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Trotter-Kato product formulae in Dixmier ideal On the occasion of the 100th birthday of Tosio Kato

convergence. This scheme was then improved and extended in [START_REF] Cachia | Trotter product formula for nonself-adjoint Gibbs semigroups[END_REF] to the case of nonself-adjoint Gibbs semigroups.

The aim of the present note is to elucidate the question about the existence of other then the von Neumann-Schatten proper two-sided ideals I(H ) of L (H ) and then to prove the (non-exponential) Trotter-Kato product formula in topology of these ideals together with estimate of the corresponding rate of convergence. Here a particular case of the Dixmier ideal C 1,∞ (H ) [START_REF] Dixmier | Von Neumann Algebras[END_REF], [START_REF] Connes | Noncommutative Geometry[END_REF], is considered. To specify this ideal we recall in Section 2 the notion of singular trace and then of the Dixmier trace [START_REF] Dixmier | Existence des traces non normales[END_REF], [START_REF] Carey | Dixmier traces and some applications in non-commutative geometry[END_REF], in Section 3. Main results about the Trotter-Kato product formulae in the Dixmier ideal C 1,∞ (H ) are collected in Section 4. There the arguments based on the lifting scheme [START_REF] Neidhardt | Trotter-Kato product formula and symmetrically normed ideals[END_REF] (Theorem 5.1) are refined for proving the Trotter-Kato product formulae convergence in the • 1,∞ -topology with the rate, which is inherited from the operator-norm convergence.

To this end, in the rest of the present section we recall an important auxiliary tool: the concept of symmetrically-normed ideals, see e.g. [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators in Hilbert space[END_REF], [START_REF] Simon | Trace ideals and their applications[END_REF].

Let c 0 ⊂ l ∞ (N) be the subspace of bounded sequences ξ = {ξ j } ∞ j=1 ∈ l ∞ (N) of real numbers, which tend to zero. We denote by c f the subspace of c 0 consisting of all sequences with finite number of non-zero terms (finite sequences). Definition 1. A real-valued function φ : ξ → φ (ξ ) defined on c f is called a norming function if it has the following properties:

φ (ξ ) > 0, ∀ξ ∈ c f , ξ = 0, (1.1) 
φ (αξ ) = |α|φ (ξ ), ∀ξ ∈ c f , ∀α ∈ R, (1.2) 
φ (ξ + η) ≤ φ (ξ ) + φ (η), ∀ξ , η ∈ c f , (1.3) 
φ (1, 0, . . .) = 1.

(1.4)

A norming function φ is called to be symmetric if it has the additional property φ (ξ 1 , ξ 2 , ..., ξ n , 0, 0, . . .) = φ (|ξ j 1 |, |ξ j 2 |, ..., |ξ j n |, 0, 0, . . .) (1.5) for any ξ ∈ c f and any permutation j 1 , j 2 , . . . , j n of integers 1, 2, . . . , n.

It turns out that for any symmetric norming function φ and for any elements ξ , η from the positive cone c + of non-negative, non-increasing sequences such that ξ , η ∈ c f obey ξ 1 ≥ ξ 2 ≥ . . . ≥ 0, η 1 ≥ η 2 ≥ . . . ≥ 0 and

n ∑ j=1 ξ j ≤ n ∑ j=1 η j , n = 1, 2, . . . , (1.6) 
one gets the Ky Fan inequality [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators in Hilbert space[END_REF] (Sec.3, §3) :

φ (ξ ) ≤ φ (η) . (1.7) 
Moreover, (1.7) together with the properties (1.1), (1.2) and (1.4) yield inequalities Therefore, any symmetric norming function φ is uniquely defined by its values on the positive cone c + . Now, let ξ = {ξ 1 , ξ 2 , . . .} ∈ c 0 . We define

ξ 1 ≤ φ (ξ ) ≤ ∞ ∑ j=1 ξ j , ξ ∈ c + f := c f ∩ c + . ( 1 
ξ (n) := {ξ 1 , ξ 2 , . . . , ξ n , 0, 0, . . . } ∈ c f .
Then if φ is a symmetric norming function, we define

c φ := {ξ ∈ c 0 : sup n φ (ξ (n) ) < +∞}.
(1.12)

Therefore, one gets

c f ⊆ c φ ⊆ c 0 ⊂ l ∞ .
Note that by (1.5)-(1.7) and (1.12) one gets

φ (ξ (n) ) ≤ φ (ξ (n+1) ) ≤ sup n φ (ξ (n) )
, for any ξ ∈ c φ .

Then the limit φ (ξ

) := lim n→∞ φ (ξ (n) ) , ξ ∈ c φ , (1.13) 
exists and φ (ξ ) = sup n φ (ξ (n) ), i.e. the symmetric norming function φ is a normal functional on the set c φ (1.12), which is a linear space over R. By virtue of (1.3) and (1.10) one also gets that any symmetric norming function is continuous on c f :

|φ (ξ ) -φ (η)| ≤ φ (ξ -η) ≤ φ 1 (ξ -η) , ∀ξ , η ∈ c f .
Suppose that X is a compact operator, i.e. X ∈ C ∞ (H ). Then we denote by s(X) := {s 1 (X), s 2 (X), . . . }, the sequence of singular values of X counting multiplicities. We always assume that

s 1 (X) ≥ s 2 (X) ≥ . . . ≥ s n (X) ≥ . . . .
To define symmetrically-normed ideals of the compact operators C ∞ (H ) we introduce the notion of a symmetric norm.

Definition 2. Let I be a two-sided ideal of C ∞ (H ). A functional • sym : I → R + 0
is called a symmetric norm if besides the usual properties of the operator norm • :

X sym > 0, ∀X ∈ I, X = 0, αX sym = |α| X sym , ∀X ∈ I, ∀α ∈ C, X +Y sym ≤ X sym + Y sym , ∀X,Y ∈ I,
it verifies the following additional properties:

AXB sym ≤ A X sym B , X ∈ I, A, B ∈ L (H ), (1.14) 
αX sym = |α| X = |α| s 1 (X), for any rank -one operator X ∈ I. (1.15)
If the condition (1.14) is replaced by

UX sym = XU sym = X sym , X ∈ I , (1.16) 
for any unitary operator U on H , then, instead of the symmetric norm, one gets definition of invariant norm • inv .

First, we note that the ordinary operator norm • on any ideal I ⊆ C ∞ (H ) is evidently a symmetric norm as well as an invariant norm.

Second, we observe that in fact, every symmetric norm is invariant. Indeed, for any unitary operators U and V one gets by (1.14) that UXV sym ≤ X sym , X ∈ I .

(1.17)

Since X = U -1 UXVV -1 , we also get X sym ≤ UXV sym , which together with (1.17) yield (1.16). Third, we claim that X sym = X * sym . Let X = U|X| be the polar representation of the operator X ∈ I. Since U * X = |X|, then by (1.16) we obtain X sym = |X| sym . The same line of reasoning applied to the adjoint operator X * = |X|U * yields X * sym = |X| sym , that proves the claim. Now we can apply the concept of the symmetric norming functions to describe the symmetrically-normed ideals of the unital algebra of bounded operators L (H ), or in general, the symmetrically-normed ideals generated by symmetric norming functions. Recall that any proper two-sided ideal I(H ) of L (H ) is contained in compact operators C ∞ (H ) and contains the set K (H ) of finite-rank operators, see e.g. [START_REF] Pietsch | Traces of operators and their history[END_REF], [START_REF] Simon | Trace ideals and their applications[END_REF]: .18) To clarify the relation between symmetric norming functions and the symmetricallynormed ideals we mention that there is an obvious one-to-one correspondence between functions φ (Definition 1) on the cone c + and the symmetric norms • sym on K (H ). To proceed with a general setting one needs definition of the following relation.

K (H ) ⊆ I(H ) ⊆ C ∞ (H ) . ( 1 
Definition 3. Let c φ be the set of vectors (1.12) generated by a symmetric norming function φ . We associate with c φ a subset of compact operators

C φ (H ) := {X ∈ C ∞ (H ) : s(X) ∈ c φ } . (1.19)
This definition implies that the set C φ (H ) is a proper two-sided ideal of the algebra L (H ) of all bounded operators on H . Setting, see (1.13),

X φ := φ (s(X)) , X ∈ C φ (H ) , (1.20) 
one obtains the symmetric norm:

• sym = • φ , on the ideal I = C φ (H ) (Defini- tion 2
) such that this symmetrically-normed ideal becomes a Banach space. Then in accordance with (1.18) and (1. [START_REF] Neidhardt | Trotter-Kato product formula and symmetrically normed ideals[END_REF]) we obtain by (1.10) that

K (H ) ⊆ C 1 (H ) ⊆ C φ (H ) ⊆ C ∞ (H ) . (1.21) 
Here the trace-class operators C 1 (H ) := C φ 1 (H ), where the symmetric norming function φ 1 is defined in (1.9), and

X φ ≤ X 1 , X ∈ C 1 (H ) .
Remark 1. By virtue of inequality (1.7) and by definition of symmetric norm (1.20) the so-called dominance property holds: if

X ∈ C φ (H ), Y ∈ C ∞ (H ) and n ∑ j=1 s j (Y ) ≤ n ∑ j=1 s j (X) , n = 1, 2, . . . , then Y ∈ C φ (H ) and Y φ ≤ X φ .
Remark 2. To distinguish in (1.21) nontrivial ideals C φ one needs some criteria based on the properties of φ or of the norm • φ . For example, any symmetric norming function (1.11) defined by

φ (r) (ξ ) := r ∑ j=1 ξ * j , ξ ∈ c f ,
generates for arbitrary fixed r ∈ N the symmetrically-normed ideals, which are trivial in the sense that C φ (r) (H ) = C ∞ (H ). Criterion for an operator A to belong to a nontrivial ideal

C φ is M = sup m≥1 P m AP m φ < ∞ , (1.22) 
where {P m } m≥1 is a monotonously increasing sequence of the finite-dimensional orthogonal projectors on H strongly convergent to the identity operator [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators in Hilbert space[END_REF]. Note that for A ∈ C ∞ the condition (1.22) is trivial.

We consider now a couple of examples to elucidate the concept of the symmetricallynormed ideals C φ (H ) generated by the symmetric norming functions φ and the rôle of the functional trace on these ideals.

Example 1. The von Neumann-Schatten ideals C p (H ) [START_REF] Schatten | Norm ideals of completely continuous operators[END_REF]. These ideals of C ∞ (H ) are generated by symmetric norming functions φ (ξ ) := ξ p , where

ξ p = ∞ ∑ j=1 |ξ j | p 1/p , ξ ∈ c f ,
for 1 ≤ p < +∞, and by

ξ ∞ = sup j |ξ j |, ξ ∈ c f ,
for p = +∞. Indeed, if we put {ξ * j := s j (X)} j≥1 , for X ∈ C ∞ (H ), then the symmetric norm X φ = s(X) p coincides with X p and the corresponding symmetrically-normed ideal C φ (H ) is identical to the von Neumann-Schatten class C p (H ).

By definition, for any X ∈ C p (H ) the trace: |X| → Tr|X| = ∑ j≥1 s j (X) ≥ 0. The trace norm X 1 = Tr|X| is finite on the trace-class operators C 1 (H ) and it is infinite for X ∈ C p>1 (H ). We say that for p > 1 the von Neumann-Schatten ideals admit no trace, whereas for p = 1 the map: X → Tr X, exists and it is continuous in the • 1 -topology.

Note that by virtute of the Tr-linearity the trace norm: C 1,+ (H ) X → X 1 is linear on the positive cone C 1,+ (H ) of the trace-class operators.

Example 2. Now we consider symmetrically-normed ideals C Π (H ). To this aim let Π = {π j } ∞ j=1 ∈ c + be a non-increasing sequence of positive numbers with π 1 = 1. We associate with Π the function

φ Π (ξ ) = sup n 1 ∑ n j=1 π j n ∑ j=1 ξ * j , ξ ∈ c f . (1.23)
It turns out that φ Π is a symmetric norming function. Then the corresponding to (1.12) set c φ Π is defined by

c φ Π := ξ ∈ c f : sup n 1 ∑ n j=1 π j n ∑ j=1 ξ * j < +∞ .
Hence, the two-sided symmetrically-normed ideal C Π (H ) := C φ Π (H ) generated by symmetric norming function (1.23) consists of all those compact operators X that

X φ Π := sup n 1 ∑ n j=1 π j n ∑ j=1 s j (X) < +∞ . (1.24)
This equation defines a symmetric norm

X sym = X φ Π on the ideal C Π (H ), see Definition 2. Now let Π = {π j } ∞ j=1 , with π 1 = 1, satisfy ∞ ∑ j=1 π j = +∞ and lim j→∞ π j = 0 . (1.25) Then the ideal C Π (H ) is nontrivial: C Π (H ) = C ∞ (H ) and C Π (H ) = C 1 (H ),
see Remark 2, and one has

C 1 (H ) ⊂ C Π (H ) ⊂ C ∞ (H ) . (1.26) If in addition to (1.25) the sequence Π = {π j } ∞ j=1 is regular, i.e. it obeys n ∑ j=1 π j = O(nπ n ) , n → ∞ , (1.27) 
then X ∈ C Π (H ) if and only if

s n (X) = O(π n ) , n → ∞ , (1.28) 
cf. condition (1.22). On the other hand, the asymptotics

s n (X) = o(π n ) , n → ∞ ,
implies that X belongs to:

C 0 Π (H ) := {X ∈ C Π (H ) : lim n→∞ 1 ∑ n j=1 π j n ∑ j=1 s j (X) = 0}, such that C 1 (H ) ⊂ C 0 Π (H ) ⊂ C Π (H ). Remark 3. A natural choice of the sequence {π j } ∞ j=1 that satisfies (1.25) is π j = j -α , 0 < α ≤ 1. Note that if 0 < α < 1, then the sequence Π = {π j } ∞
j=1 satisfies (1.27), i.e. it is regular for ε = 1α. Therefore, the two-sided symmetrically-normed ideal C Π (H ) generated by symmetric norming function (1.23) consists of all those compact operators X, which singular values obey (1.28):

s n (X) = O(n -α ), 0 < α < 1, n → ∞ . (1.29) Let α = 1/p , p > 1.
Then the corresponding to (1.29) symmetrically-normed ideal defined by

C p,∞ (H ) := {X ∈ C ∞ (H ) : s n (X) = O(n -1/p ), p > 1} ,
is known as the weak-C p ideal [START_REF] Pietsch | Traces of operators and their history[END_REF], [START_REF] Simon | Trace ideals and their applications[END_REF].

Whilst by virtue of (1.29) the weak-C p ideal admit no trace, definition (1.24) implies that for the regular case p > 1 a symmetric norm on C p,∞ (H ) is equivalent to

X p,∞ = sup n 1 n 1-1/p n ∑ j=1 s j (X) , (1.30) 
and it is obvious that

C 1 (H ) ⊂ C p,∞ (H ) ⊂ C ∞ (H ).
Taking into account the Hölder inequality one can to refine these inclusions for 1 ≤ q ≤ p as follows:

C 1 (H ) ⊆ C q (H ) ⊆ C p,∞ (H ) ⊂ C ∞ (H ).

Singular traces

Note that (1.30) implies: C 1 (H ) A → A p,∞ < ∞, but any related to the ideal C p,∞ (H ) linear, positive, and unitarily invariant functional (trace) is zero on the set of finite-rank operators K (H ), or trivial. We remind that these not normal traces:

Tr ω (X) := ω({n -1+1/p n ∑ j=1 s j (X)} ∞ n=1 ) , (2.1) 
are called singular, [START_REF] Dixmier | Existence des traces non normales[END_REF], [START_REF] Lord | Singular Traces. Theory and Applications, Series[END_REF]. Here ω is an appropriate linear positive normalised functional (state) on the Banach space l ∞ (N) of bounded sequences. Recall that the set of the states S (l ∞ (N)) ⊂ (l ∞ (N)) * , where (l ∞ (N)) * is dual of the Banach space l ∞ (N). The singular trace (2.1) is continuous in topology defined by the norm (1.30).

Remark 4. (a)

The weak-C p ideal, which is defined for p = 1 by

C 1,∞ (H ) := {X ∈ C ∞ (H ) : n ∑ j=1 s j (X) = O(ln(n)), n → ∞} , (2.2) 
has a special interest. Note that since Π = { j -1 } ∞ j=1 does not satisfy (1.27), the characterisation s n (X) = O(n -1 ), is not true, see (1.28), (1.29). In this case the equivalent norm can be defined on the ideal (2.2) as

X 1,∞ := sup n∈N 1 1 + ln(n) n ∑ j=1 s j (X) . (2.3)
By, virtute of (1.26) and Remark 3 one gets that

C 1 (H ) ⊂ C 1,∞ (H ) and that C 1 (H ) A → A 1,∞ < ∞. (b) In contrast to linearity of the trace-norm • 1 on the positive cone C 1,+ (H ), see Example 1, the map X → X 1,∞ on the positive cone C 1,∞,+ (H ) is not linear. Although this map is homogeneous: αA → α A 1,∞ , α ≥ 0, for A, B ∈ C 1,∞,+ (H ) one gets that in general A + B 1,∞ = A 1,∞ + B 1,∞ .
But it is known that on the space l ∞ (N) there exists a state ω ∈ S (l ∞ (N)) such that the map

X → Tr ω (X) := ω({(1 + ln(n)) -1 n ∑ j=1 s j (X)} ∞ n=1 ) , (2.4) 
is linear and verifies the properties of the (singular) trace for any X ∈ C 1,∞ (H ). We construct ω in Section 3. This particular choice of the state ω defines the Dixmier trace on the space C 1,∞ (H ), which is called, in turn, the Dixmier ideal, see e.g. [START_REF] Carey | Dixmier traces and some applications in non-commutative geometry[END_REF], [START_REF] Connes | Noncommutative Geometry[END_REF]. The Dixmier trace (2.4) is obviously continuous in topology defined by the norm (2.3). This last property is basic for discussion in Section 4 of the Trotter-Kato product formula in the • p,∞ -topology, for p ≥ 1.

Example 3. With non-increasing sequence of positive numbers π = {π j } ∞ j=1 , π 1 = 1, one can associate the symmetric norming function φ π given by

φ π (ξ ) := ∞ ∑ j=1 π j ξ * j , ξ ∈ c f .
The corresponding symmetrically-normed ideal we denote by C π (H ) := C φ π (H ).

If the sequence π satisfies (1.25), then ideal C π (H ) does not coincide neither with C ∞ (H ) nor with C 1 (H ). If, in particular, π j = j -α , j = 1, 2, . . . , for 0 < α ≤ 1, then the corresponding ideal is denoted by C ∞,p (H ), p = 1/α. The norm on this ideal is given by

X ∞,p := ∞ ∑ j=1 j -1/p s j (X) , p ∈ [1, ∞) . The symmetrically-normed ideal C ∞,1 (H ) is called the Macaev ideal [8]. It turns out that the Dixmier ideal C 1,∞ (H ) is dual of the Macaev ideal: C 1,∞ (H ) = C ∞,1 (H ) * . Proposition 2.1 The space C 1,∞ (H ) endowed by the norm • 1,∞ is a Banach space.
The proof is quite standard although tedious and long. We address the readers to the corresponding references, e.g. [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators in Hilbert space[END_REF].

Proposition 2.2 The space C 1,∞ (H ) endowed by the norm • 1,∞ is a Banach ideal in the algebra of bounded operators L (H ).
Proof. To this end it is sufficient to prove that if A and C are bounded operators, then

B ∈ C 1,∞ (H ) implies ABC ∈ C 1,∞ (H ).
Recall that singular values of the operator ABC verify the estimate s j (ABC) ≤ A C s j (B). By (2.3) it yields

ABC 1,∞ = sup n∈N 1 1 + ln(n) n ∑ j=1 s j (ABC) ≤ (2.5) A C sup n∈N 1 1 + ln(n) n ∑ j=1 s j (B) = A C B 1,∞ ,
and consequently the proof of the assertion.

Recall that for any A ∈ L (H ) and all B ∈ C 1 (H ) one can define a linear functional on C 1 (H ) given by Tr H (AB). The set of these functionals {Tr

H (A•)} A∈L (H ) is just the dual space C 1 (H ) * of C 1 (H ) with the operator-norm topology. In other words, L (H ) = C 1 (H ) * , in the sense that the map A → Tr H (A•) is the isometric isomorphism of L (H ) onto C 1 (H ) * .
With help of the duality relation

A|B := Tr H (AB) , (2.6) 
one can also describe the space 

C 1 (H ) * , which is a predual of C 1 (H ), i.e., its dual (C 1 (H ) * ) * = C 1 (H ).
ideal: C 1,∞ (H ) = C ∞,1 (H ) * , where C ∞,1 (H ) = {A ∈ C ∞ (H ) : ∑ n≥1 1 n s n (A) < ∞} , (2.7) 
see Example 3. By the same duality relation and by similar calculations one also obtains that the

predual of C ∞,1 (H ) is the ideal C ∞,1 (H ) * = C (0)
1,∞ (H ), defined by

C (0) 1,∞ (H ) := {A ∈ C ∞ (H ) : n ∑ j≥1 s j (A) = o(ln(n)), n → ∞} . (2.8) 
By virtue of (2.2) (see Remark 4) the ideal (2.8) is not self-dual since

C (0) 1,∞ (H ) * * = C 1,∞ (H ) ⊃ C (0) 1,∞ (H ).
The problem which has motivated construction of the Dixmier trace in [START_REF] Dixmier | Existence des traces non normales[END_REF] was related to the question of a general definition of the trace, i.e. a linear, positive, and unitarily invariant functional on a proper Banach ideal I(H ) of the unital algebra of bounded operators L (H ). Since any proper two-sided ideal I(H ) of L (H ) is contained in compact operators C ∞ (H ) and contains the set K (H ) of finite-rank operators ((1.18), Section 1), domain of definition of the trace has to coincide with the ideal I(H ). Note that every nontrivial normal trace on L (H ) is proportional to the canonical trace Tr H (•), see e.g. [START_REF] Dixmier | Von Neumann Algebras[END_REF], [START_REF] Pietsch | Traces of operators and their history[END_REF]. Therefore, the Dixmier trace (2.4) :

C 1,∞ X → Tr ω (X), is not normal. Definition 4. A trace on the proper Banach ideal I(H ) ⊂ L (H ) is called singular if it vanishes on the set K (H ).
Since a singular trace is defined up to trace-class operators C 1 (H ), then by Remark 5 it is obviously not normal.

Dixmier trace

Recall that only the ideal of trace-class operators has the property that on its positive cone

C 1,+ (H ) := {A ∈ C 1 (H ) : A ≥ 0} the trace-norm is linear since A + B 1 = Tr (A + B) = Tr (A) + Tr (B) = A 1 + B 1 for A, B ∈ C 1,+ (H ), see Example 1.
Then the uniqueness of the trace-norm allows to extend the trace to the whole linear space C 1 (H ). Imitation of this idea fails for other symmetricallynormed ideals.

This problem motivates the Dixmier trace construction as a certain limiting procedure involving the • 1,∞ -norm. Let C 1,∞,+ (H ) be a positive cone of the Dixmier ideal. One can try to construct on C 1,∞,+ (H ) a linear, positive, and unitarily invariant functional (called trace T ) via extension of the limit (called Lim) of the sequence of properly normalised finite sums of the operator X singular values:

T (X) := Lim n→∞ 1 1 + ln(n) n ∑ j=1 s j (X) , X ∈ C 1,∞,+ (H ) . (3.1) 
First we note that since for any unitary U : H → U, the singular values of X ∈ C ∞ (H ) are invariant: s j (X) = s j (U X U * ), it is also true for the sequence

σ n (X) := n ∑ j=1 s j (X) , n ∈ N . (3.2)
Then the Lim in (3.1) (if it exists) inherits the property of unitarity.

Now we comment that positivity: X ≥ 0, implies the positivity of eigenvalues {λ j (X)} j≥1 and consequently: λ j (X) = s j (X). Therefore, σ n (X) ≥ 0 and the Lim in (3.1) is a positive mapping.

The next problem with the formula for T (X) is its linearity. To proceed we recall that if P : H → P(H ) is an orthogonal projection on a finite-dimensional subspace with dim P(H ) = n, then for any bounded operator X ≥ 0 the (3.2) gives

σ n (X) = sup P {Tr H (XP) : dim P(H ) = n} . (3.3)
As a corollary of (3.3) one obtains the Horn-Ky Fan inequality

σ n (X +Y ) ≤ σ n (X) + σ n (Y ) , n ∈ N, (3.4) 
valid in particular for any pair of bounded positive compact operators X and Y . For dim P(H ) ≤ 2n one similarly gets from (3.3) that

σ 2n (X +Y ) ≥ σ n (X) + σ n (Y ) , n ∈ N . (3.5) 
Motivated by (3.1) we now introduce

T n (X) := 1 1 + ln(n) σ n (X) , X ∈ C 1,∞,+ (H ) , (3.6) 
and denote by Lim{T n (X)} n∈N := Lim n→∞ T n (X) the right-hand side of the functional in (3.1). Note that by (3.6) the inequalities (3.4) and (3.5) yield for n ∈ N

T n (X +Y ) ≤ T n (X) + T n (Y ) , 1 + ln(2n) 1 + ln(n) T 2n (X +Y ) ≥ T n (X) + T n (Y ) . (3.7)
Since the functional Lim includes the limit n → ∞, the inequalities (3.7) would give a desired linearity of the trace T :

T (X +Y ) = T (X) + T (Y ) , (3.8) 
if one proves that the Lim n→∞ in (3.1) exists and finite for X,Y as well as for X +Y .

To this end we note that if the right-hand of (3.1) exists, then one obtains (3.8). Hence the Lim{T n (X)} n∈N is a positive linear map Lim : l ∞ (N) → R, which defines a state ω ∈ S (l ∞ (N)) on the Banach space of sequences {T n (•)} n∈N ∈ l ∞ (N), such that T (X) = ω({T n (X)} n∈N ). Remark 6. Scrutinising description of ω(•), we infer that its values Lim{T n (X)} n∈N are completely determined only by the "tail" behaviour of the sequences {T n (X)} n∈N as it is defined by Lim n→∞ T n (X). For example, one concludes that the state ω({T n (X)} n∈N ) = 0 for the whole set c 0 of sequences: {T n (X)} n∈N ∈ c 0 , which tend to zero. The same is also plausible for the non-zero converging limits.

To make this description more precise we impose on the state ω the following conditions:

(a) ω(η) ≥ 0 , for ∀η = {η n ≥ 0} n∈N , (b) ω(η) = Lim{η n } n∈N = lim n→∞ η n , if {η n ≥ 0} n∈N is convergent .
By virtue of (a) and (b) the definitions (3.1) and (3.6) imply that for X,Y ∈ C 1,∞,+ (H ) one gets

T (X) = ω({T n (X)} n∈N ) = lim n→∞ T n (X) , (3.9) 
T (Y ) = ω({T n (Y )} n∈N ) = lim n→∞ T n (Y ) , (3.10) 
T (X +Y ) = ω({T n (X +Y )} n∈N ) = lim n→∞ T n (X +Y ) , (3.11) 
if the limits in the right-hand sides of (3.9)-(3.11) exist. Now, to ensure (3.8) one has to select ω in such a way that it allows to restore the equality in (3.7), when n → ∞. To this aim we impose on the state ω the condition of dilation D 2 -invariance.

Let D 2 : l ∞ (N) → l ∞ (N), be dilation mapping η → D 2 (η):

D 2 : (η 1 , η 2 , . . . η k , . . .) → (η 1 , η 1 , η 2 , η 2 , . . . η k , η k , . . .) , ∀η ∈ l ∞ (N) . (3.12)
We say that ω is dilation D 2 -invariant if for any η ∈ l ∞ (N) it verifies the property

(c) ω(η) = ω(D 2 (η)) . (3.13) 
We shall discuss the question of existence the dilation D 2 -invariant states (the invariant means) on the Banach space l ∞ (N) in Remark 7.

Let X,Y ∈ C 1,∞,+ (H ). Then applying the property (c) to the sequence η = {ξ 2n := T 2n (X +Y )} ∞ n=1 , we obtain

ω(η) = ω(D 2 (η)) = ω(ξ 2 , ξ 2 , ξ 4 , ξ 4 , ξ 6 , ξ 6 , . . .) . (3.14) Note that if ξ = {ξ n = T n (X +Y )} ∞ n=1
, then the difference of the sequences:

D 2 (η) -ξ = (ξ 2 , ξ 2 , ξ 4 , ξ 4 , ξ 6 , ξ 6 , . . .) -(ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 , ξ 6 , . . .) , converges to zero if ξ 2n -ξ 2n-1 → 0 as n → ∞.
Then by virtue of (3.11) and (3.14) this would imply Therefore, to finish the proof of linearity it rests only to check that lim n→∞ (ξ 2nξ 2n-1 ) = 0. To this end we note that by definitions (3.2) and (3.6) one gets 

ω({T 2n (X +Y )} n∈N ) = ω(D 2 ({T 2n (X +Y )} n∈N )) = ω({T n (X +Y )} n∈N ) ,
ξ 2n -ξ 2n-1 = 1 ln(2n) - 1 ln(2n -1) σ 2n-1 (X +Y ) + 1 ln(2n) s 2n (X +Y ) . (3.16) Since X,Y ∈ C 1,∞,+ ( 
Tr ω (X) := Lim n→∞ σ n (X) 1 + ln(n) = ω({T n (X)} n∈N ) , (3.17) 
where Lim n→∞ is defined by a dilation-invariant state ω ∈ S (l ∞ (N)) on l ∞ (N), that satisfies the properties (a), (b), and (c). Since any self-adjoint operator X ∈ C 1,∞ (H ) has the representation: X = X + -X -, where Note that if X ∈ C 1,∞,+ (H ), then definition (3.17) of Tr ω (•) together with definition of the norm • 1,∞ in (2.3), readily imply the estimate Tr ω (X) ≤ X 1,∞ , which in turn yields the inequality for arbitrary Z from the Dixmier ideal C 1,∞ (H ): Note that Remark 7 has a straightforward extension to any D k -dilation for k > 2, which is defined similar to (3.12). Since dilations for different k ≥ 2 commute, the extension of the Markov-Kakutani theorem yields that the commutative family F = {D * k } k≥2 has in S (l ∞ (N)) the common fix point ω = D * 2 ω. Therefore, Definition 5 of the Dixmier trace does not depend on the degree k ≥ 2 of dilation D k .

X ± ∈ C 1,∞,+ ( 
|Tr ω (Z)| ≤ Z 1,∞ . ( 3 
For more details about different constructions of invariant means and the corresponding Dixmier trace on C 1,∞ (H ), see, e.g., [START_REF] Carey | Dixmier traces and some applications in non-commutative geometry[END_REF], [START_REF] Lord | Singular Traces. Theory and Applications, Series[END_REF]. 

ω : C 1,∞ (H ) → C, is continuous in the • 1,∞ -norm.
Proof. (a) Since every operator B ∈ L (H ) is a linear combination of four unitary operators, it is sufficient to prove the equality Tr ω (ZU) = Tr ω (UZ) for a unitary operator U and moreover only for Z ∈ C 1,∞,+ (H ). Then the corresponding equality follows from the unitary invariance: s j (Z) = s j (ZU) = s j (UZ) = s j (UZU * ), of singular values of the positive operator Z for all j ≥ 1.

(b) Since C ∈ C 1 (H ) yields C 1 < ∞, definition (3.2) implies σ n (C) ≤ C 1 for any n ≥ 1.
Then by Definition 5 one gets Tr ω (C) = 0. Proof of the last part of the statement is standard. (c) Since the ideal C 1,∞ (H ) is a Banach space and Tr ω : C 1,∞ (H ) → C a linear functional it is sufficient to consider continuity at X = 0. Then let the sequence

{X k } k≥1 ⊂ C 1,∞ (H ) converges to X = 0 in • 1,∞ -topology, i.e. by (2.3) lim k→∞ X k 1,∞ = lim k→∞ sup n∈N 1 1 + ln(n) σ n (X k ) = 0 . (3.19) 
Since (3.18) implies |Tr ω (X k )| ≤ X k 1,∞ , the assertion follows from (3.19).

Therefore, the Dixmier construction gives an example of a singular trace in the sense of Definition 4.

Trotter-Kato product formulae in the Dixmier ideal

Let A ≥ 0 and B ≥ 0 be two non-negative self-adjoint operators in a separable Hilbert space H and let the subspace H 0 := dom(A 1/2 ) ∩ dom(B 1/2 ). It may happen that dom(A) ∩ dom(B) = {0}, but the form-sum of these operators:

H = A . + B, is well-defined in the subspace H 0 ⊆ H .
T. Kato proved in [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] that under these conditions the Trotter product formula slim n→∞ e -tA/n e -tB/n n = e -tH P 0 , t > 0, (

converges in the strong operator topology away from zero (i.e., for t ∈ R + ), and locally uniformly in t ∈ R + (i.e. uniformly in t ∈ [ε, T ], for 0 < ε < T < +∞ ), to a degenerate semigroup {e -tH P 0 } t>0 . Here P 0 denotes the orthogonal projection from H onto H 0 . Moreover, in [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] it was also shown that the product formula is true not only for the exponential function e -x , x ≥ 0, but for a whole class of Borel measurable functions f (•) and g(•), which are defined on R + 0 := [0, ∞) and satisfy the conditions:

0 ≤ f (x) ≤ 1, f (0) = 1, f (+0) = -1, (4.2) 0 ≤ g(x) ≤ 1, g(0) = 1, g (+0) = -1. (4.3)
Namely, the main result of [START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] says that besides (4.1) one also gets convergence

τ -lim n→∞ ( f (tA/n)g(tB/n)) n = e -tH P 0 , t > 0, (4.4) 
locally uniformly away from zero, if topology τ = s. Product formulae of the type (4.4) are called the Trotter-Kato product formulae for functions (4.2), (4.3), which are called the Kato functions K . Note that K is closed with respect to the products of Kato functions.

For some particular classes of the Kato functions we refer to [START_REF] Neidhardt | On error estimates for the Trotter-Kato product formula[END_REF], [START_REF] Zagrebnov | Topics in the Theory of Gibbs semigroups[END_REF]. In the following it is useful to consider instead of f (x)g(x) two Kato functions: g(x/2) f (x)g(x/2) and f (x/2)g(x) f (x/2), that produce the self-adjoint operator families F(t) := g(tB/2) f (tA)g(tB/2) and T (t) := f (tA/2)g(tB) f (tA/2), t ≥ 0. (4.5)

Since [START_REF] Neidhardt | The Trotter product formula for Gibbs semigroup[END_REF] it is known, that the lifting of the topology of convergence in (4.4) to the operator norm τ = • needs more conditions on operators A and B as well as on the key Kato functions f , g ∈ K . One finds a discussion and more references on this subject in [START_REF] Zagrebnov | Topics in the Theory of Gibbs semigroups[END_REF]. Here we quote a result that will be used below for the Trotter-Kato product formulae in the Dixmier ideal C 1,∞ (H ).

Consider the class K β of Kato-functions, which is defined in [START_REF] Ichinose | The norm convergence of the Trotter-Kato product formula with error bound[END_REF], [START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF] as: (i) Measurable functions 0 ≤ h ≤ 1 on R + 0 , such that h(0) = 1, and h (+0) = -1. (ii) For ε > 0 there exists δ = δ (ε) < 1, such that h(s) ≤ 1δ (ε) for s ≥ ε, and

[h] β := sup s>0 |h(s) -1 + s| s β < ∞ , for 1 < β ≤ 2 .
The standard examples are: h(s) = e -s and h(s) = (1 + a -1 s) -a , a > 0.

Below we consider the class K β and a particular case of generators A and B, such that for the Trotter-Kato product formulae the estimate of the convergence rate is optimal. Proposition 4.1 [START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF] Let f , g ∈ K β with β = 2, and let A, B be non-negative selfadjoint operators in H such that the operator sum C := A + B is self-adjoint on domain dom(C) := dom(A) ∩ dom(B). Then the Trotter-Kato product formulae con-verge for n → ∞ in the operator norm:

[ f (tA/n)g(tB/n)] n -e -tC = O(n -1 ) , [g(tB/n) f (tA/n)] n -e -tC = O(n -1 ) , F(t/n) n -e -tC = O(n -1 ) , T (t/n) n -e -tC = O(n -1 ) .
Note that for the corresponding to each formula error bounds O(n -1 ) are equal up to coefficients {Γ j > 0} 4 j=1 and that each rate of convergence Γ j ε(n) = O(n -1 ), j = 1, . . . 4, is optimal.

The first lifting lemma yields sufficient conditions that allow to strengthen the strong operator convergence to the • φ -norm convergence in the the symmetricallynormed ideal C φ (H ). 

(Z(t/r) -Z)Y X φ = lim r→∞ sup t∈[0,τ] XY (Z(t/r) -Z) φ = 0 , (4.7) 
for any τ ∈ (0, ∞).

Proof. Note that (4.6) yields the strong operator convergence s-lim r→∞ Z(t/r) = Z, 

uniformly in t ∈ [0, τ]. Since Y ∈ C ∞ (H ),
(Z(t/r) -Z)Y X φ ≤ (Z(t/r) -Z)Y X φ , (4.9) 
which together with (4.8) give the prove of (4.7).

The second lifting lemma allows to estimate the rate of convergence of the Trotter-Kato product formula in the norm (1.20) of symmetrically-normed ideal C φ (H ) via the error bound ε(n) in the operator norm due to Proposition 4.1.

Lemma 4.3 Let A and B be non-negative self-adjoint operators on the separable Hilbert space H , that satisfy the conditions of Proposition 4.1. Let f , g ∈ K 2 be such that F(t 0 ) ∈ C φ (H ) for some t 0 > 0.

If Γ t 0 ε(n), n ∈ N, is the operator-norm error bound away from t 0 > 0 of the Trotter-Kato product formula for { f (tA)g(tB)} t≥0 , then for some Γ φ 2t 0 > 0 the function ε φ (n) := {ε([n/2]) + ε([(n + 1)/2])}, n ∈ N, defines the error bound away from 2t 0 of the Trotter-Kato product formula in the ideal C φ (H ): 

[ f (tA/n)g(tB/n)] n -e -tC φ = Γ φ 2t 0 ε φ (n) , n → ∞. t ≥ 2t 0 . ( 4 
( f (tA/n)g(tB/n)) n -e -tC = (4.11) ( f (tA/n)g(tB/n)) k -e -ktC/n ( f (tA/n)g(tB/n)) m + e -ktC/n ( f (tA/n)g(tB/n)) m -e -mtC/n .
Since by conditions of lemma F(t 0 ) ∈ C φ (H ), definition (4.5) and representation

f (tA/n)g(tB/n)) m = f (tA/n)g(tB/n) 1/2 F(t/n) m-1 g(tB) 1/2 yield ( f (tA/n)g(tB/n)) m φ ≤ F(t 0 ) φ , (4.12) 
for t such that t 0 ≤ (m -1)t/n ≤ (m -1)t 0 and m -1 ≥ 1.

Note that for self-adjoint operators e -tC and F(t) by Araki's log-order inequality for compact operators [START_REF] Araki | On an inequality of Lieb and Thirring[END_REF] one gets for kt/n ≥ t 0 the bound of e -ktC/n in the

• φ - norm: e -ktC/n φ ≤ F(t 0 ) φ . (4.13) 
Since by Definitions 2 and 3 the ideal C φ (H ) is a Banach space, from (4.11)-(4.13) we obtain the estimate

( f (tA/n)g(tB/n)) n -e -tC φ ≤ (4.14) F(t 0 ) φ ( f (tA/n)g(tB/n)) k -e -ktC/n + F(t 0 ) φ ( f (tA/n)g(tB/n)) m -e -mtC/n ,
for t such that: (1 + (k + 1)/(m -1))t 0 ≤ t ≤ nt 0 , m ≥ 2 and t ≥ (1 + m/k)t 0 . Now, by conditions of lemma Γ t 0 ε(•) is the operator-norm error bound away from t 0 , for any interval [a, b] ⊆ (t 0 , +∞). Then there exists n 0 ∈ N such that

( f (tA/n)g(tB/n)) k -e -ktC/n ≤ Γ t 0 ε(k) , (4.15) 
for kt/n ∈ [a, b] ⇔ t ∈ [(1 + m/k)a, (1 + m/k)b] and ( f (tA/n)g(tB/n)) m -e -mtC/n ≤ Γ t 0 ε(m) , (4.16 
)

for mt/n ∈ [a, b] ⇔ t ∈ [(1 + k/m)a, (1 + k/m)b] for all n > n 0 . Setting m := [(n + 1)/2] and k = [n/2], n ≥ 3, we satisfy n = k + m and m ≥ 2, as well as, lim n→∞ (k + 1)/(m -1) = 1, lim n→∞ m/k = 1 and lim n→∞ k/m = 1. Hence, for any interval [τ 0 , τ] ⊆ (2t 0 , +∞) we find that [τ 0 , τ] ⊆ [(1+(k + 1)/(m -1))t 0 , nt 0 ] for sufficiently large n. Moreover, choosing [τ 0 /2, τ/2] ⊆ (a, b) ⊆ (t 0 , +∞) we sat- isfy [τ 0 , τ] ⊆ [(1 + m/k)a, (1 + m/k)b] and [τ 0 , τ] ⊆ [(1 + k/m)a, (1 + k/m)b] again for sufficiently large n.
Thus, for any interval [τ 0 , τ] ⊆ (2t 0 , +∞) there is n 0 ∈ N such that (4.14), (4.15) and (4.16) hold for t ∈ [τ 0 , τ] and n ≥ n 0 . Therefore, (4.14) yields the estimate

( f (tA/n)g(tB/n)) n -e -tC
φ ≤ (4.17) In fact, it is the same (up to Γ ω ) for all Trotter-Kato approximants: {T (t)} t≥0 , { f (t)g(t)} t≥0 , and {g(t) f (t)} t≥0 . Indeed, since by inequality (3.18) and Lemma 4.3 for t ∈ [τ 0 , τ] and n ≥ n 0 , one has

Γ t 0 F(t 0 ) φ {ε([n/2]) + ε([(n + 1)/2])} , for t ∈ [τ 0 , τ] ⊆ (2t 0 ,
|Tr ω (e -tC ) -Tr ω (F(t/n) n )| ≤ e -tC -F(t/n) n 1,∞ ≤ Γ φ 2t 0 ε 1,∞ (n) , (4.19) 
we obtain for the rate in (4. Note that for the particular case of Proposition 4.1, these arguments yield for (4.17) the explicit convergence rate asymptotics O(n -1 ) for the Trotter-Kato formulae and consequently, the same asymptotics for convergence rates of the Trotter-Kato formulae for the Dixmier trace (4.18), (4.19).

Therefore, we proved in the Dixmier ideal C 1,∞ (H ) the following assertion. away from 2t 0 . The rate O(n -1 ) of convergence is optimal in the sense of [START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF]. By virtue of (4.19) the same asymptotics O(n -1 ) of the convergence rate are valid for convergence the Trotter-Kato formulae for the Dixmier trace: Optimality of the estimates in Theorem 1 is a heritage of the optimality in Proposition 4.1. Recall that in particular this means that in contrast to the Lie product formula for bounded generators A and B, the symmetrisation of approximants { f (t)g(t)} t≥0 , and {g(t) f (t)} t≥0 by {F(t)} t≥0 and {T (t)} t≥0 , does not yield (in general) the improvement of the convergence rate, see [START_REF] Ichinose | Note on the paper "the norm convergence of the Trotter-Kato product formula with error bound" by Ichinose and Tamura[END_REF] and discussion in [START_REF] Zagrebnov | Trotter-Kato product formula: some recent results[END_REF].

We resume that the lifting Lemmata 4.2 and 4.3 are a general method to study the convergence in symmetrically-normed ideals C φ (H ) as soon as it is established in L (H ) in the operator norm topology. The crucial is to check that for any of the key Kato functions (e.g. for {F(t)} t≥0 ) there exists t 0 > 0 such that F(t)| t≥t 0 ∈ C φ (H ). Sufficient conditions for that one can find in [START_REF] Neidhardt | Fractional powers of self-adjoint operators and Trotter-Kato product formula[END_REF]- [START_REF] Neidhardt | On the operator-norm convergence of the Trotter-Kato product formula[END_REF], or in [START_REF] Zagrebnov | Topics in the Theory of Gibbs semigroups[END_REF].

. 8 )

 8 Note that the left-and right-hand sides of(1.8) are the simplest examples of symmetric norming functions on domain c + f :φ ∞ (ξ ) := ξ 1 and φ 1 (ξ ) observations (1.8) and (1.9) yieldφ ∞ (ξ ) := max j≥1 |ξ j | , φ 1 (ξ ) := ∞ ∑ j=1 |ξ j | , (1.10) φ ∞ (ξ ) ≤ φ (ξ ) ≤ φ 1 (ξ ) , for all ξ ∈ c f .We denote by ξ * := {ξ * 1 , ξ * 2 , . . . } a decreasing rearrangement:ξ * 1 = sup j≥1 |ξ j | , ξ * 1 + ξ * 2 = sup i = j {|ξ i | + |ξ j |}, . . . ,of the sequence of absolute values {|ξ n |} n≥1 , i.e., ξ * 1 ≥ ξ * 2 ≥ . . . . Then ξ ∈ c f implies ξ * ∈ c f and by (1.5) one obtains also that φ (ξ ) = φ (ξ * ), ξ ∈ c f . (1.11)

Remark 5 .

 5 The canonical trace Tr H (•) is nontrivial only on domain, which is the trace-class ideal C 1 (H ), see Example 1. We recall that it is characterised by the property of normality: Tr H (sup α B α ) = sup α Tr H (B α ), for every directed increasing bounded family {B α } α∈∆ of positive operators from C 1,+ (H ).

or by ( 3 .

 3 11): lim n→∞ T 2n (X + Y ) = lim n→∞ T n (X + Y ), which by estimates (3.7) would also yield lim n→∞ T n (X +Y ) = lim n→∞ T n (X) + lim n→∞ T n (Y ) . (3.15) Now, summarising (3.9), (3.10), (3.11) and (3.15) we obtain the linearity (3.8) of the limiting functional T on the positive cone C 1,∞,+ (H ) if it is defined by the corresponding D 2 -invariant state ω, or a dilation-invariant mean.

  H ), we obtain that lim n→∞ s 2n (X +Y ) = 0 and that σ 2n-1 (X + Y ) = O(ln(2n -1)). Then taking into account that (1/ln(2n) -1/ln(2n -1)) = o(1/ln(2n -1)) one gets that for n → ∞ the right-hand side of (3.16) converges to zero.To conclude our construction of the trace T (•) we note that by linearity (3.8) one can uniquely extend this functional from the positive cone C 1,∞,+ (H ) to the real subspace of the Banach space C 1,∞ (H ), and finally to the entire ideal C 1,∞ (H ). Definition 5. The Dixmier trace Tr ω (X) of the operator X ∈ C 1,∞,+ (H ) is the value of the linear functional (3.1):

  H ), one gets Tr ω (X) = Tr ω (X + ) -Tr ω (X -). Then for arbitrary Z ∈ C 1,∞ (H ) the Dixmier trace is Tr ω (Z) = Tr ω (ReZ) + iTr ω (ImZ).

. 18 )

 18 Remark 7. A decisive for construction of the Dixmier trace Tr ω (•) is the existence of the invariant mean ω ∈ S (l ∞ (N)) ⊂ (l ∞ (N)) * . Here the space (l ∞ (N)) * is dual to the Banach space of bounded sequences. Then by the Banach-Alaoglu theorem the convex set of states S (l ∞ (N)) is compact in (l ∞ (N)) * in the weak*-topology. Now, for any φ ∈ S (l ∞ (N)) the relation φ (D 2 (•)) =: (D * 2 φ )(•) defines the dual D * 2 -dilation on the set of states. By definition (3.12) this map is such that D * 2 : S (l ∞ (N)) → S (l ∞ (N)), as well as continuous and affine (in fact linear). Then by the Markov-Kakutani theorem the dilation D * 2 has a fix point ω ∈ S (l ∞ (N)) : D * 2 ω = ω. This observation justifies the existence of the invariant mean (c) for D 2dilation.

Proposition 3 . 1

 31 The Dixmier trace has the following properties: (a) For any bounded operator B ∈ L (H ) and Z ∈ C 1,∞ (H ) one has Tr ω (ZB) = Tr ω (BZ). (b) Tr ω (C) = 0 for any operator C ∈ C 1 (H ) from the trace-class ideal, which is the closure of finite-rank operators K (H ) for the • 1 -norm. (c) The Dixmier trace Tr

Lemma 4 . 2

 42 Let self-adjoint operators: X ∈ C φ (H ), Y ∈ C ∞ (H ) and Z ∈ L (H ). If {Z(t)} t≥0 , is a family of self-adjoint bounded operators such that slim t→+0 Z(t) = Z ,

. 10 )

 10 Here [x] := max{l ∈ N 0 : l ≤ x}, for x ∈ R + 0 .Proof. To prove the assertion for the family { f (tA)g(tB)} t≥0 we use decompositions n = k + m, k ∈ N and m = 2, 3, . . . , n ≥ 3, for representation

  +∞) and n ≥ n 0 . Hence, Γ φ 2t 0 := Γ t 0 F(t 0 ) φ and Γ φ 2t 0 ε φ (•) is an error bound in the Trotter-Kato product formula (4.10) away from 2t 0 in C φ (H ) for the family { f (tA)g(tB)} t≥0 .The lifting Lemma 4.2 allows to extend the proofs for other approximants: {g(tB) f (tA)} t≥0 , {F(t)} t≥0 and {T (t)} t≥0 . Now we apply Lemma 4.3 in Dixmier ideal C φ (H ) = C 1,∞ (H ). This concerns the norm convergence (4.10), but also the estimate of the convergence rate for Dixmier traces:|Tr ω (e -tC ) -Tr ω (F(t/n) n )| ≤ Γ ω ε ω (n) .

  18): ε ω (•) = ε 1,∞ (•). Therefore, the estimate of the convergence rate for Dixmier traces (4.18) and for • 1,∞ -convergence in (4.19) are entirely defined by the operator-norm error bound ε(•) from Lemma 4.3 and have the form: ε 1,∞ (n) := {ε([n/2]) + ε([(n + 1)/2])} , n ∈ N . (4.20)

Theorem 1 .

 1 Let f , g ∈ K β with β = 2, and let A, B be non-negative self-adjoint operators in H such that the operator sum C:= A + B is self-adjoint on domain dom(C) := dom(A) ∩ dom(B). If F(t 0 ) ∈ C 1,∞(H ) for some t 0 > 0, then the Trotter-Kato product formulae converge for n → ∞ in the • 1,∞ -norm:[ f (tA/n)g(tB/n)] ne -tC 1,∞ = O(n -1 ) , [g(tB/n) f (tA/n)] ne -tC 1,∞ = O(n -1 ) , F(t/n) ne -tC 1,∞ = O(n -1 ) , T (t/n) ne -tC 1,∞ = O(n -1 ) ,

  |Tr ω ([ f (tA/n)g(tB/n)] n ) -Tr ω (e -tC )| = O(n -1 ) , |Tr ω ([g(tB/n) f (tA/n)] n ) -Tr ω (e -tC )| = O(n -1 ) , |Tr ω (F(t/n) n ) -Tr ω (e -tC )| = O(n -1 ) , |Tr ω (T (t/n) n ) -Tr ω (e -tC )| = O(n -1 ) ,away from 2t 0 .
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