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Abstract

Modelling the damage of composite materials is not an easy task because dif-

ferent modes of ruins coexist: Fiber matrix decohesion,matrix cracks, delami-

nation, and fiber cracks. In the case of laminated composites, the matrix cracks

have the particularity to remain parallel to the fibers. As a consequence of the

orientation of this crack network, only shear and transverse moduli in the plane

of the ply are degraded in proportion to the increase of the crack density. The

main point of this work is to characterize the relation linking transverse and

shear damage with respect to the crack density. Following this objective, full

field calculations are run using CraFT, a software developed at the LMA. The

modeling is done in two steps: first the undamaged composite is homogenized,

then, as a second step, the damaged behavior is determined by introducing

cracks into the healthy composite. The behavior is calculated from an optimal

size of RVE (Representative Volume Element) in order to determine numerically

the relation between transverse and shear moduli variables.
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1. Introduction

Polymer-matrix composites (PMCs) have been increasingly used by indus-

tries due to their potential to fulfill the weight, mechanical and environmental

requirements needed for structural applications ranging from aeronautic, au-

tomotive to sports sectors. Unfortunately the design of such structural parts,

submitted overtime to complex loading, is not reliable enough to optimally use

these materials. Nowadays a need to understand reliability and damage effect

and evolution to improve design exists. The rupture of composite materials

can be due to many mechanisms acting on various scale [1, 2, 3]. Two main

damage mode are responsible of composite ruptures: fiber failure and matrix

cracking. Failure in the fiber direction usually has catastrophic effects on both

the laminate and the structure, the fracture propagates quasi-instantaneously

through the thickness of the laminate thus leading to the complete rupture of

the composite. This unstable propagation is due to the high level of loading

required to break the ply in the fiber direction. When considering laminated

composites with unidirectional plies of continuous fibers, whose strength and

rigidity are very large compared to those of the polymer matrix, the cracks

in the matrix have the particularity to remain parallel to the fibers regardless

of the loading in the plane. As a consequence of the orientation of this crack

network, only the shear and transverse moduli in the plane of a unidirectional

ply are affected by the increase of crack density [4]. For axial and transverse

stiffness measurements, there are well-known experimental techniques in static

and/or fatigue loading. These methods are widely used and many procedures

can be found in ASTM standards [5]. However measurements of shear modulus

for composite material is a more recent subject in literature. Standard methods

exists: the Iosipescu shear test [6], the [±45]S coupon tension test [7], the Ar-

can test, and the torsion test. The torsion test seems to be the best method to

measure the shear modulus, due to the geometry without free edge effect and

uniform stress state [8, 9]. Yet, the Iosipescu and the [±45]S coupon tension

tests are very popular in composite characterization because the specimen are
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very easy to produce and test with a classic tensile machine. Salavatian et al.

proposed a modified Iosipescu coupon to describe the evolution of damage due

to shear and transverse loading and their interactions. Tests have been led on

[45/− 45/906]S and [0, 907]S S-glass epoxy laminates [10].

Figure 1: Cracks in a damaged composite observed with a microscope.

Figure 1 relates microscopic observations of cracks in unidirectional composite.

Cracks are parallel to the fiber and propagate along the fiber direction. They

generally pass through plies thickness keeping a certain width, but usually re-

main closed. This feature makes the cracks difficult to observe even with a micro

tomography scanner. The damage induced gradually by matrix cracking (i.e.

small cracks running parallel to the fiber direction [11]) can be described by

phenomenological models based on continuum damage mechanics [12], analyti-

cal models [13, 14, 15], or numerical models [16]. Depending on the composite

anisotropic degree, several damage variables can be used. In case of transverse

isotropic material and plane stress assumption, three damage variables are con-

sidered:


Ed1 = (1− d1)E0

1

Ed2 = (1− d2)E0
2

Gd12 = (1− d12)G0
12

(1)
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Where d1 corresponds to the fiber damage, it is a binary mechanisms related to

the brittle fracture of composite. And d2 et d12 corresponds to matrix cracking.

In literature both variables are supposed to be interrelated and a linear relation

is classically defined between them [11, 9, 17]:

d12 = c× d2 (2)

Where c is the coupling coefficient between the transverse and the shear dam-

age. Generally, the shear damage is empirically supposed to be proportional to

the transverse damage and c is equal to 1 [9].
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The aim of this work consists in the determination of the relation between the

transverse damage d2 and the shear damage d12 with a micromechanical ap-

proach based on full field method for unidirectional laminated composite. The

paper proceeds first by the introduction of the sequential full field homogeniza-

tion method, based on FFT calculation, and developed to calculate the stiffness10

of the healthy and damaged composite (Section 2). Then calculations are per-

formed on RVEs (Representative Volume Elements) corresponding to different

damage level (different initial void fraction and different ratio aspect of cracks).

The damage values are then extrapolated for a representative cracks modelling

(Section 3). In Section 4, the predicted evolution of transverse and shear damage15

is observed and confronted with literature theoretical and experimental results.

Finally, conclusions are drawn in Section 5.

2. Calculation of Damaged Composite Elastic Properties

In this section, a methodology is proposed to determine the elastic properties

of an healthy composite (C̄0 ) and a damaged composite (C̄d ) at different level20

of damage d (i.e. different cracking rates) by means of full field homogenization

calculations led on representative microstructure corresponding to the glass fiber

reinforced epoxy composite. Calculation are performed using CraFT software
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[18, 19], that allows calculations on RVE using Fast Fourier Transform (FFT)

method (see Appendix A). The input data in CraFT are: a RVE in the form25

of a 3D or 2D picture, a behavior law for each material involved in the RVE,

and a stress or strain loading. CraFT returns either the macroscopic strain or

macrospic stress composite response, depending on the loading conditions and

hence to the elastic properties of the composite.

2.1. Assumptions30

For the composite considered in these investigations, epoxy matrix (E = 3

GPa, ν = 0.33) and the glass fibers (E = 70 GPa, ν = 0.22) are considered

isotropic and purely elastic. The fiber volume fraction is fixed at 52 %. Con-

sequently the macroscopic behavior of the healthy or damaged composite is

considered orthotropic and purely elastic, and can be written with the following

tensor expression [20]:



〈ε11〉

〈ε22〉

〈ε33〉

〈ε23〉

〈ε13〉

〈ε12〉


=



1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
2G23

0 0

0 0 0 0 1
2G13

0

0 0 0 0 0 1
2G12





〈σ11〉

〈σ22〉

〈σ33〉

〈σ23〉

〈σ13〉

〈σ12〉


(3)

Where 〈f〉 define the average of the field f(x) on the RVE, as described in

equation 4.

〈f〉 =
1

V

∫
V

fdx (4)

The influence of cracking on the behavior of laminated composite is investigated

under the plane stress assumption. The behavior law defined in equation 3, is

then reduced with the values of stress (〈σ13〉 = 0, 〈σ23〉 = 0, 〈σ33〉 = 0) and

considering the assumption that E1 is directly linked to the fiber and stay

independent of cracking rate. Therefore, the only the parameters that needs to35

be considered are the transverse modulus E2 and the shear modulus G12.
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Figure 2: Numerically generated Representative Volume Element (RVE) in 3D of the dam-

aged composite modelled with the three main axis ( ~e1, ~e2, ~e3). To improve visibility, cracks

represented are not on scale.

2.2. Cracks Modelling

As it can be seen on the microscopic observation of a damaged laminated

composite related in Figure 1. The damage consists of disseminated small cracks

running parallel to the fibers, in the orthogonal direction to the fiber, they40

generally pass through the ply. These cracks are difficult to observe, because

they are closed up and theirs shapes can be complex. The representative volume

elements are scaled to the ply. They respect the direction of cracks observed

and propose an idealized cracks shape. That is why in our RVE, cracks are

modelled with an elliptic form, crossing the ply, with a minor axis equal to zero45

(due to the close up of the cracks) and a major axis as related in Figure 2.

2.3. Sequential Method of Homogenization

The first step consist in the calculation of the elastic properties of the uni-

directional composite thanks to the RVE illustrated in Figure 2. Running these

calculations on such a 3D RVE require a lot of calculation time. So to solve this

problem, the methodology proposed in this article consists in separating the ho-

mogenization process in two phases as already performed in literature [21, 22]:

A first calculation is run on a 2D RVE taking into account the epoxy matrix
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Figure 3: Synoptic of the homogenization sequential method used to calculate damaged com-

posite elastic properties.

and the glass fibers, thus obtaining the orthotropic behavior of the healthy

composite. Then a second calculation is run on another 2D REV taking into

account the homogenized healthy composite behavior and the cracks. One 3D

calculation has been replaced by two 2D calculations, but the first calculation is

performed only once. The total calculation time is therefore drastically reduced.

The synoptic of the proposed methodology is summed up in Figure 3. The first

calculation is performed on CraFT software and the elastic properties of the

glass fiber reinforced healthy composite (C̄0 ) are calculated and the following

material constants are obtained:

E1 = 36479.2

E2 = 8606.44

E3 = 8664.37

G23 = 3168.71

G13 = 3478.1

G12 = 3473.43

(5)
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Figure 4: Numerically generated REV of damaged composite for a cracks aspect ratio of 1

and 0.25 describing the flattening of cracks along the minor axis of the ellipse.

2.4. Damaged RVE

The calculations are led on a numerically generated RVE, they need to rep-

resent different damage rates and have to take into account the ideal shape

of cracks described in previous section. Moreover, CraFT is based on spectral

numerical methods using a microstructure in image format, where each pixel

represents one of the components of the composite material. In the considered

case, the composite and cracks are present in the microstructure, if we want

to describe accurately a crack in the RVE, it is necessary to keep a minimum

number of pixels along the minor axis of the ellipse. Thats why, we defined a

parameter r, named the cracks aspect ratio of the REV as related in the folowing

equation:

r =
b

a
(6)

Where b and a are respectively the minor and major axes of the ellipse. Calcu-

lations are performed for five aspect ratios. The lowest considered aspect ratio

in the calculations is 0.01.

Moreover, to investigate the damage evolution several cracking (or void) rates

are considered, these rates are of course directly related to the damage rate.

8



Cracking rates Crack density dC

for an aspect ratio r = 1 Cracks aspect ratio r for the aspect ratio r = 0

(or Initial void rates) (pixel−1)

50% (1, 0.5, 0.2, 0.1, 0.01) 1.60 10−4

40% (1, 0.5, 0.2, 0.1, 0.01) 1.44 10−4

30% (1, 0.5, 0.2, 0.1, 0.01) 1.25 10−4

20% (1, 0.5, 0.2, 0.1, 0.01) 1.06 10−4

10% (1, 0.5, 0.2, 0.1, 0.01) 7.52 10−5

5% (1, 0.5, 0.2, 0.1, 0.01) 5.28 10−5

0.5% (1, 0.5, 0.2, 0.1, 0.01) 1.68 10−5

Table 1: Cracking rates, aspect ratio used, and crack density to define the numerically gener-

ated REV.

Seven different cracking rates have been considered. For each cracking rate,

the cracks are progressively flattened until the minimal ratio is reached. At

the minimal ratio, where r = 0 we choose to define a crack density with the

following expression:

dC =
N ∗ a
L2

(7)

50

Where dC is the crack density, N the number of cracks introduced in RVE, a

the length of the crack with an aspect ratio r = 0, and L the resolution of

the RVE (i.e number of pixel on a side). Overall, 35 RVEs are numerically

generated and tested with CraFT. The cracking rates, the cracks aspect ratios

and the crack density considered in this investigation are summed up in Table55

1. Before discussing the results, a convergence analysis is essential to make sure

that the RVEs are representatives. In order to achieve this, the RVE minimal

resolution in pixel and the minimal cracks number necessary in the RVE have

to be defined.
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Pixels L 1000 2000 4000 6000 8000 10000

E2 7937 8032 8011 8045 8016 8011.455

∆(%) 0.93 0.26 0.01 0.42 0.06 0.00

G12 3399 3402 3404 3404 3404 3405.3

∆(%) 0.18 0.10 0.04 0.04 0.04 0.005

Table 2: VER resolution convergence results.

Cracks Number 4 9 16 64

REV Size L2 10002 15002 20002 40002

E2 2970 3767 3692 3655

∆(%) 18.74 3.06 1.01 0.00

G12 2817 2893 2893 2894

∆(%) 2.66 0.03 0.03 0.00

Table 3: VER number of cracks convergence results.

2.5. Convergence Analysis60

For the convergence analysis, we considered the worst RVE which is the one

that includes both the smallest cracks aspect ratio and the highest cracking

rate. The first step concerns the resolution sensitivity of the RVE, 6 resolutions

are tested and the results, related in Table 2, compare the transverse and shear

moduli values. Then the cracks number sensitivity is investigated considering 465

different zooms on the cracked microstructure. Calculations are performed, and

the values of transverse and shear modulus are compared as related in Table

3. In conclusion, the pixel resolution chosen for all the REVs is 100002 pixels

(L = 10000) and the representative number of cracks is defined at 16.

3. Calculation on damaged RVE70

Calculations are performed on the 35 REVs described in the previous sec-

tion. The damaged composite elastic properties (Cd ) are obtained and used

to calculate the value of the transverse damage d2 and the shear damage d12
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Figure 5: Evolution of transverse damage d2 and the shear damage d12 as a function of the

initial void rate and the cracks aspect ratio calculated on numerically generated REVs.

damage in using the equation 1. Results are reported in Figure 5. With the

assumptions introduced previously, the value that we are trying to define, is the75

transverse and shear damage value corresponding to a cracks aspect ratio r = 0

(i.e. when the cracks are closed up). To determine this value, the easiest way

is to make a linear extrapolation of each cracking rates considered, and then

extrapolate its limit at 0 as related in Figure 5. Then, with these extrapolated

Figure 6: Evolution of the transverse damage and shear damage as a function of the crack

density for a cracks aspect ratio r = 0 as related in Table 1.

values, the evolution of the transverse and shear damage as a function of the80

crack density related in Table 1 can be drawn in Figure 6. On the calculated

evolution, the shear damage seems to present a nonlinear evolution and increase

slower than the transverse damage. The transverse damage displays a nonlinear

behavior at low values of crack density, and a linear evolution at high values of

crack density, increasing slowly at the beginning, then accelerating to reach a85
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constant gradient value.

Figure 7: Transverse damage as a function of shear damage calculated for a cracks aspect

ratio r = 0 with the interpolation of the coupling coefficient c value. Confrontation between

Perreux and Oytana model [23] and our numerical FFT results.

4. Results on transverse and shear damage ratio

With these results, the evolution of the coupling coefficient between the

transverse and the shear damage can be plotted for different damage rates in

the unidirectional ply of the laminated composite considered. Figure 7 proposes

to describe the evolution of the coupling coefficient c for the 7 different cracking

rates considered in the RVE numerically tested. The evolution of the coupling

coefficient seems not to follow a totally linear behavior, but we chose to keep

the linear relation related in equation 2 in the first section. On the Figure 7,

a linear interpolation for the coupling between transverse and shear damages

is proposed. After identification the coefficient c is equal to 0.243 which is

different from the value classically reported in literature. We then compare the
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numerical predictions with the model developed by Perreux and Oytana [23].

The authors have proposed to model the problem in mean field homogenization

framework with a self-consistent model on a microstructure. They modeled an

unidirectional composite with microcracks parallel to fiber axis, after analytical

calculation they obtained the following expression:

d12 = 1− 1

G12

[
1

G12
+

d2√
(1− d2)E1E2

]−1

(8)

A good correlation is observed between the numerical FFT results and the an-

alytical model proposed by Perreux and Oytana [23]. But when we compare90

the linear interpolation and the analytical model prediction with the numerical

FFT results, the respective errors are not so different. With the Figure 8 a con-

Figure 8: Confrontation between experimental results [10] available in literature on [0, 907]S

S-glass epoxy laminates Iosipescu specimens, the linear coupling coefficient c calculated and

Perreux and Oytana model [23].

frontation is performed between the numerical law identified and experimental
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tests obtained recently by Salvathian and Smith on [0, 907]S Iosipescu modified

coupon in S-glass epoxy laminates [10]. A good correlation is observed between95

the experimental data and the coefficient identified with the micromechanical

methodology proposed in this paper.

5. Conclusions

In this paper, a micromechanical approach based on a full field method is de-

veloped to predict the relation between the transverse damage d2 and the shear100

damage d12 for a unidirectional laminated composite. The methodology is based

on a sequential full field homogenization method, based on FFT calculation, and

developed to calculate the stiffness of healthy and damaged composite with min-

imal calculation time. Calculations are performed on 35 REVs with different

damage rates (different initial void fractions and different cracks aspect ratios),105

the damage value is then extrapolated for perfectly closed cracks as observed

with a microscope. Finally the predicted evolution of transverse and shear dam-

age is observed and show a very good correlation with literature experimental

results. In the numerical result presented here, like the analytical model [23], it

is assumed that cracks pass through the plies. Therefore, the in-plane behavior110

no longer depends on neighboring plies. This hypothesis is certainly relevant

in the case of thick plies (or laminates with several plies at 90◦ such as those

presented in the experimental results [10]), for which cracks pass through and

initiate micro-delamination that affect the inter-plies connections. In cases of

thin plies or woven plies for which the transverse cracks are smaller and con-115

fined between the other plies of the laminate, this assumption may no longer

be verified. Another numerical approach that also describes neighboring plies

with different orientations should be introduced in order to better determine the

effects of matrix cracks on transverse and shear stiffnesses of the ply. An exper-

imental approach could also be considered, but measuring the transverse and120

shear moduli of a ply within a laminate is very difficult. The coupling coefficient

c is difficult to experimentally identify, but is very useful in damage models to
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predict the ruining modes of laminated composite under static or fatigue loads.

A prospect consists in developing new experimental tests or configurations to be

able to observe the transverse and shear elastic properties for different damage125

levels avoiding early fracture in order to correlate our results on several compos-

ite materials (glass, carbon, or natural long fibers composite with thermoset or

thermoplastic matrix). Generally this parameter is determined with an inverse

method of identification or chosen equal to 1. In this paper, with the developed

methodology, it is possible to investigate the composite response at a specific130

cracking rate, but not to model the damage evolution in the ply. To do that,

other methods should be investigated with meshless methods (XFEM, or frac-

ture criteria [24]) based on FEM simulations to describe the crack initiation and

propagation in the ply or the laminate in order to have a better description of

the damage kinetic and improve the prediction of composite structure longevity.135
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Appendix A. Homogenization method for periodic material

Appendix A.1. Problem to be solved

Homogenization is based on the distinction between two scales: the micro-

scopic scale, corresponding to that of the microstructure, where each of the com-

ponents constitutes a phase (fibre, matrix). At this scale, the microstructure is

characterized by a representative elementary volume (RVE) V of characteristic

dimension l. The macroscopic scale, corresponding to the scale of the structure

of characteristic dimension L. In the case of linear elasticity, when the assump-

tion of separation of the scales is valid (L >> l), the behaviour of the material

constituting the structure can be replaced by the homogenized behaviour. This

macroscopic behavior is defined by:

Σ = Chom : E, (A.1)

with Chom the tensor of the effective elastic moduli, Σ and E the means of the

stress fields σ and strain fields ε solution of the balance problem Pmicro given

by:

(Pmicro)



divσ = 0 in V,

σ(x) = C(r) : ε(x) in phase (r),

ε(x) = ∇S(u∗(x)) +E in V,

u∗ V − periodic and σ.n V − antiperiodic on ∂V,〈
∇S(u∗(x))

〉
= 0.

(A.2)

with C(r) the tensor of the elastic moduli in phase (r) and ∇S(u∗(x)) the

fluctuating part of the strain tensor.

Appendix A.2. The FFT Method140

In order to solve numerically the equations (A.2), a method based on Fast

Fourier Transforms (FFT) has been developped at the LMA by H. Moulinec

and P. Suquet[18, 19]. This method has been implemented in a software named

CraFT (Composite Response and Fourier Transforms) available under Cecil B
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licence on the LMA website (http://craft.lma.cnrs-mrs.fr/). The problem (A.2)145

is replaced by the auxiliary problem (A.3) involving an homogeneous linear

elastic body defined by its stiffness C0 and under a polarization field τ (x).

This problem can be expressed as:

(Pmicro)



divσ = 0 in V,

σ(x) = C(0) : ε(x) + τ (x) in V,

τ (x) =
(
C(r) −C(0)

)
: ε(x) in phase (r),

ε(x) = ∇S(u∗(x)) +E in V,

u∗ V − periodic and σ.n V − antiperiodic on ∂V,〈
∇S(u∗(x))

〉
= 0.

(A.3)

The solution of this problem can be expressed thanks to the periodic Green

operator Γ0 with the form:

ε(x) = E − Γ0 ∗ τ (x) ∀x ∈ V (A.4)

with ∗ expression the convolution product. Knowing that σ is an equilibrated

field, this expression can be rewrite :

ε(x) = ε(x)− Γ0 ∗ σ(x) ∀x ∈ V (A.5)

In Fourier space, this solution is easier to compute since the convolution product

becomes a tensorial product and the operator Γ̂0 can be written in closed form.

For an isotropic reference material with lame coefficients λ0 and µ0, Γ̂0 takes

the form:

Γ̂0
ijkh =

1

4µ0|ξ|2
(δkiξhξj + δhiξkξj + δkjξhξi + δhjξkξi)−

λ0 + µ0

µ0(λ0 + 2µ0)

ξiξjξkξh
|ξ|4
(A.6)

This problem is then solved using the following iterative algorithm as can be

seen in:

Initialization : ε0(x) = E, σ0(x) = C(x) : ε0(x) ∀x ∈ V
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εi and σi are known, repeat until convergence:

Real space Fourier space

σi FFT→ σ̂i

ε̂i+1(ξ) = ε̂i − Γ̂
0
(ξ) : σ̂i(ξ)

ε̂i+1(0) = E

εi+1(x) ← FFT−1 ε̂i+1(ξ)

σi+1(x) = C(r) : ε(x)
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