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Trotter-Kato Product Formulae in Dixmier Ideal

It is shown that for a certain class of the Kato functions, the Trotter-Kato product formulae converge in Dixmier ideal C 1,∞ in topology, which is defined by the • 1,∞ -norm. Moreover, the rate of convergence in this topology inherits the error-bound estimate for the corresponding operator-norm convergence.

Preliminaries. Symmetrically-Normed Ideals

.

.

. The authors considered the case of the Gibbs-Schrödinger semigroups. They scrutinised, in these papers, a dependence of the rate of conver-

gence for the (exponential) Trotter formula on the smoothness of the potential in the Schrödinger generator.

The first abstract result in this direction was due to [START_REF] Neidhardt | Trotter-Kato product formula and symmetrically normed ideals[END_REF]. In this paper, a general scheme of lifting the operator-norm rate convergence for the Trotter-Kato product formulae was proposed and advocated for estimating the rate of the trace-norm convergence. This scheme was then improved and extended in [START_REF] Cachia | Trotter product formula for nonself-adjoint Gibbs semigroups[END_REF] to the case of nonself-adjoint Gibbs semigroups.

The aim of the present note is to elucidate the question about the existence of other than the von Neumann-Schatten proper two-sided ideals I(H ) of L (H ) and then to prove the (non-exponential) Trotter-Kato product formula in topology of these ideals together with an estimate of the corresponding rate of convergence. Here, a particular case of the Dixmier ideal C 1,∞ (H ) [START_REF] Connes | Noncommutative Geometry[END_REF][START_REF] Dixmier | Von Neumann Algebras[END_REF] is considered. To specify this ideal we recall in Section 2, the notion of singular trace and then of the Dixmier trace [START_REF] Carey | Dixmier traces and some applications in non-commutative geometry[END_REF][START_REF] Dixmier | Existence des traces non normales[END_REF] in Section 3. Main results about the Trotter-Kato product formulae in the Dixmier ideal C 1,∞ (H ) are collected in Section 4. There the arguments based on the lifting scheme [START_REF] Neidhardt | Trotter-Kato product formula and symmetrically normed ideals[END_REF] (Theorem 5.1) are refined for proving the Trotter-Kato product formulae convergence in the • 1,∞ -topology with the rate, which is inherited from the operator-norm convergence.

To this end, in the rest of the present section, we recall an important auxiliary tool: the concept of symmetrically-normed ideals, see e.g. [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF][START_REF] Simon | Trace Ideals and Their Applications[END_REF].

Let c 0 ⊂ l ∞ (N) be the subspace of bounded sequences ξ = {ξ j } ∞ j=1 ∈ l ∞ (N) of real numbers, which tend to zero. We denote by c f the subspace of c 0 consisting of all sequences with finite number of non-zero terms (finite sequences). Definition 1 A real-valued function φ : ξ → φ(ξ ) defined on c f is called a norming function if it has the following properties: φ(ξ ) > 0, ∀ξ ∈ c f , ξ = 0, (1.1)

φ(αξ ) = |α|φ(ξ ), ∀ξ ∈ c f , ∀α ∈ R, (1.2) 
φ(ξ + η) ≤ φ(ξ ) + φ(η), ∀ξ, η ∈ c f , (1.3) 
φ(1, 0, . . .) = 1.

(1.4)

A norming function φ is called to be symmetric if it has the additional property φ(ξ 1 , ξ 2 , ..., ξ n , 0, 0, . . .) = φ(|ξ j 1 |, |ξ j 2 |, ..., |ξ j n |, 0, 0, . . .) (1.5) for any ξ ∈ c f and any permutation j 1 , j 2 , . . . , j n of integers 1, 2, . . . , n.

It turns out that for any symmetric norming function and for any elements ξ, η from the positive cone c + of non-negative, non-increasing sequences such that ξ, η ∈ c f obey ξ 1 ≥ ξ 2 ≥ . . . ≥ 0, η 1 ≥ η 2 ≥ . . . ≥ 0 and n j=1 ξ j ≤ n j=1 η j , n = 1, 2, . . . , (1.6) valentin.zagrebnov@univ-amu.fr one gets the Ky Fan inequality [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF] (Sect. 3, §3) :

φ(ξ ) ≤ φ(η).

(1.7)

Moreover, (1.7) together with the properties, (1.1), (1.2) and (1.4) imply Therefore, any symmetric norming function φ is uniquely defined by its values on the positive cone c + . Now, let ξ = {ξ 1 , ξ 2 , . . .} ∈ c 0 . We define

ξ 1 ≤ φ(ξ ) ≤ ∞ j=1 ξ j , ξ ∈ c + f := c f ∩ c + . ( 1 
ξ (n) := {ξ 1 , ξ 2 , . . . , ξ n , 0, 0, . . . } ∈ c f .
Then, if φ is a symmetric norming function, we set

c φ := {ξ ∈ c 0 : sup n φ(ξ (n) ) < +∞}. (1.12)
Therefore, one gets

c f ⊆ c φ ⊆ c 0 .
Note that by (1.5)-(1.7) and (1.12), one gets

φ(ξ (n) ) ≤ φ(ξ (n+1) ) ≤ sup n φ(ξ (n) )
, for any ξ ∈ c φ .

Then, the limit φ(ξ )

:= lim n→∞ φ(ξ (n) ) , ξ ∈ c φ ,
exists and φ(ξ ) = sup n φ(ξ (n) ), i.e. the symmetric norming function φ is a normal functional on the set c φ (1.12), which is a linear space over R. By (1.3) and (1.10) one also gets that any symmetric norming function is continuous on c f :

|φ(ξ ) -φ(η)| ≤ φ(ξ -η) ≤ φ 1 (ξ -η) , ∀ξ, η ∈ c f .
Suppose that X is a compact operator, i.e. X ∈ C ∞ (H ). Then by s(X ) := {s 1 (X ), s 2 (X ), . . . }, we denote the sequence of singular values of X counting multiplicities. We always assume that

s 1 (X ) ≥ s 2 (X ) ≥ . . . ≥ s n (X ) ≥ . . . .
To define symmetrically-normed ideals of the compact operators C ∞ (H ), we introduce the notion of a symmetric norm.

Definition 2

Let I be a two-sided ideal of C ∞ (H ). A functional • sym : I → R + 0 is called a symmetric norm if besides the usual properties of the operator norm • :

X sym > 0, ∀X ∈ I, X = 0, α X sym = |α| X sym , ∀X ∈ I, ∀α ∈ C, X + Y sym ≤ X sym + Y sym , ∀X, Y ∈ I,
it verifies the following additional properties:

AX B sym ≤ A X sym B , X ∈ I, A, B ∈ L (H ), (1.13) α X sym = |α| X = |α| s 1 (X ), for any one -rank operator X ∈ I. (1.14)
If the condition (1.13) is replaced by

U X sym = XU sym = X sym , X ∈ I , (1.15) 
for any unitary operator U on H , then, instead of the symmetric norm, one gets definition of an invariant norm • inv .

First, we note that the ordinary operator norm • on any ideal I ⊆ C ∞ (H ) is evidently a symmetric norm as well as an invariant norm.

Second, we observe that, in fact, every symmetric norm is invariant. Indeed, for any unitary operators U and V one gets by (1.13) that U X V sym ≤ X sym , X ∈ I .

(1.16)

Since X = U -1 U X V V -1
, we also get X sym ≤ U X V sym , which together with (1.16) yield (1.15). Third, we claim that X sym = X * sym . To this aim, let X = U |X | be the polar representation of the operator X ∈ I. Since U * X = |X |, then by (1.13), we obtain X sym = |X | sym . The same line of reasoning applied to the adjoint operator X * = |X |U * yields X * sym = |X | sym , which proves the claim. Now, we can apply the concept of the symmetric norming functions to describe the symmetrically-normed ideals of the unital algebra of bounded operators L (H ), or in general, the symmetrically-normed ideals generated by symmetric norming functions. Recall that any proper two-sided ideal I(H ) of L (H ) is contained in compact operators C ∞ (H ) and contains the set K (H ) of finite-rank operators, see e.g. [START_REF] Pietsch | Traces of operators and their history[END_REF][START_REF] Simon | Trace Ideals and Their Applications[END_REF]:

K (H ) ⊆ I(H ) ⊆ C ∞ (H ).
(1.17)

To clarify the relation between symmetric norming functions and the symmetricallynormed ideals, we mention that there is an obvious one-to-one correspondence between functions φ (Definition 1) on the cone c + and the symmetric norms • sym on K (H ). To proceed with a general setting, one needs definition of the following relation.

Definition 3

Let c φ be the set of vectors (1.12) generated by a symmetric norming function φ. We associate with c φ a subset of compact operators .18) This definition implies that the set C φ (H ) is a proper two-sided ideal of the algebra L (H ) of all bounded operators on H . Setting

C φ (H ) := {X ∈ C ∞ (H ) : s(X ) ∈ c φ } . ( 1 
X φ := φ(s(X )) , X ∈ C φ (H ) , (1.19) 
one obtains a symmetric norm:

• sym = • φ , on the ideal I = C φ (H ) (Definition 2
) such that this symmetrically-normed ideal becomes a Banach space. Then, in accordance with (1.17) and (1.18), we obtain by (1.10) that

K (H ) ⊆ C 1 (H ) ⊆ C φ (H ) ⊆ C ∞ (H ) . (1.20)
Here, the trace-class operators C 1 (H ) := C φ 1 (H ), where the symmetric norming function φ 1 is defined in (1.9), and 

X φ ≤ X 1 , X ∈ C 1 (H ) .
φ (r ) (ξ ) := r j=1 ξ * j , ξ ∈ c f ,
generates for arbitrary fixed r ∈ N, the symmetrically-normed ideals, which are trivial in the sense that all C φ (r ) (H ) = C ∞ (H ). Criterion for an operator A to belong to a nontrivial ideal C φ is

M = sup m≥1 P m A P m φ < ∞ , (1.21) 
where {P m } m≥1 is a monotonously increasing sequence of the finite-dimensional orthogonal projectors on H strongly convergent to the identity operator [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF]. Note that for A ∈ C ∞ , the condition (1.21) is trivial.

We consider now a couple of examples to elucidate the concept of the symmetricallynormed ideals C φ (H ) generated by the symmetric norming functions φ and the rôle of the functional trace on these ideals.

Example 1 The von Neumann-Schatten ideals C p (H ) [START_REF] Schatten | Norm Ideals of Completely Continuous Operators[END_REF]. These ideals of C ∞ (H ) are generated by symmetric norming functions φ(ξ ) := ξ p , where

ξ p =   ∞ j=1 |ξ j | p   1/ p , ξ ∈ c f ,
for 1 ≤ p < +∞, and by

ξ ∞ = sup j |ξ j |, ξ ∈ c f ,
for p = +∞. Indeed, if we set {ξ * j := s j (X )} j≥1 , for X ∈ C ∞ (H ), then the symmetric norm X φ = s(X ) p coincides with X p and the corresponding symmetricallynormed ideal C φ (H ) is identical to the von Neumann-Schatten class C p (H ).

By definition, for any X ∈ C p (H ) the trace: |X | → Tr|X | = j≥1 s j (X ) ≥ 0. The trace norm X 1 = Tr|X | is finite on the trace-class operators C 1 (H ) and it is valentin.zagrebnov@univ-amu.fr infinite for X ∈ C p>1 (H ). We say that for p > 1, the von Neumann-Schatten ideals admit no trace, whereas for p = 1 the map: X → Tr X exists and it is continuous in the • 1 -topology.

Note that by virtute of the Tr-linearity the trace norm:

C 1,+ (H ) ∋ X → X 1 is linear on the positive cone C 1,+ (H ) of the trace-class operators.
Example 2 Now, we consider symmetrically-normed ideals C Π (H ). To this aim let Π = {π j } ∞ j=1 ∈ c + be a non-increasing sequence of positive numbers with π 1 = 1. We associate with Π the function

φ Π (ξ ) = sup n    1 n j=1 π j n j=1 ξ * j    , ξ ∈ c f . (1.22)
It turns out that φ Π is a symmetric norming function. Then, the corresponding (1.12) set c φ Π is defined by

c φ Π :=    ξ ∈ c f : sup n 1 n j=1 π j n j=1 ξ * j < +∞    .
Hence, the two-sided symmetrically-normed ideal C Π (H ) := C φ Π (H ) generated by symmetric norming function (1.22) consists of all those compact operators X that

X φ Π := sup n 1 n j=1 π j n j=1 s j (X ) < +∞ . (1.23)
This equation defines a symmetric norm

X sym = X φ Π on the ideal C Π (H ), see Definition 2. Now, let Π = {π j } ∞ j=1 , with π 1 = 1, satisfy ∞ j=1 π j = +∞ and lim j→∞ π j = 0 . (1.24) Then, the ideal C Π (H ) is nontrivial: C Π (H ) = C ∞ (H ) and C Π (H ) = C 1 (H ),
see Remark 2, and one has

C 1 (H ) ⊂ C Π (H ) ⊂ C ∞ (H ). (1.25)
If in addition to (1.24), the sequence Π = {π j } ∞ j=1 is regular, i.e. it obeys

n j=1 π j = O(nπ n ) , n → ∞ , (1.26) then X ∈ C Π (H ), if and only if s n (X ) = O(π n ) , n → ∞ , (1.27) 
cf. condition (1.21). On the other hand, the asymptotics

s n (X ) = o(π n ) , n → ∞ ,
implies that X belongs to some ideal in between of C 1 (H ) and C 1+ε (H ).

Remark 3 A natural choice of the sequence {π j } ∞ j=1 that satisfies (1.24) is π j = j -α , 0 < α ≤ 1. Note that if 0 < α < 1, then the sequence Π = {π j } ∞
j=1 satisfies (1.26), i.e. it is regular for ε = 1 -α. Therefore, the two-sided symmetrically-normed ideal C Π (H ) generated by symmetric norming function (1.22) consists of all those compact operators X , which singular values obey (1.27):

s n (X ) = O(n -α ), 0 < α < 1, n → ∞ . (1.28) Let α = 1/ p , p > 1.
Then, the corresponding to (1.28) symmetrically-normed ideal is defined by

C p,∞ (H ) := {X ∈ C ∞ (H ) : s n (X ) = O(n -1/ p ), p > 1} ,
which is known as the weak-C p ideal [START_REF] Pietsch | Traces of operators and their history[END_REF][START_REF] Simon | Trace Ideals and Their Applications[END_REF].

Whilst by virtue of (1.28) the weak-C p ideal admit no trace, definition (1.23) implies that for the regular case p > 1 a symmetric norm on C p,∞ (H ) is equivalent to

X p,∞ = sup n 1 n 1-1/ p n j=1 s j (X ) , (1.29) 
and

C 1 (H ) ⊂ C p,∞ (H ) ⊂ C ∞ (H ).

Singular Traces

Note that (1.29) implies:

C 1 (H ) ∋ A → A p,∞ < ∞,
but any related linear, positive and unitarily invariant functional (trace), which is nontrivial on the ideal C p,∞ (H ) is zero on the set of finite-rank operators K (H ). We remind that these non-normal traces:

Tr ω (X ) := ω({n -1+1/ p n j=1 s j (X )} ∞ n=1 ) , (2.1) 
valentin.zagrebnov@univ-amu.fr are called singular, [START_REF] Dixmier | Existence des traces non normales[END_REF][START_REF] Lord | Singular Traces. Theory and Applications[END_REF]. Here, ω is an appropriate linear positive normalised functional (state) on the Banach space l ∞ (N) of bounded sequences. Recall that the set of these states S (l ∞ (N)) ⊂ (l ∞ (N)) * , where (l ∞ (N)) * is dual of the Banach space l ∞ (N). Note that the singular trace (2.1) is continuous in topology defined by the norm (1.29).

Remark 4 (a) The weak-C p ideal, which is defined for p = 1 by

C 1,∞ (H ) := {X ∈ C ∞ (H ) : n j=1 s j (X ) = O(ln(n)), n → ∞} , (2.2) 
has a special interest. Note that since Π = { j -1 } ∞ j=1 does not satisfy (1.26), the characterisation s n (X ) = O(n -1 ) is not true, see (1.27), (1.28). In this case, the equivalent norm can be defined on the ideal (2.2) as

X 1,∞ := sup n∈N 1 1 + ln(n) n j=1 s j (X ).
(2.3) By virtute of (1.25) and Remark 3 one gets that

C 1 (H ) ⊂ C 1,∞ (H ) ⊂ C 1+ε (H ) for any ε > 0 and that C 1 (H ) ∋ A → A 1,∞ = A 1 ≥ A 1+ε . (b) In contrast to the trace norm • 1 on the positive cone C 1,+ (H ), see Example 1, the map X → X 1,∞ on the positive cone C 1,∞,+ (H )
is not linear although homogeneous. On the space l ∞ (N), there exists a state ω ∈ S (l ∞ (N)) such that the map

X → Tr ω (X ) := ω({(1 + ln(n)) -1 n j=1 s j (X )} ∞ n=1 ) , (2.4) 
is linear and verifies the properties of the (singular) trace for any X ∈ C 1,∞ (H ).

We construct ω in Section 3. This particular choice of the state ω defines the Dixmier trace on the space C 1,∞ (H ), which is called, in turn, the Dixmier ideal, see e.g. [START_REF] Carey | Dixmier traces and some applications in non-commutative geometry[END_REF][START_REF] Connes | Noncommutative Geometry[END_REF]. The Dixmier trace (2.4) is obviously continuous in topology defined by the norm (2.3). This last property is basic for discussion in Section 4 of the Trotter-Kato product formula in the • p,∞ -topology, for p ≥ 1.

Example 3 With non-increasing sequence of positive numbers π = {π j } ∞ j=1 , π 1 = 1, one can associate the symmetric norming function φ π given by

φ π (ξ ) := ∞ j=1 π j ξ * j , ξ ∈ c f .
The corresponding symmetrically-normed ideal is denoted by C π (H ) := C φ π (H ).

If the sequence π satisfies (1.24), then ideal C π (H ) does not coincide neither with C ∞ (H ) nor with C 1 (H ). If, in particular, π j = j -α , j = 1, 2, . . . , for 0 < α ≤ 1, then the corresponding ideal is denoted by C ∞, p (H ), p = 1/α. The norm on this ideal is given by

X ∞, p := ∞ j=1 j -1/ p s j (X ) , p ∈ [1, ∞).
The symmetrically-normed ideal C ∞,1 (H ) is called the Macaev ideal [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF]. It turns out that the Dixmier ideal

C 1,∞ (H ) is dual of the Macaev ideal: C 1,∞ (H ) = C ∞,1 (H ) * . Proposition 2.1 The space C 1,∞ (H ) endowed with the norm • 1,∞ is a Banach space.
The proof is quite standard although tedious and long. We address the readers to the corresponding references, e.g. [START_REF] Gohberg | Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space[END_REF].

Proposition 2.2 The space C 1,∞ (H ) endowed with the norm • 1,∞ is a Banach ideal in the algebra of bounded operators L (H ).
Proof To this end, it is sufficient to prove that if A and C are bounded operators, then

B ∈ C 1,∞ (H ) implies ABC ∈ C 1,∞ (H ).
Recall that singular values of the operator ABC verify the estimate s j (ABC) ≤ A C s j (B). By (2.3), it yields

ABC 1,∞ = sup n∈N 1 1 + ln(n) n j=1 s j (ABC) ≤ (2.5) A C sup n∈N 1 1 + ln(n) n j=1 s j (B) = A C B 1,∞ ,
and consequently the proof of the assertion.

Recall that for any A ∈ L (H ) and all B ∈ C 1 (H ) one can define a linear functional on C 1 (H ) given by Tr H (AB). The set of these functionals {Tr

H (A•)} A∈L (H ) is just the dual space C 1 (H ) * of C 1 (H ) with the operator-norm topology. In other words, L (H ) = C 1 (H ) * , in the sense that the map A → Tr H (A•) is the isometric isomorphism of L (H ) onto C 1 (H ) * .
With the help of the duality relation 

A|B := Tr H (AB) , (2.6 
ideal: C 1,∞ (H ) = C ∞,1 (H ) * , where C ∞,1 (H ) = {A ∈ C ∞ (H ) : n≥1 1 n s n (A) < ∞} , (2.7) 
see Example 3. By the same duality relation and by similar calculations one also obtains that the

predual of C ∞,1 (H ) is the ideal C ∞,1 (H ) * = C (0)
1,∞ (H ), defined by

C (0) 1,∞ (H ) := {A ∈ C ∞ (H ) : n j≥1 s j (A) = o(ln(n)), n → ∞} . (2.8)
By virtue of (2.2) (see Remark 4), the ideal (2.8) is not self-dual since

C (0) 1,∞ (H ) * * = C 1,∞ (H ) ⊃ C (0) 1,∞ (H ).
The problem which has motivated construction of the Dixmier trace in [START_REF] Dixmier | Existence des traces non normales[END_REF] was related to the question of a general definition of the trace, i.e. a linear, positive and unitarily invariant functional on a proper Banach ideal I(H ) of the unital algebra of bounded operators L (H ). Since any proper two-sided ideal I(H ) of L (H ) is contained in compact operators C ∞ (H ) and contains the set K (H ) of finite-rank operators ((1.17), Section 1), domain of definition of the trace has to coincide with the ideal I(H ). Note that every nontrivial normal trace on L (H ) is proportional to the canonical trace Tr H (•), see e.g. [START_REF] Dixmier | Von Neumann Algebras[END_REF][START_REF] Pietsch | Traces of operators and their history[END_REF]. Therefore, the Dixmier trace (2.4

) : C 1,∞ ∋ X → Tr ω (X ), is not normal. Definition 4 A trace on the proper Banach ideal I(H ) ⊂ L (H ) is called singular if it vanishes on the set K (H ).
Since a singular trace is defined up to trace-class operators C 1 (H ), then by Remark 5 it is obviously not normal.

Dixmier Trace

Recall that only the ideal of trace-class operators has the property that on its positive cone

C 1,+ (H ) := {A ∈ C 1 (H ) : A ≥ 0} the trace norm is linear since A + B 1 = Tr (A + B) = Tr (A) + Tr (B) = A 1 + B 1 for A, B ∈ C 1,+ (H ), see Example 1.
Then, the uniqueness of the trace norm allows to extend the trace to the whole linear space C 1 (H ). Imitation of this idea fails for other symmetricallynormed ideals.

This problem motivates the Dixmier trace construction as a certain limiting procedure involving the • 1,∞ -norm. Let C 1,∞,+ (H ) be a positive cone of the Dixmier ideal. One can try to construct on C 1,∞,+ (H ) a linear, positive and unitarily invariant functional (called trace T ) via extension of the limit (called Lim) of the sequence of properly normalised finite sums of the operator X singular values:

T (X ) := Lim n→∞ 1 1 + ln(n) n j=1 s j (X ) , X ∈ C 1,∞,+ (H ). (3.1)
First, we note that since for any unitary U : H → U , the singular values of X ∈ C ∞ (H ) are invariant: s j (X ) = s j (U X U * ), it is also true for the sequence

σ n (X ) := n j=1 s j (X ) , n ∈ N . (3.2)
Then, the Lim in (3.1) (if it exists) inherits the property of unitarity. Now, we comment that positivity: X ≥ 0 implies the positivity of eigenvalues {λ j (X )} j≥1 and consequently: λ j (X ) = s j (X ). Therefore, σ n (X ) ≥ 0 and the Lim in (3.1) is a positive mapping.

The next problem with the formula for T (X ) is its linearity. To proceed, we recall that if P : H → P(H ) is an orthogonal projection on a finite-dimensional subspace with dim P(H ) = n, then for any bounded operator X ≥ 0 the (3.2) gives σ n (X ) = sup P {Tr H (X P) : dim P(H ) = n} .

(3.3)

As a corollary of (3.3), one obtains the Horn-Ky Fan inequality

σ n (X + Y ) ≤ σ n (X ) + σ n (Y ) , n ∈ N, (3.4) 
valid, in particular, for any pair of bounded positive compact operators X and Y . For dim P(H ) ≤ 2n, one similarly gets from (3.3) that

σ 2n (X + Y ) ≥ σ n (X ) + σ n (Y ) , n ∈ N . (3.5) 
Motivated by (3.1), we now introduce

T n (X ) := 1 1 + ln(n) σ n (X ) , X ∈ C 1,∞,+ (H ) , (3.6) 
valentin.zagrebnov@univ-amu.fr and denote by Lim{T n (X )} n∈N := Lim n→∞ T n (X ) the right-hand side of the functional in (3.1). Note that by (3.6), the inequalities (3.4) and (3.5) yield for n ∈ N

T n (X + Y ) ≤ T n (X ) + T n (Y ) , 1 + ln(2n) 1 + ln(n) T 2n (X + Y ) ≥ T n (X ) + T n (Y ). (3.7) 
Since the functional Lim includes the limit n → ∞, the inequalities (3.7) would give a desired linearity of the trace T :

T (X + Y ) = T (X ) + T (Y ) , (3.8) 
if one proves that the Lim n→∞ in (3.1) exists and finite for X, Y as well as for X + Y .

To this end, we note that if the right-hand side of (3.1) is finite, then one has (3.8), and hence the Lim{T n (X )} n∈N is a positive linear map Lim : l ∞ (N) → R, which defines a state ω ∈ S (l ∞ (N)) on the Banach space of sequences {T n (•)} n∈N ∈ l ∞ (N). To make this definition more precise, we impose on the state ω the following conditions:

(a) ω(η) ≥ 0 , for ∀η = {η n ≥ 0} n∈N , (b) ω(η) = Lim{η n } n∈N = lim n→∞ η n , if {η n ≥ 0} n∈N is convergent .
By virtue of (a) and (b), the definitions (3.1) and (3.6) imply that for X, Y ∈ C 1,∞,+ (H ), one gets

T (X ) = ω({T n (X )} n∈N ) = lim n→∞ T n (X ) , (3.9) 
T (Y ) = ω({T n (Y )} n∈N ) = lim n→∞ T n (Y ) , (3.10) 
T (X + Y ) = ω({T n (X + Y )} n∈N ) = lim n→∞ T n (X + Y ) , (3.11) 
if the limits in the right-hand sides of (3.9)-(3.11) exist. Now, to ensure (3.8) one has to select ω in such a way that it allows to restore the equality in (3.7), when n → ∞. To this aim, we impose on the state ω the condition of dilation D 2 -invariance.

Let D 2 : l ∞ (N) → l ∞ (N) be dilation mapping η → D 2 (η):

D 2 : (η 1 , η 2 , . . . η k , . . .) → (η 1 , η 1 , η 2 , η 2 , . . . η k , η k , . . .) , ∀η ∈ l ∞ (N). (3.12)
We say that ω is dilation D 2 -invariant if for any η ∈ l ∞ (N) it verifies the property

(c) ω(η) = ω(D 2 (η)). (3.13)
We shall discuss the question of existence, the dilation D 2 -invariant states (the invariant means), on the Banach space l ∞ (N) in Remark 6.

Let X, Y ∈ C 1,∞,+ (H ). Then, applying the property (c) to the sequence η = {ξ 2n := T 2n (X + Y )} ∞ n=1 , we obtain

ω(η) = ω(D 2 (η)) = ω(ξ 2 , ξ 2 , ξ 4 , ξ 4 , ξ 6 , ξ 6 , . . .) . (3.14) Note that if ξ = {ξ n = T n (X + Y )} ∞ n=1
, then the difference of the sequences:

D 2 (η) -ξ = (ξ 2 , ξ 2 , ξ 4 , ξ 4 , ξ 6 , ξ 6 , . . .) -(ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 , ξ 6 , . . .) , converges to zero if ξ 2n -ξ 2n-1 → 0 as n → ∞.
Then, by virtue of (3.11) and (3.14), this would imply

ω({T 2n (X + Y )} n∈N ) = ω(D 2 ({T 2n (X + Y )} n∈N )) = ω({T n (X + Y )} n∈N ) ,
or by (3.11): lim n→∞ T 2n (X + Y ) = lim n→∞ T n (X + Y ), which by estimates (3.7) would also yield Therefore, to finish the proof of linearity it rests only to check that lim n→∞ (ξ 2nξ 2n-1 ) = 0. To this end, we note that by definitions (3.2) and (3.6), one gets 

lim n→∞ T n (X + Y ) = lim n→∞ T n (X ) + lim n→∞ T n (Y ). ( 3 
ξ 2n -ξ 2n-1 = 1 ln(2n) - 1 ln(2n -1) σ 2n-1 (X + Y ) + 1 ln(2n) s 2n (X + Y ). (3.16) Since X, Y ∈ C 1,∞,+ ( 
Tr ω (X ) := Lim n→∞ σ n (X ) 1 + ln(n) , (3.17) 
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where Lim n→∞ is defined by a dilation-invariant state ω ∈ S (l ∞ (N)) on l ∞ (N) that satisfies the properties (a), (b) and (c). Since any self-adjoint operator X ∈ C 1,∞ (H ) has the representation: X = X + -X -, where X ± ∈ C 1,∞,+ (H ), one gets Tr ω (X ) = Tr ω (X + ) -Tr ω (X -). Then, for arbitrary Z ∈ C 1,∞ (H ), the Dixmier trace is Tr ω (Z ) = Tr ω (ReZ ) + iTr ω (Im Z ).

Note that if X ∈ C 1,∞,+ (H ), then definition (3.17) of Tr ω (•) together with definition of the norm • 1,∞ in (2.3) readily imply the estimate Tr ω (X ) ≤ X 1,∞ , which, in turn, yields the inequality for arbitrary Z from the Dixmier ideal C 1,∞ (H ): For more details about different constructions of invariant means and the corresponding Dixmier trace on C 1,∞ (H ), see e.g., [START_REF] Carey | Dixmier traces and some applications in non-commutative geometry[END_REF][START_REF] Lord | Singular Traces. Theory and Applications[END_REF]. 

|Tr ω (Z )| ≤ Z 1,∞ . ( 3 
ω : C 1,∞ (H ) → C is continuous in the • 1,∞ -norm.
Proof (a) Since every operator B ∈ L (H ) is a linear combination of four unitary operators, it is sufficient to prove the equality Tr ω (ZU ) = Tr ω (U Z ) for a unitary operator U and moreover only for Z ∈ C 1,∞,+ (H ). Then, the corresponding equality follows from the unitary invariance:

s j (Z ) = s j (ZU ) = s j (U Z ) = s j (U ZU * ) of singular values of the positive operator Z for all j ≥ 1. (b) Since C ∈ C 1 (H ) yields C 1 < ∞, definition (3.2) implies σ n (C) ≤ C 1 for
any n ≥ 1. Then, by Definition 5 one gets Tr ω (C) = 0. Proof of the last part of the statement is standard. (c) Since the ideal C 1,∞ (H ) is a Banach space and Tr ω : C 1,∞ (H ) → C a linear functional, it is sufficient to consider continuity at X = 0. Then, let the sequence

{X k } k≥1 ⊂ C 1,∞ (H ) converges to X = 0 in • 1,∞ -topology, i.e. by (2.3) lim k→∞ X k 1,∞ = lim k→∞ sup n∈N 1 1 + ln(n) σ n (X k ) = 0 . (3.19) Since (3.18) implies |Tr ω (X k )| ≤ X k 1,∞ , the assertion follows from (3.19).
Therefore, the Dixmier construction gives an example of a singular trace in the sense of Definition 4.

Trotter-Kato Product Formulae in the Dixmier Ideal

Let A ≥ 0 and B ≥ 0 be two non-negative self-adjoint operators in a separable Hilbert space H and let the subspace H 0 := dom(A 1/2 ) ∩ dom(B 1/2 ). It may happen that dom(A) ∩ dom(B) = {0}, but the form-sum of these operators:

H = A . + B is well-defined in the subspace H 0 ⊆ H .
Kato proved in [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] that under these conditions the Trotter product formula s -lim n→∞ e -t A/n e -t B/n n = e -t H P 0 , t ≥ 0, (

converges in the strong operator topology uniformly in t ∈ [0, T ], 0 < T < +∞ , where P 0 denotes the orthogonal projection from H onto H 0 . Moreover, in [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] it was also shown that the product formula is true not only for the exponential function e -x , x ≥ 0, but for a whole class of Borel measurable functions f (•) and g(•), which are defined on R + 0 := [0, ∞) and satisfy the conditions:

0 ≤ f (x) ≤ 1, f (0) = 1, f ′ (+0) = -1, (4.2) 0 ≤ g(x) ≤ 1, g(0) = 1, g ′ (+0) = -1. (4.3)
Namely, the main result of [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] says that besides (4.1) one also gets convergence

τ -lim n→∞ ( f (t A/n)g(t B/n)) n = e -t H P 0 , t ≥ 0, (4.4) 
uniformly in t ∈ [0, T ], 0 < T < +∞, if topology τ = s. Product formulae of the type (4.4) are called the Trotter-Kato product formulae for functions (4.2), (4.3), which are called the Kato functions K . Note that K is closed with respect to the products of Kato functions.

For some particular classes of the Kato functions we refer to [START_REF] Neidhardt | On error estimates for the Trotter-Kato product formula[END_REF][START_REF] Zagrebnov | Topics in the Theory of Gibbs Semigroups[END_REF]. In the following, it is useful to consider instead of f (x)g(x) two Kato functions: g(x/2) f (x)g(x/2) and f (x/2)g(x) f (x/2) that produce the self-adjoint operator families F(t) := g(t B/2) f (t A)g(t B/2) and T (t) := f (t A/2)g(t B) f (t A/2), t ≥ 0.

(4.5) Since [START_REF] Neidhardt | The Trotter product formula for Gibbs semigroup[END_REF] it is known that the lifting of the topology of convergence in (4.4) to the operator norm τ = • needs more conditions on operators A and B as well as on the key Kato functions f, g ∈ K . One finds a discussion and more references on this subject in [START_REF] Zagrebnov | Topics in the Theory of Gibbs Semigroups[END_REF]. Here, we quote a result that will be used below for the Trotter-Kato product formulae in the Dixmier ideal C 1,∞ (H ).

Consider the class K β of Kato functions, which is defined in [START_REF] Ichinose | The norm convergence of the Trotter-Kato product formula with error bound[END_REF][START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF] as given below:

(i) Measurable functions 0 ≤ h ≤ 1 on R + 0 , such that h(0) = 1 and h ′ (+0) = -1. (ii) For ε > 0 there exists δ = δ(ε) < 1, such that h(s) ≤ 1 -δ(ε) for s ≥ ε and

[h] β := sup s>0 |h(s) -1 + s| s β < ∞ , for 1 < β ≤ 2 .
The standard examples are h(s) = e -s and h(s) = (1 + a -1 s) -a , a > 0.

Below we consider the class K β and a particular case of generators A and B, such that for the Trotter-Kato product formulae the estimate of the convergence rate is optimal. Proposition 4.1 ([11]) Let f, g ∈ K β with β = 2, and let A, B be non-negative selfadjoint operators in H such that the operator sum C := A + B is self-adjoint on domain dom(C) := dom(A) ∩ dom(B). Then, the Trotter-Kato product formulae converge for n → ∞ in the operator norm:

[ f (t A/n)g(t B/n)] n -e -tC = O(n -1 ) , [g(t B/n) f (t A/n)] n -e -tC = O(n -1 ) , F(t/n) n -e -tC = O(n -1 ) , T (t/n) n -e -tC = O(n -1 ).
Note that corresponding to each formula, error bounds O(n -1 ) are equal up to coefficients {Γ j > 0} 4 j=1 and that each rate of convergence

Γ j ε(n) = O(n -1 ), j = 1, . . . 4, is optimal.
The first lifting lemma yields sufficient conditions that allow to strengthen the strong operator convergence to the • φ -norm convergence in the symmetricallynormed ideal C φ (H ). Since C φ (H ) is a Banach space with symmetric norm (1.13) that verifies Z X φ ≤ Z X φ , one gets the estimate

(Z (t/r ) -Z )Y X φ ≤ (Z (t/r ) -Z )Y X φ , (4.9) 
which together with (4.8) give the proof of (4.7).

The second lifting lemma allows to estimate the rate of convergence of the Trotter-Kato product formula in the norm (1.19) of symmetrically-normed ideal C φ (H ) via the error bound ε(n) in the operator norm due to Proposition 4.1.

Lemma 4.3 Let A and B be non-negative self-adjoint operators on the separable

Hilbert space H that satisfy the conditions of Proposition 4.1. Let f, g ∈ K 2 be such that F(t 0 ) ∈ C φ (H ) for some t 0 > 0.

If Γ t 0 ε(n), n ∈ N is the operator-norm error bound away from t 0 > 0 of the Trotter-Kato product formula for { f (t A)g(t B)} t≥0 , then for some Γ φ 2t 0 > 0 the function ε φ (n) := {ε([n/2]) + ε([(n + 1)/2])}, n ∈ N defines the error bound away from 2t 0 of the Trotter-Kato product formula in the ideal C φ (H ): 

[ f (t A/n)g(t B/n)] n -e -tC φ = Γ φ 2t 0 ε φ (n) , n → ∞. t ≥ 2t 0 . ( 4 
( f (t A/n)g(t B/n)) n -e -tC = (4.11) ( f (t A/n)g(t B/n)) k -e -ktC/n ( f (t A/n)g(t B/n)) m + e -ktC/n ( f (t A/n)g(t B/n)) m -e -mtC/n .
Since by conditions of lemma F(t 0 ) ∈ C φ (H ), definition (4.5) and representation

f (t A/n)g(t B/n)) m = f (t A/n)g(t B/n) 1/2 F(t/n) m-1 g(t B) 1/2 yield ( f (t A/n)g(t B/n)) m φ ≤ F(t 0 ) φ , (4.12) 
for t such that t 0 ≤ (m -1)t/n ≤ (m -1)t 0 and m -1 ≥ 1.

Note that for self-adjoint operators e -tC and F(t) by Araki's log-order inequality for compact operators [START_REF] Araki | On an inequality of Lieb and Thirring[END_REF], one gets for kt/n ≥ t 0 the bound of e -ktC/n in the • φnorm:

e -ktC/n φ ≤ F(t 0 ) φ . (4.13)

Since by Definitions 2 and 3 the ideal C φ (H ) is a Banach space, and from (4.11)-(4.13), we obtain the estimate

( f (t A/n)g(t B/n)) n -e -tC φ ≤ (4.14) F(t 0 ) φ ( f (t A/n)g(t B/n)) k -e -ktC/n + F(t 0 ) φ ( f (t A/n)g(t B/n)) m -e -mtC/n , for t such that (1 + (k + 1)/(m -1))t 0 ≤ t ≤ nt 0 , m ≥ 2 and t ≥ (1 + m/k)t 0 .
Now, by conditions of lemma Γ t 0 ε(•) is the operator-norm error bound away from t 0 , for any interval [a, b] ⊆ (t 0 , +∞). Then, there exists n 0 ∈ N such that 

( f (t A/n)g(t B/n)) k -e -ktC/n ≤ Γ t 0 ε(k) , (4.15) 
for kt/n ∈ [a, b] ⇔ t ∈ [(1 + m/k)a, (1 + m/k)b] and ( f (t A/n)g(t B/n)) m -e -mtC/n ≤ Γ t 0 ε(m) , (4.16 
[τ 0 , τ ] ⊆ (2t 0 , +∞), we find that [τ 0 , τ ] ⊆ [(1 + (k + 1)/ (m -1))t 0 , nt 0 ] for sufficiently large n. Moreover, choosing [τ 0 /2, τ/2] ⊆ (a, b) ⊆ (t 0 , +∞), we satisfy [τ 0 , τ ] ⊆ [(1 + m/k)a, (1 + m/k)b] and [τ 0 , τ ] ⊆ [(1 + k/ m)a, (1 + k/m)b] again for sufficiently large n.
Thus, for any interval [τ 0 , τ ] ⊆ (2t 0 , +∞) there is n 0 ∈ N such that (4.14)-(4.16) hold for t ∈ [τ 0 , τ ] and n ≥ n 0 . Therefore, (4.14) yields the estimate

( f (t A/n)g(t B/n)) n -e -tC φ ≤ (4.17) Γ t 0 F(t 0 ) φ {ε([n/2]) + ε([(n + 1)/2])} , for t ∈ [τ 0 , τ ] ⊆ (2t 0 , +∞) and n ≥ n 0 . Hence, Γ φ 2t 0 := Γ t 0 F(t 0 ) φ and Γ φ 2t 0 ε φ (•)
is an error bound in the Trotter-Kato product formula (4.10) away from 2t 0 in C φ (H ) for the family { f (t A)g(t B)} t≥0 .

The lifting Lemma 4.2 allows to extend the proofs for other approximants: {g(t B) f (t A)} t≥0 , {F(t)} t≥0 and {T (t)} t≥0 .

valentin.zagrebnov@univ-amu.fr Now, we apply Lemma 4.3 in Dixmier ideal C φ (H ) = C 1,∞ (H ). This concerns the norm convergence (4.10), but also the estimate of the convergence rate for Dixmier traces:

|Tr ω (e Note that for the particular case of Proposition 4.1, these arguments yield for (4.17) the explicit convergence rate asymptotics O(n -1 ) for the Trotter-Kato formulae and consequently, the same asymptotics for convergence rates of the Trotter-Kato formulae for the Dixmier trace (4.18), (4.19).

Therefore, we proved in the Dixmier ideal C 1,∞ (H ) the following assertion. away from 2t 0 . The rate O(n -1 ) of convergence is optimal in the sense of [START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF]. By virtue of (4.19), the same asymptotics O(n -1 ) of the convergence rate are valid for convergence of the Trotter-Kato formulae for the Dixmier trace: Optimality of the estimates in Theorem 1 is a heritage of the optimality in Proposition 4.1. Recall that, in particular, this means that in contrast to the Lie product formula for valentin.zagrebnov@univ-amu.fr bounded generators A and B, the symmetrisation of approximants { f (t)g(t)} t≥0 , and {g(t) f (t)} t≥0 by {F(t)} t≥0 and {T (t)} t≥0 , does not yield (in general) the improvement of the convergence rate, see [START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF][START_REF] Tamura | A remark on operator-norm convergence of Trotter-Kato product formula[END_REF] and discussion in [START_REF] Zagrebnov | Trotter-Kato product formula: some recent results[END_REF].

We resume that the lifting Lemma 4.2 and 4.3 are a general method to study the convergence in symmetrically-normed ideals C φ (H ) as soon as it is established in L (H ) in the operator-norm topology. The crucial is to check that for any of the key Kato functions (e.g. for {F(t)} t≥0 ) there exists t 0 > 0 such that F(t)| t≥t 0 ∈ C φ (H ). Sufficient conditions for that one can be found in [START_REF] Neidhardt | Fractional powers of self-adjoint operators and Trotter-Kato product formula[END_REF][START_REF] Neidhardt | Trotter-Kato product formula and operator-norm convergence[END_REF][START_REF] Neidhardt | On the operator-norm convergence of the Trotter-Kato product formula[END_REF] or in [START_REF] Zagrebnov | Topics in the Theory of Gibbs Semigroups[END_REF].

. 8 )

 8 Note that the left-and right-hand sides of(1.8) are the simplest examples of symmetric norming functions on domain c + f :φ ∞ (ξ ) := ξ 1 and φ 1 (ξ ) := ∞ j=1 ξ j .(1.9)By Definition 1, the observations (1.8) and (1.9) yieldφ ∞ (ξ ) := max j≥1 |ξ j | , φ 1 (ξ ) := ∞ j=1 |ξ j | ,(1.10)φ ∞ (ξ ) ≤ φ(ξ ) ≤ φ 1 (ξ ) , for all ξ ∈ c f .We denote by ξ * := {ξ * 1 , ξ * 2 , . . . } a decreasing rearrangement:ξ * 1 = sup j≥1 |ξ j | , ξ * 1 + ξ * 2 = sup i = j {|ξ i | + |ξ j |}, . . . ,of the sequence of absolute values {|ξ n |} n≥1 , i.e. ξ * 1 ≥ ξ * 2 ≥ . . . . Then, ξ ∈ c f implies ξ * ∈ c f and by (1.5) one obtains also that φ(ξ ) = φ(ξ * ), ξ ∈ c f . (1.11)

Remark 5

 5 The canonical trace Tr H (•) is nontrivial only on domain, which is the trace-class ideal C 1 (H ), see Example 1. We recall that it is characterised by the property of normality: Tr H (sup α B α ) = sup α Tr H (B α ), for every directed increasing bounded family {B α } α∈ of positive operators from C 1,+ (H ).

. 15 )

 15 Now, summarising (3.9), (3.10),(3.11) and(3.15), we obtain the linearity (3.8) of the limiting functional T on the positive cone C 1,∞,+ (H ) if it is defined by the corresponding D 2 -invariant state ω or a dilation-invariant mean.

Definition 5

 5 H ), we obtain that lim n→∞ s 2n (X + Y ) = 0 and that σ 2n-1 (X + Y ) = O(ln(2n -1)). Then taking into account that (1/ln(2n) -1/ ln(2n -1)) = o(1/ln(2n -1)) one gets that for n → ∞ the right-hand side of (3.16) converges to zero.To conclude our construction of the trace T (•) we note that by linearity (3.8) one can uniquely extend this functional from the positive cone C 1,∞,+ (H ) to the real subspace of the Banach space C 1,∞ (H ), and finally to the entire ideal C 1,∞ (H ). The Dixmier trace Tr ω (X ) of the operator X ∈ C 1,∞,+ (H ) is the value of the linear functional (3.1):

. 18 )

 18 Remark 6 A decisive for construction of the Dixmier trace Tr ω (•) is the existence of the invariant mean ω ∈ S (l ∞ (N)) ⊂ (l ∞ (N)) * . Here, the space (l ∞ (N)) * is dual to the Banach space of bounded sequences. Then, by the Banach-Alaoglu theorem, the convex set of states S (l∞ (N)) is compact in (l ∞ (N)) * in the weak* topology. Now, for any φ ∈ S (l ∞ (N)), the relation φ(D 2 (•)) =: (D * 2 φ)(•) defines the dual D * 2 -dilation on the set of states. By definition (3.12), this map is such that D * 2 : S (l ∞ (N)) → S (l ∞ (N)), as well as continuous and affine (in fact, linear). Then, by the Markov-Kakutani theorem, the dilation D * 2 has a fix point ω ∈ S (l ∞ (N)) : D * 2 ω = ω. This observation justifies the existence of the invariant mean (c) for D 2dilation. Note that Remark 6 has a straightforward extension to any D k -dilation for k > 2, which is defined similar to (3.12). Since dilations for different k ≥ 2 commute, the extension of the Markov-Kakutani theorem yields that the commutative family F = {D * k } k≥2 has in S (l ∞ (N)) the common fix point ω = D * 2 ω. Therefore, Definition 5 of the Dixmier trace does not depend on the degree k ≥ 2 of dilation D k .

Proposition 3 . 1

 31 The Dixmier trace has the following properties: (a) For any bounded operator B ∈ L (H ) and Z ∈ C 1,∞ (H ) one has Tr ω (Z B) = Tr ω (B Z ). (b) Tr ω (C) = 0 for any operator C ∈ C 1 (H ) from the trace-class ideal, which is the closure of finite-rank operators K (H ) for the • 1 -norm. (c) The Dixmier trace Tr

Lemma 4 . 2

 42 Let self-adjoint operators: X ∈C φ (H ), Y ∈ C ∞ (H ) and Z ∈ L (H ). If {Z (t)} t≥0 is a family of self-adjoint bounded operators such that s -lim t→+0 Z (t) = Z , (4.6) t/r ) -Z )Y X φ = lim r →∞ sup t∈[0,τ ] X Y (Z (t/r ) -Z ) φ = 0 , (4.7)for any τ ∈ (0, ∞).Proof Note that (4.6) yields the strong operator convergence s -lim r →∞ Z (t/r ) = Z , uniformly in t ∈ [0, τ ]. Since Y ∈ C ∞ (H ), this implies lim r →∞ sup t∈[0,τ ] (Z (t/r ) -Z )Y = 0 . (4.8)

. 10 )

 10 Here [x] := max{l ∈ N 0 : l ≤ x}, for x ∈ R + 0 .Proof To prove the assertion for the family { f (t A)g(t B)} t≥0 , we use decompositions n = k + m, k ∈ N and m = 2, 3, . . . , n ≥ 3, for representation

  ) for mt/n ∈ [a, b] ⇔ t ∈ [(1 + k/m)a, (1 + k/m)b] for all n > n 0 . Setting m := [(n + 1)/2] and k = [n/2], n ≥ 3, we satisfy n = k + m and m ≥ 2, as well as, lim n→∞ (k + 1)/(m -1) = 1, lim n→∞ m/k = 1 and lim n→∞ k/m = 1. Hence, for any interval

Theorem 1

 1 Let f, g ∈ K β with β = 2, and let A, B be non-negative self-adjoint operators in H such that the operator sum C := A + B is self-adjoint on domain dom(C) := dom(A) ∩ dom(B).If F(t 0 ) ∈ C 1,∞ (H ) for some t 0 > 0, then the Trotter-Kato product formulae converge for n → ∞ in the • 1,∞ -norm:[ f (t A/n)g(t B/n)] ne -tC 1,∞ = O(n -1 ) , [g(t B/n) f (t A/n)] ne -tC 1,∞ = O(n -1 ) , F(t/n) ne -tC 1,∞ = O(n -1 ) , T (t/n) ne -tC 1,∞ = O(n -1 ) ,

  |Tr ω ([ f (t A/n)g(t B/n)] n ) -Tr ω (e -tC )| = O(n -1 ) , |Tr ω (F(t/n) n ) -Tr ω (e -tC )| = O(n -1 ) , |Tr ω (T (t/n) n ) -Tr ω (e -tC )| = O(n -1 ) ,away from 2t 0 .

  Remark 1 By virtue of inequality (1.7) and by definition of symmetric norm (1.19), the so-called dominance property holds: if X ∈ C φ (H ), Y ∈ C ∞ (H ) and

	n	n	
	s j (Y ) ≤	s j (X ) ,	n = 1, 2, . . . ,
	j=1	j=1	
	then Y ∈ C φ (H ) and Y φ ≤ X φ .	
	Remark 2 To distinguish in (1.20) nontrivial ideals C φ one needs some criteria based
	on the properties of φ or • φ . For example, any symmetric norming function (1.11)
	defined by		

  ) one can also describe the space C 1 (H ) * , which is a predual of C 1 (H ), i.e. its dual (C 1 (H ) * ) * = C 1 (H ). To this aim for each fixed B ∈ C 1 (H ), we consider the functionals A → Tr H (AB) on L (H ). It is known that they are not all continuous linear functional on bounded operators L (H ), i.e. C 1 (H ) ⊂ L (H ) Now, we note that under duality relation (2.6), the Dixmier ideal C 1,∞ (H ) is the dual of the Macaev

* , but they yield the entire dual only of compact operators, i.e.

C 1 (H ) = C ∞ (H ) * . Hence, C 1 (H ) * = C ∞ (H ).
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  -tC ) -Tr ω (F(t/n) n )| ≤ Γ ω ε ω (n). (4.18)In fact, it is the same (up to Γ ω ) for all Trotter-Kato approximants:{T (t)} t≥0 , { f (t)g(t)} t≥0 and {g(t) f (t)} t≥0 .Indeed, since by inequality (3.18) and Lemma 4.3 for t ∈ [τ 0 , τ ] and n ≥ n 0 , one has|Tr ω (e -tC ) -Tr ω (F(t/n) n )| ≤ e -tC -F(t/n) n 1,∞ ≤ Γ φ 2t 0 ε 1,∞ (n) ,(4.19)we obtain for the rate in (4.18):ε ω (•) = ε 1,∞ (•).Therefore, the estimate of the convergence rate for Dixmier traces (4.18) and for • 1,∞ -convergence in (4.19) are entirely defined by the operator-norm error bound ε(•) from Lemma 4.3 and have the following form:

ε 1,∞ (n) := {ε([n/2]) + ε([(n + 1)/2])} , n ∈ N . (

4

.20) 
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