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Trotter-Kato product formulae in Dixmier ideal

On the occasion of the 100th birthday of Tosio Kato

Valentin A.Zagrebnov

Abstract It is shown that for a certain class of the Kato functions the Trotter-Kato
product formulae converge in Dixmier ideal C1,∞ in topology, which is defined by
the ‖ · ‖1,∞-norm. Moreover, the rate of convergence in this topology inherits the
error-bound estimate for the corresponding operator-norm convergence.

1 Preliminaries. Symmetrically-normed ideals

Let H be a separable Hilbert space. For the first time the Trotter-Kato product
formulae in Dixmier ideal C1,∞(H ), were shortly discussed in conclusion of the
paper [19]. This remark was a program addressed to extension of results, which
were known for the von Neumann-Schatten ideals Cp(H ), p≥ 1 since [24], [14].

Note that a subtle point of this program is the question about the rate of con-
vergence in the corresponding topology. Since the limit of the Trotter-Kato product
formula is a strongly continuous semigroup, for the von Neumann-Schatten ideals
this topology is the trace-norm ‖·‖1 on the trace-class ideal C1(H ). In this case the
limit is a Gibbs semigroup [25].

For self-adjoint Gibbs semigroups the rate of convergence was estimated for the
first time in [7] and [9]. The authors considered the case of the Gibbs-Schrödinger
semigroups. They scrutinised in these papers a dependence of the rate of conver-
gence for the (exponential) Trotter formula on the smoothness of the potential in the
Schrödinger generator.

The first abstract result in this direction was due to [19]. In this paper a gen-
eral scheme of lifting the operator-norm rate convergence for the Trotter-Kato prod-
uct formulae was proposed and advocated for estimation the rate of the trace-norm
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convergence. This scheme was then improved and extended in [2] to the case of
nonself-adjoint Gibbs semigroups.

The aim of the present note is to elucidate the question about the existence of
other then the von Neumann-Schatten proper two-sided ideals I(H ) of L (H )
and then to prove the (non-exponential) Trotter-Kato product formula in topology of
these ideals together with estimate of the corresponding rate of convergence. Here a
particular case of the Dixmier ideal C1,∞(H ) [6], [4], is considered. To specify this
ideal we recall in Section 2 the notion of singular trace and then of the Dixmier trace
[5], [3], in Section 3. Main results about the Trotter-Kato product formulae in the
Dixmier ideal C1,∞(H ) are collected in Section 4. There the arguments based on the
lifting scheme [19] (Theorem 5.1) are refined for proving the Trotter-Kato product
formulae convergence in the ‖ ·‖1,∞-topology with the rate, which is inherited from
the operator-norm convergence.

To this end, in the rest of the present section we recall an important auxiliary
tool: the concept of symmetrically-normed ideals, see e.g. [8], [22].

Let c0 ⊂ l∞(N) be the subspace of bounded sequences ξ = {ξ j}∞
j=1 ∈ l∞(N) of

real numbers, which tend to zero. We denote by c f the subspace of c0 consisting of
all sequences with finite number of non-zero terms (finite sequences).

Definition 1. A real-valued function φ : ξ 7→ φ(ξ ) defined on c f is called a norming
function if it has the following properties:

φ(ξ )> 0, ∀ξ ∈ c f , ξ 6= 0, (1.1)
φ(αξ ) = |α|φ(ξ ), ∀ξ ∈ c f , ∀α ∈ R, (1.2)
φ(ξ +η)≤ φ(ξ )+φ(η), ∀ξ ,η ∈ c f , (1.3)
φ(1,0, . . .) = 1. (1.4)

A norming function φ is called to be symmetric if it has the additional property

φ(ξ1,ξ2, ...,ξn,0,0, . . .) = φ(|ξ j1 |, |ξ j2 |, ..., |ξ jn |,0,0, . . .) (1.5)

for any ξ ∈ c f and any permutation j1, j2, . . . , jn of integers 1,2, . . . ,n.

It turns out that for any symmetric norming function φ and for any elements
ξ ,η from the positive cone c+ of non-negative, non-increasing sequences such that
ξ ,η ∈ c f obey ξ1 ≥ ξ2 ≥ . . .≥ 0, η1 ≥ η2 ≥ . . .≥ 0 and

n

∑
j=1

ξ j ≤
n

∑
j=1

η j, n = 1,2, . . . , (1.6)

one gets the Ky Fan inequality [8] (Sec.3, §3) :

φ(ξ )≤ φ(η) . (1.7)

Moreover, (1.7) together with the properties (1.1), (1.2) and (1.4) yield inequali-
ties
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ξ1 ≤ φ(ξ )≤
∞

∑
j=1

ξ j, ξ ∈ c+f := c f ∩ c+. (1.8)

Note that the left- and right-hand sides of (1.8) are the simplest examples of sym-
metric norming functions on domain c+f :

φ∞(ξ ) := ξ1 and φ1(ξ ) :=
∞

∑
j=1

ξ j . (1.9)

By Definition 1 the observations (1.8) and (1.9) yield

φ∞(ξ ) := max
j≥1
|ξ j| , φ1(ξ ) :=

∞

∑
j=1
|ξ j| , (1.10)

φ∞(ξ )≤ φ(ξ )≤ φ1(ξ ) , for all ξ ∈ c f .

We denote by ξ ∗ := {ξ ∗1 ,ξ ∗2 , . . . } a decreasing rearrangement: ξ ∗1 = sup j≥1 |ξ j| ,
ξ ∗1 +ξ ∗2 = supi6= j{|ξi|+ |ξ j|}, . . . , of the sequence of absolute values {|ξn|}n≥1, i.e.,
ξ ∗1 ≥ ξ ∗2 ≥ . . . . Then ξ ∈ c f implies ξ ∗ ∈ c f and by (1.5) one obtains also that

φ(ξ ) = φ(ξ ∗), ξ ∈ c f . (1.11)

Therefore, any symmetric norming function φ is uniquely defined by its values on
the positive cone c+.

Now, let ξ = {ξ1,ξ2, . . .} ∈ c0. We define

ξ
(n) := {ξ1,ξ2, . . . ,ξn,0,0, . . . } ∈ c f .

Then if φ is a symmetric norming function, we define

cφ := {ξ ∈ c0 : sup
n

φ(ξ (n))<+∞}. (1.12)

Therefore, one gets
c f ⊆ cφ ⊆ c0 ⊂ l∞.

Note that by (1.5)-(1.7) and (1.12) one gets

φ(ξ (n))≤ φ(ξ (n+1))≤ sup
n

φ(ξ (n)) , for any ξ ∈ cφ .

Then the limit
φ(ξ ) := lim

n→∞
φ(ξ (n)) , ξ ∈ cφ , (1.13)

exists and φ(ξ ) = supn φ(ξ (n)), i.e. the symmetric norming function φ is a normal
functional on the set cφ (1.12), which is a linear space over R.

By virtue of (1.3) and (1.10) one also gets that any symmetric norming function
is continuous on c f :
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|φ(ξ )−φ(η)| ≤ φ(ξ −η)≤ φ1(ξ −η) , ∀ξ ,η ∈ c f .

Suppose that X is a compact operator, i.e. X ∈ C∞(H ). Then we denote by

s(X) := {s1(X),s2(X), . . . },

the sequence of singular values of X counting multiplicities. We always assume that

s1(X)≥ s2(X)≥ . . .≥ sn(X)≥ . . . .

To define symmetrically-normed ideals of the compact operators C∞(H ) we in-
troduce the notion of a symmetric norm.

Definition 2. Let I be a two-sided ideal of C∞(H ). A functional ‖ · ‖sym : I→ R+
0

is called a symmetric norm if besides the usual properties of the operator norm ‖ ·‖:

‖X‖sym > 0, ∀X ∈ I, X 6= 0,
‖αX‖sym = |α|‖X‖sym , ∀X ∈ I, ∀α ∈ C,
‖X +Y‖sym ≤ ‖X‖sym +‖Y‖sym , ∀X ,Y ∈ I,

it verifies the following additional properties:

‖AXB‖sym ≤ ‖A‖‖X‖sym‖B‖, X ∈ I, A,B ∈L (H ), (1.14)
‖αX‖sym = |α|‖X‖= |α| s1(X), for any rank−one operator X ∈ I. (1.15)

If the condition (1.14) is replaced by

‖UX‖sym = ‖XU‖sym = ‖X‖sym , X ∈ I , (1.16)
for any unitary operator U on H ,

then, instead of the symmetric norm, one gets definition of invariant norm ‖ · ‖inv.

First, we note that the ordinary operator norm ‖ · ‖ on any ideal I ⊆ C∞(H ) is
evidently a symmetric norm as well as an invariant norm.

Second, we observe that in fact, every symmetric norm is invariant. Indeed, for
any unitary operators U and V one gets by (1.14) that

‖UXV‖sym ≤ ‖X‖sym , X ∈ I . (1.17)

Since X = U−1UXVV−1, we also get ‖X‖sym ≤ ‖UXV‖sym, which together with
(1.17) yield (1.16).

Third, we claim that ‖X‖sym = ‖X∗‖sym. Let X =U |X | be the polar representation
of the operator X ∈ I. Since U∗X = |X |, then by (1.16) we obtain ‖X‖sym = ‖|X |‖sym.
The same line of reasoning applied to the adjoint operator X∗ = |X |U∗ yields
‖X∗‖sym = ‖|X |‖sym, that proves the claim.

Now we can apply the concept of the symmetric norming functions to describe
the symmetrically-normed ideals of the unital algebra of bounded operators L (H ),
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or in general, the symmetrically-normed ideals generated by symmetric norming
functions. Recall that any proper two-sided ideal I(H ) of L (H ) is contained in
compact operators C∞(H ) and contains the set K (H ) of finite-rank operators,
see e.g. [20], [22]:

K (H )⊆ I(H )⊆ C∞(H ) . (1.18)

To clarify the relation between symmetric norming functions and the symmetrically-
normed ideals we mention that there is an obvious one-to-one correspondence be-
tween functions φ (Definition 1) on the cone c+ and the symmetric norms ‖ · ‖sym
on K (H ). To proceed with a general setting one needs definition of the following
relation.

Definition 3. Let cφ be the set of vectors (1.12) generated by a symmetric norming
function φ . We associate with cφ a subset of compact operators

Cφ (H ) := {X ∈ C∞(H ) : s(X) ∈ cφ} . (1.19)

This definition implies that the set Cφ (H ) is a proper two-sided ideal of the
algebra L (H ) of all bounded operators on H . Setting, see (1.13),

‖X‖φ := φ(s(X)) , X ∈ Cφ (H ) , (1.20)

one obtains the symmetric norm: ‖ ·‖sym = ‖ ·‖φ , on the ideal I= Cφ (H ) (Defini-
tion 2) such that this symmetrically-normed ideal becomes a Banach space. Then in
accordance with (1.18) and (1.19) we obtain by (1.10) that

K (H )⊆ C1(H )⊆ Cφ (H )⊆ C∞(H ) . (1.21)

Here the trace-class operators C1(H ) := Cφ1(H ), where the symmetric norming
function φ1 is defined in (1.9), and

‖X‖φ ≤ ‖X‖1 , X ∈ C1(H ) .

Remark 1. By virtue of inequality (1.7) and by definition of symmetric norm (1.20)
the so-called dominance property holds: if X ∈ Cφ (H ), Y ∈ C∞(H ) and

n

∑
j=1

s j(Y )≤
n

∑
j=1

s j(X) , n = 1,2, . . . ,

then Y ∈ Cφ (H ) and ‖Y‖φ ≤ ‖X‖φ .

Remark 2. To distinguish in (1.21) nontrivial ideals Cφ one needs some criteria
based on the properties of φ or of the norm ‖ · ‖φ . For example, any symmetric
norming function (1.11) defined by

φ
(r)(ξ ) :=

r

∑
j=1

ξ
∗
j , ξ ∈ c f ,



6 V.A.Zagrebnov

generates for arbitrary fixed r ∈N the symmetrically-normed ideals, which are triv-
ial in the sense that C

φ (r)(H ) = C∞(H ). Criterion for an operator A to belong to a
nontrivial ideal Cφ is

M = sup
m≥1
‖PmAPm‖φ < ∞ , (1.22)

where {Pm}m≥1 is a monotonously increasing sequence of the finite-dimensional
orthogonal projectors on H strongly convergent to the identity operator [8]. Note
that for A ∈ C∞ the condition (1.22) is trivial.

We consider now a couple of examples to elucidate the concept of the symmetrically-
normed ideals Cφ (H ) generated by the symmetric norming functions φ and the rôle
of the functional trace on these ideals.

Example 1. The von Neumann-Schatten ideals Cp(H ) [21]. These ideals of C∞(H )
are generated by symmetric norming functions φ(ξ ) := ‖ξ‖p, where

‖ξ‖p =

(
∞

∑
j=1
|ξ j|p

)1/p

, ξ ∈ c f ,

for 1≤ p <+∞, and by

‖ξ‖∞ = sup
j
|ξ j|, ξ ∈ c f ,

for p = +∞. Indeed, if we put {ξ ∗j := s j(X)} j≥1, for X ∈ C∞(H ), then the
symmetric norm ‖X‖φ = ‖s(X)‖p coincides with ‖X‖p and the corresponding
symmetrically-normed ideal Cφ (H ) is identical to the von Neumann-Schatten class
Cp(H ).

By definition, for any X ∈ Cp(H ) the trace: |X | 7→ Tr|X | = ∑ j≥1 s j(X) ≥ 0.
The trace norm ‖X‖1 = Tr|X | is finite on the trace-class operators C1(H ) and it is
infinite for X ∈ Cp>1(H ). We say that for p > 1 the von Neumann-Schatten ideals
admit no trace, whereas for p = 1 the map: X 7→ TrX , exists and it is continuous in
the ‖ · ‖1-topology.

Note that by virtute of the Tr-linearity the trace norm: C1,+(H ) 3 X 7→ ‖X‖1 is
linear on the positive cone C1,+(H ) of the trace-class operators.

Example 2. Now we consider symmetrically-normed ideals CΠ (H ). To this aim let
Π = {π j}∞

j=1 ∈ c+ be a non-increasing sequence of positive numbers with π1 = 1.
We associate with Π the function

φΠ (ξ ) = sup
n

{
1

∑
n
j=1 π j

n

∑
j=1

ξ
∗
j

}
, ξ ∈ c f . (1.23)

It turns out that φΠ is a symmetric norming function. Then the corresponding to
(1.12) set cφΠ

is defined by
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cφΠ
:=

{
ξ ∈ c f : sup

n

1
∑

n
j=1 π j

n

∑
j=1

ξ
∗
j <+∞

}
.

Hence, the two-sided symmetrically-normed ideal CΠ (H ) := CφΠ
(H ) generated

by symmetric norming function (1.23) consists of all those compact operators X that

‖X‖φΠ
:= sup

n

1
∑

n
j=1 π j

n

∑
j=1

s j(X)<+∞ . (1.24)

This equation defines a symmetric norm ‖X‖sym = ‖X‖φΠ
on the ideal CΠ (H ), see

Definition 2.
Now let Π = {π j}∞

j=1, with π1 = 1, satisfy

∞

∑
j=1

π j =+∞ and lim
j→∞

π j = 0 . (1.25)

Then the ideal CΠ (H ) is nontrivial: CΠ (H ) 6= C∞(H ) and CΠ (H ) 6= C1(H ),
see Remark 2, and one has

C1(H )⊂ CΠ (H )⊂ C∞(H ) . (1.26)

If in addition to (1.25) the sequence Π = {π j}∞
j=1 is regular, i.e. it obeys

n

∑
j=1

π j = O(nπn) , n→ ∞ , (1.27)

then X ∈ CΠ (H ) if and only if

sn(X) = O(πn) , n→ ∞ , (1.28)

cf. condition (1.22). On the other hand, the asymptotics

sn(X) = o(πn) , n→ ∞ ,

implies that X belongs to:

C 0
Π (H ) := {X ∈ CΠ (H ) : lim

n→∞

1
∑

n
j=1 π j

n

∑
j=1

s j(X) = 0},

such that C1(H )⊂ C 0
Π
(H )⊂ CΠ (H ).

Remark 3. A natural choice of the sequence {π j}∞
j=1 that satisfies (1.25) is π j = j−α ,

0 < α ≤ 1. Note that if 0 < α < 1, then the sequence Π = {π j}∞
j=1 satisfies (1.27),

i.e. it is regular for ε = 1−α . Therefore, the two-sided symmetrically-normed ideal
CΠ (H ) generated by symmetric norming function (1.23) consists of all those com-
pact operators X , which singular values obey (1.28):
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sn(X) = O(n−α), 0 < α < 1, n→ ∞ . (1.29)

Let α = 1/p , p > 1. Then the corresponding to (1.29) symmetrically-normed ideal
defined by

Cp,∞(H ) := {X ∈ C∞(H ) : sn(X) = O(n−1/p), p > 1} ,

is known as the weak-Cp ideal [20], [22].

Whilst by virtue of (1.29) the weak-Cp ideal admit no trace, definition (1.24)
implies that for the regular case p > 1 a symmetric norm on Cp,∞(H ) is equivalent
to

‖X‖p,∞ = sup
n

1
n1−1/p

n

∑
j=1

s j(X) , (1.30)

and it is obvious that C1(H ) ⊂ Cp,∞(H ) ⊂ C∞(H ). Taking into account the
Hölder inequality one can to refine these inclusions for 1 ≤ q ≤ p as follows:
C1(H )⊆ Cq(H )⊆ Cp,∞(H )⊂ C∞(H ).

2 Singular traces

Note that (1.30) implies: C1(H ) 3 A 7→ ‖A‖p,∞ < ∞, but any related to the ideal
Cp,∞(H ) linear, positive, and unitarily invariant functional (trace) is zero on the set
of finite-rank operators K (H ), or trivial. We remind that these not normal traces:

Trω(X) := ω({n−1+1/p
n

∑
j=1

s j(X)}∞
n=1) , (2.1)

are called singular, [5], [13]. Here ω is an appropriate linear positive normalised
functional (state) on the Banach space l∞(N) of bounded sequences. Recall that the
set of the states S (l∞(N))⊂ (l∞(N))∗, where (l∞(N))∗ is dual of the Banach space
l∞(N). The singular trace (2.1) is continuous in topology defined by the norm (1.30).

Remark 4. (a) The weak-Cp ideal, which is defined for p = 1 by

C1,∞(H ) := {X ∈ C∞(H ) :
n

∑
j=1

s j(X) = O(ln(n)), n→ ∞} , (2.2)

has a special interest. Note that since Π = { j−1}∞
j=1 does not satisfy (1.27), the char-

acterisation sn(X)=O(n−1), is not true, see (1.28), (1.29). In this case the equivalent
norm can be defined on the ideal (2.2) as

‖X‖1,∞ := sup
n∈N

1
1+ ln(n)

n

∑
j=1

s j(X) . (2.3)
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By, virtute of (1.26) and Remark 3 one gets that C1(H ) ⊂ C1,∞(H ) and that
C1(H ) 3 A 7→ ‖A‖1,∞ < ∞.

(b) In contrast to linearity of the trace-norm ‖ ·‖1 on the positive cone C1,+(H ),
see Example 1, the map X 7→ ‖X‖1,∞ on the positive cone C1,∞,+(H ) is not linear.
Although this map is homogeneous: αA 7→ α‖A‖1,∞, α ≥ 0, for A,B ∈ C1,∞,+(H )
one gets that in general ‖A+B‖1,∞ 6= ‖A‖1,∞ +‖B‖1,∞.

But it is known that on the space l∞(N) there exists a state ω ∈S (l∞(N)) such
that the map

X 7→ Trω(X) := ω({(1+ ln(n))−1
n

∑
j=1

s j(X)}∞
n=1) , (2.4)

is linear and verifies the properties of the (singular) trace for any X ∈C1,∞(H ). We
construct ω in Section 3. This particular choice of the state ω defines the Dixmier
trace on the space C1,∞(H ), which is called, in turn, the Dixmier ideal, see e.g.
[3], [4]. The Dixmier trace (2.4) is obviously continuous in topology defined by the
norm (2.3). This last property is basic for discussion in Section 4 of the Trotter-Kato
product formula in the ‖ · ‖p,∞-topology, for p≥ 1.

Example 3. With non-increasing sequence of positive numbers π = {π j}∞
j=1, π1 = 1,

one can associate the symmetric norming function φπ given by

φπ(ξ ) :=
∞

∑
j=1

π jξ
∗
j , ξ ∈ c f .

The corresponding symmetrically-normed ideal we denote by Cπ(H ) := Cφπ
(H ).

If the sequence π satisfies (1.25), then ideal Cπ(H ) does not coincide neither
with C∞(H ) nor with C1(H ). If, in particular, π j = j−α , j = 1,2, . . . , for 0 < α ≤
1, then the corresponding ideal is denoted by C∞,p(H ), p = 1/α . The norm on this
ideal is given by

‖X‖∞,p :=
∞

∑
j=1

j−1/p s j(X) , p ∈ [1,∞) .

The symmetrically-normed ideal C∞,1(H ) is called the Macaev ideal [8]. It turns
out that the Dixmier ideal C1,∞(H ) is dual of the Macaev ideal: C1,∞(H ) =
C∞,1(H )∗.

Proposition 2.1 The space C1,∞(H ) endowed by the norm ‖ · ‖1,∞ is a Banach
space.

The proof is quite standard although tedious and long. We address the readers to the
corresponding references, e.g. [8].

Proposition 2.2 The space C1,∞(H ) endowed by the norm ‖ · ‖1,∞ is a Banach
ideal in the algebra of bounded operators L (H ).
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Proof. To this end it is sufficient to prove that if A and C are bounded operators, then
B ∈ C1,∞(H ) implies ABC ∈ C1,∞(H ). Recall that singular values of the operator
ABC verify the estimate s j(ABC)≤ ‖A‖‖C‖s j(B). By (2.3) it yields

‖ABC‖1,∞ = sup
n∈N

1
1+ ln(n)

n

∑
j=1

s j(ABC)≤ (2.5)

‖A‖‖C‖sup
n∈N

1
1+ ln(n)

n

∑
j=1

s j(B) = ‖A‖‖C‖‖B‖1,∞ ,

and consequently the proof of the assertion. �

Recall that for any A ∈L (H ) and all B ∈ C1(H ) one can define a linear func-
tional on C1(H ) given by TrH (AB). The set of these functionals {TrH (A·)}A∈L (H )

is just the dual space C1(H )∗ of C1(H ) with the operator-norm topology. In other
words, L (H ) = C1(H )∗, in the sense that the map A 7→ TrH (A·) is the isometric
isomorphism of L (H ) onto C1(H )∗.

With help of the duality relation

〈A|B〉 := TrH (AB) , (2.6)

one can also describe the space C1(H )∗, which is a predual of C1(H ), i.e., its
dual (C1(H )∗)

∗ = C1(H ). To this aim for each fixed B ∈ C1(H ) we consider the
functionals A 7→ TrH (AB) on L (H ). It is known that they are not all continuous
linear functional on bounded operators L (H ), i.e., C1(H ) ⊂L (H )∗, but they
yield the entire dual only of compact operators, i.e., C1(H ) = C∞(H )∗. Hence,
C1(H )∗ = C∞(H ).

Now we note that under duality relation (2.6) the Dixmier ideal C1,∞(H ) is the
dual of the Macaev ideal: C1,∞(H ) = C∞,1(H )∗, where

C∞,1(H ) = {A ∈ C∞(H ) : ∑
n≥1

1
n

sn(A)< ∞} , (2.7)

see Example 3. By the same duality relation and by similar calculations one also
obtains that the predual of C∞,1(H ) is the ideal C∞,1(H )∗ = C

(0)
1,∞(H ), defined by

C
(0)
1,∞(H ) := {A ∈ C∞(H ) :

n

∑
j≥1

s j(A) = o(ln(n)), n→ ∞} . (2.8)

By virtue of (2.2) (see Remark 4) the ideal (2.8) is not self-dual since

C
(0)
1,∞(H )∗∗ = C1,∞(H )⊃ C

(0)
1,∞(H ).

The problem which has motivated construction of the Dixmier trace in [5] was
related to the question of a general definition of the trace, i.e. a linear, positive, and
unitarily invariant functional on a proper Banach ideal I(H ) of the unital algebra
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of bounded operators L (H ). Since any proper two-sided ideal I(H ) of L (H ) is
contained in compact operators C∞(H ) and contains the set K (H ) of finite-rank
operators ((1.18), Section 1), domain of definition of the trace has to coincide with
the ideal I(H ).

Remark 5. The canonical trace TrH (·) is nontrivial only on domain, which is the
trace-class ideal C1(H ), see Example 1. We recall that it is characterised by the
property of normality: TrH (supα Bα) = supα TrH (Bα), for every directed increas-
ing bounded family {Bα}α∈∆ of positive operators from C1,+(H ).

Note that every nontrivial normal trace on L (H ) is proportional to the canoni-
cal trace TrH (·), see e.g. [6], [20]. Therefore, the Dixmier trace (2.4) : C1,∞ 3 X 7→
Trω(X), is not normal.

Definition 4. A trace on the proper Banach ideal I(H )⊂L (H ) is called singular
if it vanishes on the set K (H ).

Since a singular trace is defined up to trace-class operators C1(H ), then by Re-
mark 5 it is obviously not normal.

3 Dixmier trace

Recall that only the ideal of trace-class operators has the property that on its
positive cone C1,+(H ) := {A ∈ C1(H ) : A ≥ 0} the trace-norm is linear since
‖A+B‖1 = Tr(A+B) = Tr(A)+Tr(B) = ‖A‖1 + ‖B‖1 for A,B ∈ C1,+(H ), see
Example 1. Then the uniqueness of the trace-norm allows to extend the trace to
the whole linear space C1(H ). Imitation of this idea fails for other symmetrically-
normed ideals.

This problem motivates the Dixmier trace construction as a certain limiting pro-
cedure involving the ‖·‖1,∞-norm. Let C1,∞,+(H ) be a positive cone of the Dixmier
ideal. One can try to construct on C1,∞,+(H ) a linear, positive, and unitarily in-
variant functional (called trace T ) via extension of the limit (called Lim) of the
sequence of properly normalised finite sums of the operator X singular values:

T (X) := Limn→∞

1
1+ ln(n)

n

∑
j=1

s j(X) , X ∈ C1,∞,+(H ) . (3.1)

First we note that since for any unitary U : H →U , the singular values of X ∈
C∞(H ) are invariant: s j(X) = s j(U X U∗), it is also true for the sequence

σn(X) :=
n

∑
j=1

s j(X) , n ∈ N . (3.2)

Then the Lim in (3.1) (if it exists) inherits the property of unitarity.
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Now we comment that positivity: X ≥ 0, implies the positivity of eigenvalues
{λ j(X)} j≥1 and consequently: λ j(X) = s j(X). Therefore, σn(X) ≥ 0 and the Lim
in (3.1) is a positive mapping.

The next problem with the formula for T (X) is its linearity. To proceed we recall
that if P : H → P(H ) is an orthogonal projection on a finite-dimensional subspace
with dimP(H ) = n, then for any bounded operator X ≥ 0 the (3.2) gives

σn(X) = sup
P
{TrH (XP) : dimP(H ) = n} . (3.3)

As a corollary of (3.3) one obtains the Horn-Ky Fan inequality

σn(X +Y )≤ σn(X)+σn(Y ) , n ∈ N, (3.4)

valid in particular for any pair of bounded positive compact operators X and Y . For
dimP(H )≤ 2n one similarly gets from (3.3) that

σ2n(X +Y )≥ σn(X)+σn(Y ) , n ∈ N . (3.5)

Motivated by (3.1) we now introduce

Tn(X) :=
1

1+ ln(n)
σn(X) , X ∈ C1,∞,+(H ) , (3.6)

and denote by Lim{Tn(X)}n∈N := Limn→∞Tn(X) the right-hand side of the func-
tional in (3.1). Note that by (3.6) the inequalities (3.4) and (3.5) yield for n ∈ N

Tn(X +Y )≤Tn(X)+Tn(Y ) ,
1+ ln(2n)
1+ ln(n)

T2n(X +Y )≥Tn(X)+Tn(Y ) .(3.7)

Since the functional Lim includes the limit n→∞, the inequalities (3.7) would give
a desired linearity of the trace T :

T (X +Y ) = T (X)+T (Y ) , (3.8)

if one proves that the Limn→∞ in (3.1) exists and finite for X ,Y as well as for X +Y .
To this end we note that if the right-hand of (3.1) exists, then one obtains (3.8).

Hence the Lim{Tn(X)}n∈N is a positive linear map Lim : l∞(N)→R, which defines
a state ω ∈S (l∞(N)) on the Banach space of sequences {Tn(·)}n∈N ∈ l∞(N), such
that T (X) = ω({Tn(X)}n∈N).

Remark 6. Scrutinising description of ω(·), we infer that its values Lim{Tn(X)}n∈N
are completely determined only by the ”tail” behaviour of the sequences {Tn(X)}n∈N
as it is defined by Limn→∞Tn(X). For example, one concludes that the state
ω({Tn(X)}n∈N) = 0 for the whole set c0 of sequences: {Tn(X)}n∈N ∈ c0, which
tend to zero. The same is also plausible for the non-zero converging limits.

To make this description more precise we impose on the state ω the following
conditions:
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(a) ω(η)≥ 0 , for ∀η = {ηn ≥ 0}n∈N ,

(b) ω(η) = Lim{ηn}n∈N = lim
n→∞

ηn , if {ηn ≥ 0}n∈N is convergent .

By virtue of (a) and (b) the definitions (3.1) and (3.6) imply that for X ,Y ∈
C1,∞,+(H ) one gets

T (X) = ω({Tn(X)}n∈N) = lim
n→∞

Tn(X) , (3.9)

T (Y ) = ω({Tn(Y )}n∈N) = lim
n→∞

Tn(Y ) , (3.10)

T (X +Y ) = ω({Tn(X +Y )}n∈N) = lim
n→∞

Tn(X +Y ) , (3.11)

if the limits in the right-hand sides of (3.9)-(3.11) exist.
Now, to ensure (3.8) one has to select ω in such a way that it allows to restore the

equality in (3.7), when n→ ∞. To this aim we impose on the state ω the condition
of dilation D2-invariance.

Let D2 : l∞(N)→ l∞(N), be dilation mapping η 7→D2(η):

D2 : (η1,η2, . . .ηk, . . .)→ (η1,η1,η2,η2, . . .ηk,ηk, . . .) , ∀η ∈ l∞(N) . (3.12)

We say that ω is dilation D2-invariant if for any η ∈ l∞(N) it verifies the property

(c) ω(η) = ω(D2(η)) . (3.13)

We shall discuss the question of existence the dilation D2-invariant states (the
invariant means) on the Banach space l∞(N) in Remark 7.

Let X ,Y ∈ C1,∞,+(H ). Then applying the property (c) to the sequence η =
{ξ2n := T2n(X +Y )}∞

n=1, we obtain

ω(η) = ω(D2(η)) = ω(ξ2,ξ2,ξ4,ξ4,ξ6,ξ6, . . .) . (3.14)

Note that if ξ = {ξn = Tn(X +Y )}∞
n=1, then the difference of the sequences:

D2(η)−ξ = (ξ2,ξ2,ξ4,ξ4,ξ6,ξ6, . . .)− (ξ1,ξ2,ξ3,ξ4,ξ5,ξ6, . . .) ,

converges to zero if ξ2n−ξ2n−1→ 0 as n→ ∞. Then by virtue of (3.11) and (3.14)
this would imply

ω({T2n(X +Y )}n∈N) = ω(D2({T2n(X +Y )}n∈N)) = ω({Tn(X +Y )}n∈N) ,

or by (3.11): limn→∞ T2n(X +Y ) = limn→∞ Tn(X +Y ), which by estimates (3.7)
would also yield

lim
n→∞

Tn(X +Y ) = lim
n→∞

Tn(X)+ lim
n→∞

Tn(Y ) . (3.15)
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Now, summarising (3.9), (3.10), (3.11) and (3.15) we obtain the linearity (3.8)
of the limiting functional T on the positive cone C1,∞,+(H ) if it is defined by the
corresponding D2-invariant state ω , or a dilation-invariant mean.

Therefore, to finish the proof of linearity it rests only to check that limn→∞(ξ2n−
ξ2n−1) = 0. To this end we note that by definitions (3.2) and (3.6) one gets

ξ2n−ξ2n−1 =

[
1

ln(2n)
− 1

ln(2n−1)

]
σ2n−1(X +Y )

+
1

ln(2n)
s2n(X +Y ) . (3.16)

Since X ,Y ∈ C1,∞,+(H ), we obtain that limn→∞ s2n(X +Y ) = 0 and that σ2n−1(X +
Y ) = O(ln(2n− 1)). Then taking into account that (1/ln(2n)− 1/ln(2n−1)) =
o(1/ln(2n−1)) one gets that for n→ ∞ the right-hand side of (3.16) converges
to zero.

To conclude our construction of the trace T (·) we note that by linearity (3.8) one
can uniquely extend this functional from the positive cone C1,∞,+(H ) to the real
subspace of the Banach space C1,∞(H ), and finally to the entire ideal C1,∞(H ).

Definition 5. The Dixmier trace Trω(X) of the operator X ∈C1,∞,+(H ) is the value
of the linear functional (3.1):

Trω(X) := Limn→∞

σn(X)

1+ ln(n)
= ω({Tn(X)}n∈N) , (3.17)

where Limn→∞ is defined by a dilation-invariant state ω ∈ S (l∞(N)) on l∞(N),
that satisfies the properties (a), (b), and (c). Since any self-adjoint operator X ∈
C1,∞(H ) has the representation: X = X+−X−, where X± ∈ C1,∞,+(H ), one gets
Trω(X) = Trω(X+)−Trω(X−). Then for arbitrary Z ∈ C1,∞(H ) the Dixmier trace
is Trω(Z) = Trω(ReZ)+ iTrω(ImZ).

Note that if X ∈ C1,∞,+(H ), then definition (3.17) of Trω(·) together with def-
inition of the norm ‖ · ‖1,∞ in (2.3), readily imply the estimate Trω(X) ≤ ‖X‖1,∞,
which in turn yields the inequality for arbitrary Z from the Dixmier ideal C1,∞(H ):

|Trω(Z)| ≤ ‖Z‖1,∞ . (3.18)

Remark 7. A decisive for construction of the Dixmier trace Trω(·) is the existence
of the invariant mean ω ∈S (l∞(N)) ⊂ (l∞(N))∗. Here the space (l∞(N))∗ is dual
to the Banach space of bounded sequences. Then by the Banach-Alaoglu theorem
the convex set of states S (l∞(N)) is compact in (l∞(N))∗ in the weak*-topology.
Now, for any φ ∈ S (l∞(N)) the relation φ(D2(·)) =: (D∗2φ)(·) defines the dual
D∗2-dilation on the set of states. By definition (3.12) this map is such that D∗2 :
S (l∞(N)) → S (l∞(N)), as well as continuous and affine (in fact linear). Then
by the Markov-Kakutani theorem the dilation D∗2 has a fix point ω ∈S (l∞(N)) :
D∗2ω = ω . This observation justifies the existence of the invariant mean (c) for D2-
dilation.
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Note that Remark 7 has a straightforward extension to any Dk-dilation for k > 2,
which is defined similar to (3.12). Since dilations for different k ≥ 2 commute, the
extension of the Markov-Kakutani theorem yields that the commutative family F =
{D∗k}k≥2 has in S (l∞(N)) the common fix point ω =D∗2ω . Therefore, Definition 5
of the Dixmier trace does not depend on the degree k ≥ 2 of dilation Dk.

For more details about different constructions of invariant means and the corre-
sponding Dixmier trace on C1,∞(H ), see, e.g., [3], [13].

Proposition 3.1 The Dixmier trace has the following properties:
(a) For any bounded operator B ∈L (H ) and Z ∈ C1,∞(H ) one has Trω(ZB) =
Trω(BZ).
(b) Trω(C) = 0 for any operator C ∈C1(H ) from the trace-class ideal, which is the
closure of finite-rank operators K (H ) for the ‖ · ‖1-norm.
(c) The Dixmier trace Trω : C1,∞(H )→ C, is continuous in the ‖ · ‖1,∞-norm.

Proof. (a) Since every operator B ∈L (H ) is a linear combination of four unitary
operators, it is sufficient to prove the equality Trω(ZU) = Trω(UZ) for a unitary
operator U and moreover only for Z ∈ C1,∞,+(H ). Then the corresponding equal-
ity follows from the unitary invariance: s j(Z) = s j(ZU) = s j(UZ) = s j(UZU∗), of
singular values of the positive operator Z for all j ≥ 1.
(b) Since C ∈ C1(H ) yields ‖C‖1 < ∞, definition (3.2) implies σn(C) ≤ ‖C‖1 for
any n ≥ 1. Then by Definition 5 one gets Trω(C) = 0. Proof of the last part of the
statement is standard.
(c) Since the ideal C1,∞(H ) is a Banach space and Trω : C1,∞(H )→ C a linear
functional it is sufficient to consider continuity at X = 0. Then let the sequence
{Xk}k≥1 ⊂ C1,∞(H ) converges to X = 0 in ‖ · ‖1,∞-topology, i.e. by (2.3)

lim
k→∞
‖Xk‖1,∞ = lim

k→∞
sup
n∈N

1
1+ ln(n)

σn(Xk) = 0 . (3.19)

Since (3.18) implies |Trω(Xk)| ≤ ‖Xk‖1,∞ , the assertion follows from (3.19). �

Therefore, the Dixmier construction gives an example of a singular trace in the
sense of Definition 4.

4 Trotter-Kato product formulae in the Dixmier ideal

Let A ≥ 0 and B ≥ 0 be two non-negative self-adjoint operators in a separable
Hilbert space H and let the subspace H0 := dom(A1/2)∩dom(B1/2). It may hap-
pen that dom(A)∩dom(B) = {0}, but the form-sum of these operators: H = A

.
+ B,

is well-defined in the subspace H0 ⊆H .
T. Kato proved in [12] that under these conditions the Trotter product formula

s− lim
n→∞

(
e−tA/ne−tB/n

)n
= e−tHP0, t > 0, (4.1)
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converges in the strong operator topology away from zero (i.e., for t ∈ R+), and
locally uniformly in t ∈ R+ (i.e. uniformly in t ∈ [ε,T ], for 0 < ε < T <+∞ ), to a
degenerate semigroup {e−tHP0}t>0. Here P0 denotes the orthogonal projection from
H onto H0.

Moreover, in [12] it was also shown that the product formula is true not only
for the exponential function e−x, x ≥ 0, but for a whole class of Borel measurable
functions f (·) and g(·), which are defined on R+

0 := [0,∞) and satisfy the conditions:

0≤ f (x)≤ 1, f (0) = 1, f ′(+0) =−1, (4.2)
0≤ g(x)≤ 1, g(0) = 1, g′(+0) =−1. (4.3)

Namely, the main result of [12] says that besides (4.1) one also gets convergence

τ− lim
n→∞

( f (tA/n)g(tB/n))n = e−tHP0, t > 0, (4.4)

locally uniformly away from zero, if topology τ = s.
Product formulae of the type (4.4) are called the Trotter-Kato product formulae

for functions (4.2), (4.3), which are called the Kato functions K . Note that K is
closed with respect to the products of Kato functions.

For some particular classes of the Kato functions we refer to [15], [25]. In
the following it is useful to consider instead of f (x)g(x) two Kato functions:
g(x/2) f (x)g(x/2) and f (x/2)g(x) f (x/2), that produce the self-adjoint operator
families

F(t) := g(tB/2) f (tA)g(tB/2) and T (t) := f (tA/2)g(tB) f (tA/2), t ≥ 0. (4.5)

Since [14] it is known, that the lifting of the topology of convergence in (4.4) to
the operator norm τ = ‖·‖ needs more conditions on operators A and B as well as on
the key Kato functions f ,g∈K . One finds a discussion and more references on this
subject in [25]. Here we quote a result that will be used below for the Trotter-Kato
product formulae in the Dixmier ideal C1,∞(H ).

Consider the class Kβ of Kato-functions, which is defined in [10], [11] as:
(i) Measurable functions 0≤ h≤ 1 on R+

0 , such that h(0) = 1, and h′(+0) =−1.
(ii) For ε > 0 there exists δ = δ (ε)< 1, such that h(s)≤ 1−δ (ε) for s≥ ε , and

[h]β := sup
s>0

|h(s)−1+ s|
sβ

< ∞ , for 1 < β ≤ 2 .

The standard examples are: h(s) = e−s and h(s) = (1+a−1s)−a , a > 0.
Below we consider the class Kβ and a particular case of generators A and B,

such that for the Trotter-Kato product formulae the estimate of the convergence rate
is optimal.

Proposition 4.1 [11] Let f ,g ∈Kβ with β = 2, and let A, B be non-negative self-
adjoint operators in H such that the operator sum C := A+B is self-adjoint on
domain dom(C) := dom(A)∩dom(B). Then the Trotter-Kato product formulae con-
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verge for n→ ∞ in the operator norm:

‖[ f (tA/n)g(tB/n)]n− e−tC‖= O(n−1) , ‖[g(tB/n) f (tA/n)]n− e−tC‖= O(n−1) ,

‖F(t/n)n− e−tC‖= O(n−1) , ‖T (t/n)n− e−tC‖= O(n−1) .

Note that for the corresponding to each formula error bounds O(n−1) are equal up
to coefficients {Γj > 0}4

j=1 and that each rate of convergence Γj ε(n) = O(n−1),
j = 1, . . .4, is optimal.

The first lifting lemma yields sufficient conditions that allow to strengthen the
strong operator convergence to the ‖·‖φ -norm convergence in the the symmetrically-
normed ideal Cφ (H ).

Lemma 4.2 Let self-adjoint operators: X ∈Cφ (H ), Y ∈C∞(H ) and Z ∈L (H ).
If {Z(t)}t≥0, is a family of self-adjoint bounded operators such that

s− lim
t→+0

Z(t) = Z , (4.6)

then

lim
r→∞

sup
t∈[0,τ]

‖(Z(t/r)−Z)Y X‖φ = lim
r→∞

sup
t∈[0,τ]

‖XY (Z(t/r)−Z)‖φ = 0 , (4.7)

for any τ ∈ (0,∞).

Proof. Note that (4.6) yields the strong operator convergence s− limr→∞ Z(t/r)= Z,
uniformly in t ∈ [0,τ]. Since Y ∈ C∞(H ), this implies

lim
r→∞

sup
t∈[0,τ]

‖(Z(t/r)−Z)Y‖= 0 . (4.8)

Since Cφ (H ) is a Banach space with symmetric norm (1.14) that verifies ‖ZX‖φ ≤
‖Z‖‖X‖φ , one gets the estimate

‖(Z(t/r)−Z)Y X‖φ ≤ ‖(Z(t/r)−Z)Y‖‖X‖φ , (4.9)

which together with (4.8) give the prove of (4.7). �

The second lifting lemma allows to estimate the rate of convergence of the
Trotter-Kato product formula in the norm (1.20) of symmetrically-normed ideal
Cφ (H ) via the error bound ε(n) in the operator norm due to Proposition 4.1.

Lemma 4.3 Let A and B be non-negative self-adjoint operators on the separable
Hilbert space H , that satisfy the conditions of Proposition 4.1. Let f ,g ∈K2 be
such that F(t0) ∈ Cφ (H ) for some t0 > 0.

If Γt0ε(n), n ∈ N, is the operator-norm error bound away from t0 > 0 of the
Trotter-Kato product formula for { f (tA)g(tB)}t≥0, then for some Γ

φ

2t0
> 0 the func-

tion εφ (n) := {ε([n/2])+ε([(n+1)/2])}, n∈N, defines the error bound away from
2t0 of the Trotter-Kato product formula in the ideal Cφ (H ):



18 V.A.Zagrebnov

‖[ f (tA/n)g(tB/n)]n− e−tC‖φ = Γ
φ

2t0
εφ (n) , n→ ∞. t ≥ 2t0 . (4.10)

Here [x] := max{l ∈ N0 : l ≤ x}, for x ∈ R+
0 .

Proof. To prove the assertion for the family { f (tA)g(tB)}t≥0 we use decomposi-
tions n = k+m, k ∈ N and m = 2,3, . . . , n≥ 3, for representation

( f (tA/n)g(tB/n))n− e−tC = (4.11)(
( f (tA/n)g(tB/n))k− e−ktC/n

)
( f (tA/n)g(tB/n))m

+ e−ktC/n
(
( f (tA/n)g(tB/n))m− e−mtC/n

)
.

Since by conditions of lemma F(t0) ∈ Cφ (H ), definition (4.5) and representa-
tion f (tA/n)g(tB/n))m = f (tA/n)g(tB/n)1/2F(t/n)m−1g(tB)1/2 yield

‖( f (tA/n)g(tB/n))m‖φ ≤ ‖F(t0)‖φ , (4.12)

for t such that t0 ≤ (m−1)t/n≤ (m−1)t0 and m−1≥ 1.
Note that for self-adjoint operators e−tC and F(t) by Araki’s log-order inequality

for compact operators [1] one gets for kt/n ≥ t0 the bound of e−ktC/n in the ‖ · ‖φ -
norm:

‖e−ktC/n‖φ ≤ ‖F(t0)‖φ . (4.13)

Since by Definitions 2 and 3 the ideal Cφ (H ) is a Banach space, from (4.11)-(4.13)
we obtain the estimate

‖( f (tA/n)g(tB/n))n− e−tC‖φ ≤ (4.14)

‖F(t0)‖φ ‖( f (tA/n)g(tB/n))k− e−ktC/n‖
+‖F(t0)‖φ ‖( f (tA/n)g(tB/n))m− e−mtC/n‖ ,

for t such that: (1+(k+1)/(m−1))t0 ≤ t ≤ nt0, m≥ 2 and t ≥ (1+m/k)t0.
Now, by conditions of lemma Γt0ε(·) is the operator-norm error bound away from

t0, for any interval [a,b]⊆ (t0,+∞). Then there exists n0 ∈ N such that

‖( f (tA/n)g(tB/n))k− e−ktC/n‖ ≤ Γt0ε(k) , (4.15)

for kt/n ∈ [a,b]⇔ t ∈ [(1+m/k)a,(1+m/k)b] and

‖( f (tA/n)g(tB/n))m− e−mtC/n‖ ≤ Γt0ε(m) , (4.16)

for mt/n ∈ [a,b]⇔ t ∈ [(1+ k/m)a,(1+ k/m)b] for all n > n0.
Setting m := [(n+1)/2] and k = [n/2], n≥ 3, we satisfy n = k+m and m≥ 2, as

well as, limn→∞ (k+1)/(m−1) = 1, limn→∞ m/k = 1 and limn→∞ k/m = 1. Hence,
for any interval [τ0,τ]⊆ (2t0,+∞) we find that [τ0,τ]⊆ [(1+(k+1)/(m−1))t0,nt0]
for sufficiently large n. Moreover, choosing [τ0/2,τ/2] ⊆ (a,b) ⊆ (t0,+∞) we sat-
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isfy [τ0,τ]⊆ [(1+m/k)a,(1+m/k)b] and [τ0,τ]⊆ [(1+ k/m)a,(1+ k/m)b] again
for sufficiently large n.

Thus, for any interval [τ0,τ]⊆ (2t0,+∞) there is n0 ∈ N such that (4.14), (4.15)
and (4.16) hold for t ∈ [τ0,τ] and n≥ n0. Therefore, (4.14) yields the estimate

‖( f (tA/n)g(tB/n))n− e−tC‖φ ≤ (4.17)
Γt0 ‖F(t0)‖φ{ε([n/2])+ ε([(n+1)/2])} ,

for t ∈ [τ0,τ] ⊆ (2t0,+∞) and n ≥ n0. Hence, Γ
φ

2t0
:= Γt0 ‖F(t0)‖φ and Γ

φ

2t0
εφ (·) is

an error bound in the Trotter-Kato product formula (4.10) away from 2t0 in Cφ (H )
for the family { f (tA)g(tB)}t≥0.

The lifting Lemma 4.2 allows to extend the proofs for other approximants:
{g(tB) f (tA)}t≥0, {F(t)}t≥0 and {T (t)}t≥0. �

Now we apply Lemma 4.3 in Dixmier ideal Cφ (H ) = C1,∞(H ). This con-
cerns the norm convergence (4.10), but also the estimate of the convergence rate
for Dixmier traces:

|Trω(e−tC)−Trω(F(t/n)n)| ≤ Γ
ω

εω(n) . (4.18)

In fact, it is the same (up to Γ ω ) for all Trotter-Kato approximants: {T (t)}t≥0,
{ f (t)g(t)}t≥0, and {g(t) f (t)}t≥0.

Indeed, since by inequality (3.18) and Lemma 4.3 for t ∈ [τ0,τ] and n≥ n0, one
has

|Trω(e−tC)−Trω(F(t/n)n)| ≤ ‖e−tC−F(t/n)n‖1,∞ ≤ Γ
φ

2t0
ε1,∞(n) , (4.19)

we obtain for the rate in (4.18): εω(·) = ε1,∞(·). Therefore, the estimate of the con-
vergence rate for Dixmier traces (4.18) and for ‖ · ‖1,∞-convergence in (4.19) are
entirely defined by the operator-norm error bound ε(·) from Lemma 4.3 and have
the form:

ε1,∞(n) := {ε([n/2])+ ε([(n+1)/2])} , n ∈ N . (4.20)

Note that for the particular case of Proposition 4.1, these arguments yield for
(4.17) the explicit convergence rate asymptotics O(n−1) for the Trotter-Kato for-
mulae and consequently, the same asymptotics for convergence rates of the Trotter-
Kato formulae for the Dixmier trace (4.18), (4.19).

Therefore, we proved in the Dixmier ideal C1,∞(H ) the following assertion.

Theorem 1. Let f ,g ∈ Kβ with β = 2, and let A, B be non-negative self-adjoint
operators in H such that the operator sum C := A+B is self-adjoint on domain
dom(C) := dom(A)∩dom(B).

If F(t0) ∈ C1,∞(H ) for some t0 > 0, then the Trotter-Kato product formulae
converge for n→ ∞ in the ‖ · ‖1,∞-norm:

‖[ f (tA/n)g(tB/n)]n− e−tC‖1,∞ = O(n−1) , ‖[g(tB/n) f (tA/n)]n− e−tC‖1,∞ = O(n−1) ,

‖F(t/n)n− e−tC‖1,∞ = O(n−1) , ‖T (t/n)n− e−tC‖1,∞ = O(n−1) ,
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away from 2t0. The rate O(n−1) of convergence is optimal in the sense of [11].
By virtue of (4.19) the same asymptotics O(n−1) of the convergence rate are valid

for convergence the Trotter-Kato formulae for the Dixmier trace:

|Trω([ f (tA/n)g(tB/n)]n)−Trω(e−tC)|= O(n−1) ,

|Trω([g(tB/n) f (tA/n)]n)−Trω(e−tC)|= O(n−1) ,

|Trω(F(t/n)n)−Trω(e−tC)|= O(n−1) , |Trω(T (t/n)n)−Trω(e−tC)|= O(n−1) ,

away from 2t0.

Optimality of the estimates in Theorem 1 is a heritage of the optimality in Propo-
sition 4.1. Recall that in particular this means that in contrast to the Lie prod-
uct formula for bounded generators A and B, the symmetrisation of approximants
{ f (t)g(t)}t≥0, and {g(t) f (t)}t≥0 by {F(t)}t≥0 and {T (t)}t≥0, does not yield (in
general) the improvement of the convergence rate, see [11] and discussion in [26].

We resume that the lifting Lemmata 4.2 and 4.3 are a general method to study the
convergence in symmetrically-normed ideals Cφ (H ) as soon as it is established in
L (H ) in the operator norm topology. The crucial is to check that for any of the key
Kato functions (e.g. for {F(t)}t≥0) there exists t0 > 0 such that F(t)|t≥t0 ∈ Cφ (H ).
Sufficient conditions for that one can find in [16]-[18], or in [25].

Acknowledgments. I am thankful to referee for useful remarks and suggestions.
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