entropy functionals with p, q > 0, from left to right: Parameters of (9), Asymptotic ϕ-Entropy Φ = lim Sz,ϕ(x)(X
n
0 ), Parameters

of (10), Limit Marginal Entropy h{Φ} = limn Sh(z),ϕ(x)(X
n
0 ), Rescaling Sequence r = (rn), Entropy Rate Hh(z),ϕ(x),r(X), and Type (−1: contracting,

0: constant, 1: sub-linear, 2: linear, 3: over-linear); see Section 4.
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α < 0 α = 0, ε = 0 α = 0, ε = 1 α > 0

δ = 0, S(a)∞ Φ
s < 1 0

-1

b
0

S(b aα)∞
2

S(b)∞
3

h{Φ}
λ(s)α(n−1)(n− 1)ε 1 n− 1 λ(s)α(n−1)(n− 1)ε rn
b aαc(s)α(log λ(s))ε b b log λ(s) b aαc(s)α(log λ(s))ε H

δ = 0, a Φ
s = 1 b aα(log a)ε

0

b
0

b log a
0

b aα(log a)ε

0

h{Φ}
1 1 1 1 rn

b aα(log a)ε b b log a b aα(log a)ε H

δ = 0, 0 Φ
s > 1 (−1)εS(ab)∞

3

b
0

−S(b)∞
2

0
-1

h{Φ}
λ(s)α(n−1)(n− 1)ε 1 n− 1 λ(s)α(n−1)(n− 1)ε rn
b aαc(s)α(log λ(s))ε b b log λ(s) b aαc(s)α(log λ(s))ε H

δ = 1, −S(a)∞ Φ
s < 1 0

-1

b
0

S(b)∞
2

(−1)εS(b)S(−a)α∞
3

h{Φ}

λ(s)α(n−1)(n− 1)α+ε 1 n− 1 λ(s)α(n−1)(n− 1)α+ε rn

b aαc(s)α
(

λ′(s)
λ(s)

)α
(log λ(s))ε b b log λ(s) b aαc(s)α

(

λ′(s)
λ(s)

)α
(log λ(s))ε H

δ = 1, 0 Φ
s > 1 (−1)εS(b)S(−a)α∞

3

b
0

−S(b)∞
2

0
-1

h{Φ}

λ(s)α(n−1)(n− 1)α+ε 1 n− 1 λ(s)α(n−1)(n− 1)α+ε rn

b aαc(s)α
(

λ′(s)
λ(s)

)α
(log λ(s))ε b b log λ(s) b aαc(s)α

(

λ′(s)
λ(s)

)α
(log λ(s))ε H

α < 0 α = 0, ε = 0 α = 0, ε = 1 0 < α < 1

δ = 1, −S(a)∞ Φ
s = 1 0

-1

b
0

S(b)∞
1

S(b)S(−a)α∞
1

h{Φ}
(n− 1)α(log(n− 1))ε 1 log(n− 1) (n− 1)α(log(n− 1))ε rn

b aαλ′(1)α b b b aαλ′(1)α H

α = 1, ε = 0 α = 1, ε = 1 α > 1

δ = 1, −S(a)∞ Φ
s = 1 −S(ab)∞

2

S(ab)∞
3

S(b)S(−a)α∞
3

h{Φ}
n− 1 (n− 1) log(n− 1) (n− 1)α(log(n− 1))ε rn
baλ′(1) baλ′(1) baαλ′(1)α H

Table 3 From left to right: QLP Parameters, Asymptotic ϕ-Entropy Φ = lim Sz,ϕ(x)(X
n
0 ), Asymptotic Marginal Entropy h{Φ} = lim Sh(z),ϕ(x)(X

n
0 ),

Averaging Sequence rn, Entropy Rate H = Hh(z),ϕ(x),r(X), and Type (−1: contracting, 0: constant, 1: sub-linear, 2: linear, 3: over-linear) according to
a, s, δ, b, α and ε satisfying (12).


