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ABSTRACT
Over the last years, the rapid growth of distributed smart
cameras has triggered the search for new approaches of smart-
ness of cameras to have better results. As communication
among camera entities is becoming more and more complex
and new ways of modeling communication have been pro-
posed. These new ways have been taking inspiration from
different fields such as socio-economic approach or game the-
ory. Moreover, one of the major problems of the camera
network is re-identification. However, in most cases, the in-
teraction between cameras presupposes that the latter are
able to perform perfect and unambiguous detections, thus
limiting the decision tasks to the Markovian model. Within
this paper, we present a new approach of interaction between
cameras based on a non-Markovian model. To resolve this
issue, we can exploit other types of information rather than
visual information to improve re-identification. This infor-
mation is Spatial, Visual and Temporal (SVT). Temporal
information holds the time needed to go from one camera to
another, while spatial information contains the path followed
by the target which is a key point for the decision-making
process. This offers the possibility for the network to learn
regularities and then reach a steady state.

Keywords
Visual sensor network, smart network, smart camera, dis-
tributed problem solving

1. INTRODUCTION
Smart Camera Networks (SCNs), with their continuous

evolution in the recent years, have attracted researchers’ at-
tention at the crossroads of various fields: 1) Image sensors
and signal processing relate to the architecture of the cam-
era, and aim to process rich information within an embed-
ded system. These fields define the hardware parameters
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of the camera, such as zoom or focus capabilities. 2) Com-
puter vision focuses on the smartness of the camera, what we
may call software parameters related to object detection and
scene understanding. 3) Sensor networks not only manage
the wired or wireless communication between cameras (with
signals not limited to simple binary events), but also rely
on distributed computing to take advantage of heterogene-
ity in smart cameras. They pool the distributed resources
and capabilities to better perform the tasks.

The SCNs classically rely on high-end cameras. Neverthe-
less, fully exploiting the interactions between several cam-
eras makes it possible to use very low-specification cameras
(e.g. low resolution and limited processing capability). In
the animal kingdom, ants reach high levels of [social] organi-
zation thanks to their collaborative capabilities. They also
achieve wonders at the large scale which are hardly conceiv-
able when considering the individual size and strength of
ants. Inspired from the world of ants, we develop networks
based on a communicating low-specification camera, named
Ant-Cam [1]. We focus in this paper on the cameras interac-
tions and their collaborative performances, in order to solve
complex problems that extend far beyond the scope of any
individual camera.

A rich set of mathematical tools for decision making can
be applied to model the interactions between cameras [9].
The associated approaches can be labeled as socio-economic
[5], game-theoretic [19], stochastic [22] or optimization ori-
ented (e.g., particle swarm in [14]). Added to that, they can
rely on other forms of meta-heuristics such as the genetic
algorithms [4]. The survey in [15] offered a deeper under-
standing of the existing models used for the SCNs. Some
models would increase flexibility even more by exploiting
self-reconfigurable [6] and self-calibrating cameras to maxi-
mize their performances. The resulting network might ad-
just camera parameters such as position [18], orientation,
pan-tilt-zoom [14], or select where processing should occur.
Indeed, a reduced (dynamical) set of cameras with dedicated
processing might be sufficient and could better achieve track-
ing [5], coverage [14], path planning [18] or target detection
under various visibility conditions and satisfy given quality
requirements [16]. Yet, it would offer heterogeneity in the
network and more efficiency while the cameras could learn
how to be different [8], [7].

Most of the proposed approaches require some prior knowl-
edge of the network such as positions, Fields Of View (FOVs).
In this work, we present a model following the principle of
smart dust, where Ant-Cams are scattered in the environ-
ment without any a priori knowledge about it. In addition,



some networks use supervised learning to classify usual and
unusual behaviors so as easily detect targets and anoma-
lies [13]. However, we opt for unsupervised learning [2], [3].

The main goal of this work is to learn and exploit the
regularities in the correlated activity of cameras. The system
should be able to build precise predictions based on two
components: a model (of the spatio-temporal behavior of
expected/previous targets) and observations (related to the
current target).

To identify and track a target through a network, the ob-
servations inform about the path followed by the target. The
system should pick out as much information as possible to
better predict the next state (hence not being limited to the
Markov assumption). The model in turn depends on the net-
work structure and the assumptions about the trajectories
or targets. Thereby, it should be built from observations, in-
dicating which cameras should observe the target at future
times, allowing to provide a multi-camera behavior analy-
sis [11]. The survey [21] tackles different issues and aspects
of re-identification challenges.

Our model includes two principal parts: The first one is
the cognitive knowledge which permits prediction decision
using the the detected information and that received from
other cameras. The second one is the regulation of that
cognition using the feedback received from the other cameras
after each event. This cognition control allows the network
to be self-monitoring and then to have its own self-regulation
process.

Accordingly, the camera is not just a member of the net-
work learning the parameters that may influence its perfor-
mance, but it extends its capacity to perform things based on
the interaction with the other cameras. Consequently, this
model enables the cameras to do some tasks more automat-
ically and then to go further with the control of knowledge.
This knowledge can be consolidated by the other cameras
presented in the network. [?] proposes a Network Consistent
Re-identification (NCR) framework which improve the cam-
era pairwise re-identification performance between camera
pairs, this performance has been evaluated in [10]. Keep
exchanging signatures with the neighborhood until finding
the valid matches and then improve next reidentifications
is proposed in to improve this performance [17]. Moreover,
targets can hardly be viewed in a similar pose by two cam-
eras, simple comparison between the two views can not lead
to accurate results. [12] proposes to find the optimal cor-
respondence between images patches using a sparse-based
local matching technique.

In our previous work [1], we presented a transition proba-
bility for each path independently as we used a non-Markovian
model; i.e, the probability of transition was represented by
a 3D tensor (2D for the cameras, and 1D for the path where
each path was indexed). In this current work, we signifi-
cantly improve our preliminary work as follows:

• We propose an improved model and an easier comput-
ing method without needing to adjust the tensor size
each time we have another path. As a result, there
is no need to adjust all probabilities presented in a
network.

• We take into account the fact that the previous re-
identifications are not pinpointed, so the probability
of the path is straightened by the preciseness of the
previous re-identifications.

The remainder of the paper is organized as follows. First,
we describe in section 2 the environment of the Ant-Cam
model and introduce the model. Then in section 3, we ex-
plain the re-identification method. Next, we present the cor-
relation between the cameras in the network and how they
respond to an event in section 4. After that, we present in
section 5 the experimental evaluation results and we discuss
possible improvements. Finally, a conclusion is drawn in
section 6.

2. ANT-CAM MODEL
We consider a set of cameras scattered in the environment

without any prior knowledge about their positions, FOVs or
neighbors. Like ants, the Ant-Cams will communicate de-
pending on their needs (to obtain information in return) and
experience (to pro-actively share information that may help
others). For instance, when a camera detects a target and
anticipates its local trajectory, it broadcasts or selectively
warns other cameras, so that they can be operational and in
turn better detect the target. Let {ci} be a fixed set of cam-
eras. Let o be an object of interest following a trajectory in
a network of cameras, thus generating a sequence of events
for a subset of cameras. We note oti the actual event of the
object o passing in front of the camera ci at time t. For each
camera {ci}, the input at time t is noted zti , which may be
composed of an arbitrary number of components (e.g. color,
speed, distance...). We define the entire set of inputs for all
cameras at time t as zt and inputs for all times up to time t
(i.e. t, tdt, ..., 0) as Zt. Similarly to z, we finally note ẑ the
model of the object o, represented by the theoretical obser-
vation(s) from the perspective of the network cameras. The
representation of any target traversing or moving within the
network can therefore be approximated by:

ot ≡ {ẑt, ẑt−dt, . . . , ẑ0} (1)

where each component represents the theoretical observa-
tion of the target in previous instants, and where a se-
quence of such observations may be required to discrimi-
nate between objects (adopting a non-Markovian behavior).
To predict a target trajectory, the goal of the network is
then to determine the next probable camera(s) that should
detect the object (ot+dt), based on previous observations
{zt, zt−dt, . . . , z0}.

The role of the camera is not only limited the use of its
own resources to perform object detection, but also to the
prediction of where the object may go. The content and
quality of the prediction itself depends on the target model
and possible information received from other cameras. Ap-
praising this prediction and its efficiency is central in the
context of this work. Interactions are required to learn and
adjust the predictions to the observed dynamics. For this
purpose, the cameras keep exchanging information even af-
ter the target moves away, sending or integrating feedbacks
on the quality of the prediction. Such signals are needed at
the learning stage, but may also help to plan the network
activity and to estimate online the prediction quality.

All connections are illustrated in Fig. 1, and we can further
refine the different input events received by each Ant-Cam
as follows:

• Observation: An external event (I3 on Fig. 1) will be
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Figure 1: Illustration of possible links between cameras

generated when a target is detected by the Ant-Cam.

• Prediction: An internal event (I1) results from the ac-
tivity in previous nodes (in terms of object trajecto-
ries) and predicts a future event to be observed by the
current camera.

• Acknowledgment : An internal event (I2) from the fol-
lowing nodes confirms that a predicted event was re-
ceived.

The output events follow the same logic, but there is no
external event (since no action is now taken on the environ-
ment at the camera level):

• Prediction: An internal event (O1) sent to neighbors
predicts that a specific event should be received at a
given time.

• Acknowledgment : An internal event (O2) sent back
to the previous node confirms a predicted event was
indeed observed. It also conveys information to help
improve the prediction of future similar events.

Those events help the camera to create its own identity in
the network and get the capacity to be self-critical and self-
regulated.

3. RE-IDENTIFICATION METHOD
For a predator attack, aggression or food detection, ants

try to warn the colony using different kinds of signals (chem-
ical, auditory....) in order to specify the needs so that others
can prepare themselves for help. This collaboration allows
solving complex problems. For this reason, the ant world is
always a source of inspiration and subject of scientific stud-
ies. We present here a network model, fully inspired from the
ant society. From a set of limited performance cameras, we
want to achieve a high level of efficiency. Following the ant
metaphor, the Ant-Cams communicate using pheromones
which are discharged into the network and propagated to
the other Ant-Cams, so they can warn the colony. This
pheromones contain different kinds of information : visual
νr, temporal τm and spatial ppath. Basically, we model and
study the camera responses to those events. For instance,
after receiving the pheromones, the camera can process an
observation event after a given delay. Once the camera re-
ceives the event, it will acknowledge and potentially correct
the prediction to the previous node, while continuing spread-
ing prediction events to subsequent cameras. This leads to
:

• Pre-event connectivity

• Event connectivity

• Post-event connectivity

The Pre-event connectivity is the reception of the predic-
tion I1 in Fig. 1. It contains the three parameters presented
above : the visual features νr, the temporal information τm
and the spatial information ppath.Thiswillbethepheromonebroadcastfromtheothercameraswhentheydetectsomething.

The Event connectivity is triggered by target detection.
The camera receives the pheromones containing three kinds
of information, and then compares the pheromones received
with the information extracted from the detection and gets
the re-identification confidence:

Visual features: They correspond to feature vectors for
an observation zi. They prototype the current object and
contain the target color, the velocity and the category. The
visual confidence φv is then estimated. It represents the
similarity between the observation zti : νr and the prediction
received from the other camera j representing zt−dt

j : ν′r.
This confidence is defined by:

φv = fv(ν′r, νr) = exp
−|ν′r−νr|

α2 (2)

where α is a scaling factor.

Temporal information: It contains information about de-
tection time. Typically, τm is the time needed for a target
to move from one camera to another. The temporal con-
fidence φt represents the similarity between the predicted
time τm and the observed time τr to move from one camera
to another. It is defined by:

φt = ft(τm, τr) = exp
−|τm−τr|

α2 (3)

Spatial information: It is related to the path through the
network. The spatial confidence p(path) is defined by the
probability that the target gets through the path s. This
information is defined by:

φs = fs(p(s)) (4)

Let C5 > C2 > C6 > C4 and C7 > C2 > C6 > C3 be the
most used paths in the network. A target presented in C6

will require an estimation of the next state (C3 or C4), which
cannot simply be deduced from the current camera or even
when considering the previous camera (C2 in both cases).
Whereas, considering the sequences of previous cameras will
disambiguate the trajectories.

This parameter is changed compared to our previous work.
In the past, it was limited to an index number of the path
s followed by the target. As a consequence, we had to ad-
just the matrix dimension each time a new path was fol-
lowed, which might complicate the calculation. To confirm
the reception of the target in the event connectivity step,
we condition the system to decide whether it is the same or
not. For this, we fix a similarity threshold where only the
similarity confidences equal to or above it are considered the
same.

As presented in the previous section, ẑt is the observation
of the object o at an instant t by the n cameras presented
in the network, which can be presented on ẑt ={ zt1,. . . ztn}.



Therefore, those components are binary values representing
whether the object is detected or not by a camera. Thus,
ẑt will straightforwardly correspond to the camera detecting
that object. Accordingly, (1) becomes :

ot ≡ {zti , zt−dt
j , . . . , z0k} (5)

Furthermore, to be more precise, we choose not to limit the
observation to binary values here, but we extend it to the
probability of this observation. As a result, each observation
zti is represented by p(oti|zti).

Those parameters are used to estimate how much does the
detected object correspond to the received prediction. This
estimation is evaluated by :

p(oti|Zt) =
p(zt|oti, Zt−dt)p(oti|Zt−dt)

p(zt|Zt−dt)
(6)

where p(zt|oti, Zt−dt) is the observation likelihood. It is the
probability of getting the camera input if we know that the
object is present in front of it at time t. We assume that
the current and past observations are independent from each
other and conditioned on the location. In other words, the
appearance of the object from the perspective of the camera
should be independent from the path followed by the ob-
ject. Hence, it becomes equivalent to p(zt|oti) and evaluated
relying on the similarity defined in the feature domain φv

defined by Ea. 2.
p(oti|Zt−dt) is the prior belief about the location of the ob-
ject in the network, conditioned by all previous observa-
tions on all cameras. This term can be evaluated from
p(ot−dt

j |Zt−dt), where dt is the time of the previous event
in the camera network. For this, we need to consider the set
of observed/memorized paths in the camera network, with
associated delays (limited to a fixed horizon, for example.
sequences of four nodes in the network). We evaluate this
term using the transition matrix [1] with the adjusted prob-
abilities having the temporal similarity φt (Eq. 3) and the
spatial information φs (Eq. 4).
p(zt|Zt−dt) is a normalizing term. The latter is independent
from the camera at all times. Subsequently, We obtain:

p(oti|Zt) ∝ p(zt|oti)p(oti|Zt−dt) (7)

4. TRANSITION BETWEEN CAMERAS
Ant colonies are described as superorganisms because ants

appear to operate as a unified entity, collectively working to-
gether to support the colony. In this respect, without any
central coordination or a prior knowledge about the net-
work topology, each camera interacts with the neighbors to
build up its knowledge, and to successfully contribute to the
self-organization of the network and achieve their objectives.
This adaptation is done continuously using a different inter-
action and accompanying environmental dynamics. Once
the target is re-identified as described in the previous sec-
tion, a feedback will be sent to confirm or not the event.
This is what we defined as a post-event connectivity. It will
enable the adjustment of the probabilities between the cam-
eras once a feedback confirming the reception of the target
is received. After each observation in any camera, the model
of the target object, transitions and delays can be updated.
Let us consider a set of cameras presented in Fig. 2 and an
object observed by j and then observed by i. Thus, the prob-
ability of this transition is estimated by j after receiving the

feedback from i:

p(i|s = jklm) =
p(s|i) ∗ p(i)

p(s)
(8)

where s is the path followed by the target before arriving to
j, and p(s) is a tracking confidence highlighting the certitude
that the target gets through the path s. In fact, it is obtained
by the cameras building s and inversely normalized to [0,1].
The number of cameras taken into account to build the path
should be fixed at the beginning. p(i) here corresponds to
p(oti|Zt) presented above and p(s|i) is posteriori probability
of coming from a path s when arriving at i. It corresponds
to the network history and structure and to the previous
targets following the same path.

This connectivity offers the possibility to learn about the
spatial relationship between cameras while tracking. Having
such information gives the opportunity to build the physi-
cal layer graph, L2 in Fig. 2, while the communication layer
graph L1 can be found out once the system starts track-
ing. Having the second layer L2 will reduce the commu-
nication cost without significantly sacrificing the network
performance, as the cameras will not need to broadcast the
information to the whole network any longer.
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Figure 2: Instance of network: Connectivity graph based on
events (L2) and communication graph allowed by technology
used for it(Wifi, LoRa..)

5. EVALUATION
In this section, we evaluate our model using a simulation

platform. The system is composed of a set of nodes able to
accomplish two tasks : (i) detecting and excerpting the nec-
essary information and (ii) dispatching the pheromones to
other cameras. This evaluation evinces how the system can
coordinate the interactions of nodes after each event pattern.
This simulation exhibits the coordination and collaboration
of the nodes to reach a stable state despite the environment
difficulties or some system failures such as losses of messages,
detection and re-identification problems.

The simulation is performed using the discrete event sim-
ulator OMNeT++ [20]. We simulate sensor nodes, with-
out any specifications about their capacities. For instance,
those nodes can be camera nodes able to detect targets.
However, what we want to highlight with this simulation
is the capacity of using different parameters to re-identify
the targets in addition to the comparison of visual features.
It demonstrates how the system can reach a stable state
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and how it can consider different parameters to take the
re-identification decision.

Indeed, the visual confidence is generated using a random
generator following a uniform distribution. This is the same
for τm, τr and the decision of the next destination. Some
hypotheses are assumed:

• We suppose that the target is moving with a constant
speed, and also we suppose that we have the same
category of targets (pedestrians, cars...). Actually, this
case will be added as future work. It will be based on
a simple classification of targets, which will add one
dimension on our tensor. The transition will depend
in this case on the path and on the type of the target.

• If the camera notes that the prediction does not cor-
respond to the detected target, it will suppose that it
is a new target appearing in the network.

• If a camera does not receive any feedback, it will con-
sider that it is located in the final destination of the
target.

Initially, all the probabilities are fixed to 1
N

, where N is the
number of nodes on the network.

A large network is implemented to show how a real net-
work used with a lot of cameras can be implemented in the
real world (Fig. 3). The different lines between the nodes
represent the possible transitions, and their thickness varies
depending on the importance of interactions between cam-
eras. Nevertheless, the interaction between two cameras de-
pend on the path followed before coming there. Hence, we
choose to represent just one of them as it is not possible to
present all of them. In addition, those lines do not represent
the physical communication. In other words, two nodes can
communicate due to the technology used, but will not be
necessarily a transitional link in case they are not a target
destination.

As it is mentioned in the previous section, we consider
that the camera has no knowledge about the environment.
Once it detects a target, it will broadcast the information
to the cameras in its range. The number of cameras to be
taken into account in the construction of the path is fixed at
three. In this case, we have a system represented by the ten-
sor (39*39*39*39*39*1). Accordingly, we show the results
on the node C21. Figures 4a, 4b and 4c present the transi-
tion probabilities between C21 and C22; it is estimated based
on the model presented and the values randomly generated
by the simulator. We clearly notice that the probability de-
pends on the followed path. Although we can not present

all possible paths, the latter figures highlight how much it
is important to consider a non-Markovian model; it yields
much more precision compared to the Markovian model. In
spite of the fact that the trajectories are randomly gener-
ated, the target movements are still deterministic. Typi-
cally, we see that the probabilities converge to a stable state
after 100 events (represented by N in Fig. 4). However, it
varies depending on the past followed path. Typically, with
Markovian models, the probability of moving from C21 to
C22 is the average of the different values presented here and
is not reliable information about a network.

As expected, the network takes much more time to reach
a stable state. With a lot of path possibilities and an impor-
tant choice of destinations, the probability converges slowly.
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Figure 4: Probability in node C21

Besides the evolution of probabilities, we estimate the
variation of the temporal pheromones τm to be interesting
(Fig. 5), as it represents the delay estimated to reach a
camera. Considering that we have the same type of targets
moving at a constant speed, the system is able to extract sta-
ble delay expectations. Unlike the probability, the evolution
of temporal information does not depend on the followed
path and is the same between two cameras. This temporal
information can give an idea about the distance between the
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cameras. This distance is relative and not physical. In this
respect, we can deduce that the distance between 31 and 32
is one and a half more than the distance between 32 and 33.

6. CONCLUSION
Nowadays, researches give accurate results in terms of

identification and tracking using single camera. However,
once it comes to distributed cameras, other problems ap-
pear. It is not anymore about detection and classification,
it is about sharing information and deciding whether it is
the same or not. The main idea of the paper is that re-
identification can not be limited to the visual comparison be-
tween two images captured from two cameras. Other param-
eters can be useful in this case, and can highly improve the
results. Moreover, this model can fit very-low-specifications
cameras. The system can reach a stable state despite the
lack of information given to the cameras at the beginning.
Once reached, it will be able to detect anomalies and find
useful information such as the distance between cameras.
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