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Résumé This paper introduces a methodology of modeling for a class
of Non Linear Complex Switched Systems in interaction with their envi-
ronment. The models have to be adequate either for identification or for
diagnosis and control. The effectiveness of this technique is illustrated by
experimental results obtained on a greenhouse.
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1 Introduction

Nowadays, technology progress increase the complexity of industrial sys-
tems, operating in different environments in changing conditions and
characteristics (rapidly or discontinuously).

If in identification of a such system we use a single model, then it will
have to quickly adapt itself to the new environment after each change.
An appropriate control can be computed using several models combined
adequately in function of the operating region.

In several applications involving this kind of complex systems, learning
approaches are applied such as neural networks, fuzzy logic based me-
thods or neuro fuzzy techniques. These approaches uses black box repre-
sentations or combined black box models with learning and data proces-
sing methods, like eg Principal Component Analysis to extract informa-
tion which will be used for the system supervision. In several cases these
models are local representations which operating points dependant and
do not allow physical interpretations

Another way may be to combine local grey box representations based on
partial knowledge on the process and the involved phenomena. Several
possible subsystems, local models are combined in a hybrid representa-
tion. The interconnected subsystem and structure are driven by some
discrete events which are present and depend on involved phenomena.
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Some knowledge on this kind of events is necessary to built up detection
procedures in order to be able to follow the structure commutations and
then estimate the models combination and their parameters.

In linear systems, where different environments are described by different
functions, a single model may not be adequate to identify the changes
in the system (i.e., a model may not exist in the assumed framework to
match the environment). Hence, multiple models are required both to
identify the different environments as well as to control them rapidly. In
literature different approach have proposed use of switches and supervi-
sion framework, for complex system. Approaches are based either on a
classic linear modeling and control using statistical method [1] or on a
hierarchical fuzzy logic used in the same time for models identification
and commutation supervision [2], or non linear extension of PCA [3] or
driven by a prediction error generated [4], or using a bank of Kalman fil-
ters [5] or Markov chains [6]. We suggest here a modeling approach based
on behavioral models. Different models are supervised by discrete events
which affect system operating zone, and switched via different selectors
associated to events.
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Fig.1. Varying Structure Systems with non linearities and commutations.

We can purpose some structures for the sub models and nonlinear func-
tions combining commutations and switching between structures. Then
we have to define some methods for supervision and control of the main
partial models. In general, the global process needs first to be stabilized
in its global behavior around some operational point. This corresponds
to some operating conditions for the main components or subsystems in
coordination of the discrete events. Switching and commutations have
also to be managed.

The method consists to determine the particular zones where the system
is supervised by (internal or external) discrete events characterizing its
behavior. The models have to be adequate either for identification and
behavioral analysis or for diagnosis and trajectory planning and following
(in a non stationary environment or time varying characteristics). Thus,
one can consider the behavior driven by multiple models orchestrated
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by events governing the system operation, and controlling various model
commutations.

Also, in this paper, we want to study the problems of stability of some
class of hybrid systems and how to deal with observability and control-
lability of such systems. Despite an amount of theory and proposed me-
thods to test observability, it seems to be rather difficult to find an
optimal way and efficient rules which cope with some class of hybrid
non-linear systems. This is why we have chosen some simple mechanical
systems with different phases when operating, or commutation of struc-
tures. Thus, we present in thes section 2 the formulation of the problem,
in section 3, the stability tools useful for this approach are presented
and we illustrate the effectiveness of this technique in section 4 by expe-
rimental results.

2 Problem formulation

2.1 System description

Definition of a class of systems having variable structures, commutations
in their dynamic behavior, non linearities (hard or smooth), non statio-
narity, varying parameters and other non standard features, is difficult to
be done in general. So we can restrict our case to some simple situations
with known involved physical phenomena. Figure 1 can be obviously used
to depict the features we are interested by.

In figure 1 we can remark that several models (Mp)are involved. We can
consider multi-model approaches [7]. Use of these models and even their
combinations are orchestrated by some occurring events noted discrete
event in figure 1. Switching between models or ODEs (Ordinary Diffe-
rential Equations) or combinations can appear. It is driven by a Com-
mutation Logic. The same holds for the pertinent variables selection at
each time interval or period of operating. It is obvious that importance of
output variables and input commands may change in function of the se-
lected model(s). Some models combinations may also be used in function
of :

- time periods leading to selection of some kind or category of model
equations,

- some running logic in the energetic behavior or command of the
system.

- some connection and or interaction with other dynamics or envi-
ronment

Discrete event systems can be considered for supervision of the switchings
and commutations which drive the model selection and the the multi-
model representation.

The discrete events taken into account and the choice of their effect may
be driven by some higher level or simply selected according of optimiza-
tion of some criterion or performance index [8] [9] [18].

The switchings and commutations often appear abruptly but changes
from one representation to another one may be very smooth or not. In
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another hand we must note also that such systems representation is not
unique and differences can appear between the behavioral representation
and physical system description or modeling for diagnosis and control.

This can be referred to as a switched multi-model representation driven
by some Discrete Event Systems.

The system equation can then be written in following form :

⎧⎨
⎩

ẋ = fmi(x, u, t)

mi =< S, I, O, δint, δext, λ, tαi >
(1)

where :

– x is the set of continuous states of system
– u is the set of input controls
– S is the set of sequential states
– I is the set of external events
– O is the set of internal events
– δint : S → S is the internal state transition function
– δext : S− × I → S+ is the external state transition function
– λ : S → O is the output function
– tαi is the time advance function

2.2 Piecewise continuous systems

The system is defined by the following contents :

- A set of sub-models, representing process in different regions Dp ⊂ R
n

of dynamic state space vector x(t) ∈ R
n

- Switching rules or conditions for each operating zone which drives the
switchings between models.

Suppose that we have several simple sub- models

ẋ = fp(x, u, t), t ∈ R (2)

for p = 1, 2, ...q and that each one of these models is valid in some state
subspace Dp ⊂ R

n. u is the set of input of the system. To describe the
global system’s dynamic behavior, we have to gather all the locally valid
model equations and then :

⎧⎨
⎩

ẋ = fp(x, u, t)

p =< S, I, O, δint, δext, λ, tαi >
(3)

S is the discrete state of the complex system (ie depending on the region
of operation and valid sub-model). The discrete system is in Sp when
operation in the region Dp. The events may be considered as defined
by state x of the system and any internal x-dependant variable, and
then, events depend on input values of the Sed system noted I(t) [10].
As consequence the validity domain Dp(I(t)) depends also on this input.
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This example is simple regard to the sub-model transition and combina-
tion. The model changes are driven in function of the position of the dy-
namic state vector in the space. This kind of representation is commonly
used in fuzzy logic modeling and identification for complex systems.

2.3 Some examples

Several examples may be considered in this case :

- vehicles and mobile robots dynamics when rolling in its environment
(contact between road and wheels can be lost and retrieved, braking and
accelerating, ...),

- legged robots,

- greenhouses,

- helicopter and flying robots

Example 1. : Let us consider the mass-spring system of figure 2, without
frictions [11][12]. The spring (with stiffness k) attached to the center of
mass M .

Fig.2. Vertical Hopper (1 DOF)

Fig.3. Closed orbit

The system equation can be written as follow :

Mz̈ + k(z − zo)ξ(z) = −Mg (4)

with a commutation function ξ(z) = 1
2
(1 − sign(z − zo)).

ẋ = fp(x, u, t) (5)
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with S = 1ifxi(z) = 1

and S = 0ifotherwise

The commutation variable ξ(z) = 1
2
(1 − sign(z − zo)) is equal to unity

when the spring is in contact with ground (we have the ODE 1 ẋ =
f1(x, u, t)) and zero otherwise (we then have the ODE 0 ẋ = f0(x, u, t)).

This simple model allows to analyze energetic interactions between the
robot, the control and ground. This shows existence of periodic cycles,
corresponding to system oscillations.

The system equation can then be written in state space form :

{
ẋ1 = x2 = ż

ẋ2 = z̈ = − k
M

ξ(x1)(x1 − zo) − g
(6)

S+ = {S−, I = ξ(z), t} (7)

The system has obviously an equilibrium point at 0 and its solution
describes a closed orbit Ωo(xo, t) around 0.

The non perturbed oscillations correspond to a closed orbit (see figure
(3))[12]. The periodic orbit, obtained for the free system, depends on
initial state xo(e.g. (zm, ż = 0)) and is defined by the following equation
[11] :

Vf (z, ż) =
1

2
Mż2 + Mgz + ξ(z)

k

2
(z − zo)

2 = Vo (8)

Vo = V (zm, 0) = V (0, żd) (9)

which is plotted in figure 3.

Example 2. : Another example can be considerated for the same system,
[21]. Two springs (with stiffness k) attached on both dimensions of the
mass M . This is illustrated in the figure(4).

Ur

Zro

Z

ControlM,I

kr

z

kl

Ul

Zlo

Fig.4. Mass Spring Model

The dynamic interaction with the ground is composed by two phases :
flying and stance phases [12][13]. This system is composed by intercon-
nection of three subsystems (mass, spring and ground) and energy evo-
lutions. In this case, we can considerate the following phases :
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– Contact Phases. In these phases the controls are active when the
springs are in contact.
- The two springs are in contact : ẋ = f1(x, u, t) t ∈ R+ and x(t) ∈
D1 ⊂ R

4

{
ẋ3 = z̈ = − kl

M
(zl − zl0 − ul) − kr

M
(zr − zr0 − ur) − g

ẋ4 = θ̈ = lkl
I

(zl − zl0 − ul) − lkr
I

(zr − zr0 − ur)
(10)

- The right spring is in contact : ẋ = f2(x, u, t) t ∈ R+ and x(t) ∈
D2 ⊂ R

4 {
ẋ3 = z̈ = − kr

M
(zr − zr0 − ur) − g

ẋ4 = θ̈ = − lkr
I

(zr − zr0 − ur)
(11)

- The left spring is in contact : ẋ = f3(x, u, t) t ∈ R+ and x(t) ∈
D3 ⊂ R

4 {
ẋ3 = z̈ = − kl

M
(zl − zl0 − ul) − g

ẋ4 = θ̈ = lkl
I

(zl − zl0 − ul)
(12)

– Flying Phase : ẋ = f4(x, u, t) t ∈ R+ and x(t) ∈ D4 ⊂ R
4

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x3

ẋ2 = x4

ẋ3 = z̈ = −g

ẋ4 = θ̈ = 0

(13)

The relationship of these different phases is illustrated in the figure (5).
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Fig.5. State Behavioural Model

Each discrete state represents one phase and the arc of connection repe-
resents the commutation possible for every discrete state.

The figure (6-8) shows us respectively, the trajectory given for the mass
spring system, its closed orbit, the swing angle stabilized and the commu-
tation sequence possible for damping any rotational motion and maintain
hopping along z axis. In another terms, the system stability is studied
as a stability of one periodic motion.
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A bouncing ball has the same model as the previous example, with addi-
tional damping, during contact phase, which introduces a lost of energy.
Then the system trajectory goes asymptotically to zero.

The previous examples are the simplest cases the possible legged robots.
We can consider also the case of biped or four legged robots [12][13] [14].
These cases involved several models (each one corresponding to some legs
in contact with ground and others in flying motion. The commutations
between models depend on events like heating ground and impacts on
obstacles.

3 Stability tools for switching system

The need of tools for stability analysis and control design, when switched
systems are involved, is important. In this section we simply recall useful
recent result presented for Hybrid systems and using multiple Lyapunov
functions as a generalization of the Lyapunov’s second method.

Stability proof depends on the existence and/or construction of an ap-
propriate Lyapunov candidate function V and is rather not obvious for
hybrid systems. The inherent discontinuous nature of hybrid system sug-
gests use of multiple Lyapunov functions concatenated together in func-
tion of sub models commutations and transitions.

This may produce a non-traditional multiple Lyapunov functions useful
to prove stability [15], [16][17] of the hybrid system. Let us recall a useful
theorem based on the second Lyapunov method for stability analysis.

A Lyapunov function for the system (1), at an equilibrium point xep in
the domain Dp is real valued function Vp(x) defined in the domain Dp

satisfying the conditions :

(C1) : Positive definiteness : Vp(0) = 0 and Vp(x) > 0 for x �= 0

(C2) : Negative derivative : for any x ∈ Dp : V̇p(x) =
∂Vp(x)

∂x
fp(x, u, t) ≤ 0

Theorem 1. Given an P -switched non-linear system, suppose that each
vector field fp(x, u, t) has an associated Lyapunov function Vp(x) in the
domain Dp, each one defined for the equilibrium point xe = 0. Let Sk+1

be a switching sequence of the discrete state such that Sk+1 can take
values p only if xk+1 ∈ Dp , and in addition :

(C3) : Vp(x(tp, k + 1)) ≤ Vp(x(tp, k)) for all tpk the switching times

Beginning with different assumptions, this more general result assumes
a so-called weak Lyapunov function for Vp, in which condition (C3) is
replaced by :

(C4) : Vp(x(t)) ≤ h.Vp(x(tp) with t ∈ (tp, tp+1)

thus, the set V contains a number of candidate Lyapunov functions that
are used as a measure of the hybrid system energy, V = {V1, . . . , Vp}.
Since the energy changes according to :

V̇q(x) =
∂Vq(x)

∂x
fp(x, u, t) ≤ 0

for an arbitrary Vq ∈ V , this means that the change of energy depends on
the vector field fp(x, u, t) and thus on the discrete state Sp. To express
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where in the continuous state space the energy decreases when there is
switching from the Lyapunov function Vq to Vr, the following sets are
defined [20] :

Dq
p = {x ∈ R

n| ∂Vq(x)

∂x
fp(x, u, t) ≤ 0}

Dq
R = {x ∈ R

n| Vq(x) ≥ Vr(x)}
So, assume that the candidate Lyapunov functions Vq and Vr are used as
a measure of the energy for different discrete behavioral states Si and Sj

, and consider once more the case where i �= j and q �= r. If the discrete
state is Si and the threshold point Rij is reached, then the discrete state
becomes Sj , implying that the vector is changed. Two possible situations
may occur, on the one hand we have a same directions of the vectors field
fi(x, u, t) and fj(x, u, t), and on the other hand opposite directions of the
vector fields fi(x, u, t) and fj(x, u, t).

4 Application to a greenhouse modeling and
control

4.1 Greenhouse description

The main goal of the greenhouse is to improve the weather conditions.
This system is sensitive to the external disturbances as for example ra-
diation, temperature etc. and can filter the disadvantages like wind, rain.
By controlling the internal temperature, the internal hygrometry and the
carbon dioxide we can normally create optimal conditions for the plants.
This is illustrated in the Figure (8). The problem of modeling and control

Fig.9. Greenhouse Model

design for our system is then complex and intricate because there are, at
least, eight inputs and two outputs involved in a non linear and switched
way :

- 4 actuators (heating Ch (boolean), opening Ov (%), shade Om (%),
misting system Br (boolean)) ;

- 4 meteorology disturbance (external temperature Te (C), external hy-
grometry He (%), solar radiation Rg (W/m2), wind speed Vv (km/h)) ;

- 2 controlled outputs (internal temperature Ti (C), internal hygrometry
Hi (%)).
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4.2 Greenhouse nominal models

The greenhouse system can be viewed as one multi-modal linear system
writting in the following form :

{
x(k + 1) = Amix(k) + Bmiu(k) + Fmiw(k)

mi =< S, I, O, δint, δext, λ, tαi >
(14)

In linear systems, where different environments are described by different
functions fmi, a single model may not be adequate to identify the changes
in the system (i.e., a model may not exist in the assumed framework
to match the behavior in all the regions). Hence, multiple models are
required both to identify the system in the different regions as well as to
control the system.

When the region changes, the input output characteristics of the system
will change. If a single identification model is used, it will have to adapt
itself quickly to the new region of behavior before that an appropriate
control action can be taken as shown in the Figure .

Fig.10. Representation of state equation in each domain validity

In the sequel, let us consider the following assumptions to simplify the
modeling and analysis.

Assumptions - The system behavior can be approximated by three per-
tinante operating modes : Night , Daybreak and Day.

These three models have been obtained by the previous studies based on
use of a non linear extension of PCA [3] of neural network approach [2].

- Input disturbances variables set are solar radiation Rg and wind rate
Vv. They can take the following values Lower, Middle, Upper and Lower,
Upper respectively.

Let us try to represent the greenhouse by a model which captures the
nominal dynamics in its behavior. A nominal identification Model can
be written, among several simplification, as follows :
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⎧⎪⎪⎨
⎪⎪⎩

[
Ti(k + 1)
Hi(k + 1)

]
= Ami

[
Ti(k)
Hi(k)

]
+ Bmi

[
Ch(k) Br(k) Ov(k) Rd(k)

]T

+Fmi

[
Te(k) He(k) V v(k) Rg(k)

]T

mi =< S, I, O, δint, δext, λ, tαi >

(15)

4.3 Identification of the operating zone

Let us associate the observations via external environment with events
notion as it is shown in the table 1. The observations will be described [19]
to specify a both the events trace and occurrence date where they appear.
These events are defined by input value of the system. The output value
is calculated by comparaison with the state where the system is from at
each instant [10]. As we have said previously, each sub model is defined
for specific operating point (or region). So, we can consider that this
operating point as the center of a specific domain, or sub model validity
domain, for description of greenhouse behavior. Let Dq(I(k)) be the
validity domain (Figure (9)) when we are in the state Sq. Sq can switch
to Sr, if the threshold Rq,r(I(k)) is true and the input value I(k) defines
exactly this validity domain.

�������Input
Values

Lower Middle Upper

V v < R′
1 − ≥ R′

1

Rg < R′
1 > R′

1 and ≤ R′
2 > R′

2

Tab.1. Input values associated with Environment Specification

Fig.11. Discrete Event Model of the Greenhouse
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Thus, we have the state commutation in the table 2. Where all conditions
of transition are respected to check the operating particular modes of the
system.

State Name Input Variable

S1 ColdNight I = {RgL, V vU}
S2 FreshNight I = {RgL, V vL}
S3 ColdDaybreak I = {RgM, V vU}
S4 FreshDaybreak I = {RgM, V vL}
S5 DryDay I = {RgU, V vL}
S6 ModerateDay I = {RgU, V vU}

Tab.2. Discrete State designation of the supervision device

In the experimentation, we have considerated three days of March. Its the
10, 11 and 12 March. The figure (12) gives the corresponding switching
sequence for the considered day. The index numbers 1, 2, and 3 are
associated respectively to the Night model, the Daybreak one and Day
model. For the same, we can show the effectiveness of this approach, in
modelling case because we have done a best result for estimation of our
continuous state with the methodolgy proposed. In fact, this system can
be modelling with this approach which consider the phenomena defined
by the external environment, as its shown for the 12 March day. Here,
it appears just one model selection even we know that one day is always
composed of the three following sequence : ”‘Night ↔ Daybreak ↔ Day”′.
Its proove interresting to use this approach in this case.

4.4 Concluding remarks Perspective of the modeling
approach

We propose of this work is to define an approach to identify and then
control and supervise such class of complex systems represented by swit-
ched models. The system is composed by different sub-models. Each
model switches to another instantaneously when the thresholds that de-
fine some operating points or zone, is reached. In the goal to build the
best prediction of system outputs, we have to get the best switching
and supervision device depending on operating point, the behavior and
environment.

The presented experimental results emphasize efficiency of this approach
for modeling, behavior analysis and prediction for such class of complex
systems. We have shown, in our first results using this approach, an
important difference of performance of the prediction regard to the case
when using fuzzy logic for estimation and supervision [2]. A big difference
of the prediction error in supervised and normal mode have been found
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Fig.12. Greenhouse Simulation with Multiple Model

In a future work, this approach will be used for diagnosis, fault detection
and monitoring. A diagnostic framework will be considered to detect
defaults and control the system.
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