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Limit cycles are common in physical complex systems. However the nonsmooth dynamics of such systems makes stability analysis difficult. This paper gives an extension of Discrete Events System formalism to show the statibilty of Limit cycles using multiple lyapunov function.

INTRODUCTION

Many real systems are characterized by interactions between continuous (smooth or none) dynamics and discrete events. Such systems are common across a diverse range of application areas. Examples include a robotic assembly (McCarragher96 and al.), manufacturing (Pettersson99) and power system (Hiskens00 and al.).

Dynamics of several physical systems can be well described by use of ordinary differential equations despite the fact that some times nonlinearities are introduced and can be taken into account. However, there is as of time this class of systems exhibit a periodic behavior. Discrete events, such as saturation limits, can act to trap evolving system state within a constrained region of state space.

Therefore even when the underlying continuous system are unstable, the discrete events can induce a stable limit set. Limit cycles (periodic behaviour) are created in this way. Limit cycles can be stable (attracting), unstable (repelling) or non-stable(saddle). The stability of periodic behaviour can be defined also as the stability of the fixed point.

So, in this paper we want to study the problems of stability of some class of hybrid systems and how to deal with observability and controllability of such systems. Despite an amount of theory and proposed methods to test observability, it seems to be rather difficult to find an optimal way and efficient rules which cope with some class of hybrid non-linear systems. This is why we have chosen some simple mechanical systems with different phases when operating, or commutation of structures (contact and non contact situations).

MODEL

Background

We choose as illustrative example a mass spring system with a simple structure. But this system has a structure which is near to a vehicle one or a jumping robot.

Definition of a class of systems having variable structures, commutations in their dynamic behavior, non linearities (hard or smooth), non stationarity, varying parameters and other non standard features, is difficult to be done in general. So we can restrict our case to some simple situations with known involved physical phenomena.

The discrete events taken into account and the choice of their effect may be driven by some higher level or simply selected according of optimization of some criterion or performance index (Giambiasi02 and al.), (Allur94).

The switchings and commutations often appear abruptly but changes from one representation to an-other one may be very smooth or not. In another hand we must note also that such systems representation is not unique and differences can appear between the behavioral representation and physical system description or modeling for diagnosis and control.

Discrete Events System (Zeigler76) defines a way to specify systems which states change either upon the reception of an input event or due to the expiration of a time delay.

The system equation can then be written in following form:

   ẋ = f m i (x, u,t) m i : {S, I, O, δ int , δ ext , λ,t αi } (1)
where:

• x is the set of continuous states of system

• u is the set of input controls • S is the set of sequential states • I is the set of external events • O is the set of internal events • δ int : S → S is the internal state transition function • δ ext : S -× I → S + is the external state transition function • λ : S → O is the output function • t αi is the time advance function

Limit Cycles Analysis

In the sequel, we adopted following definitions to approach the stability in dynamical of the system given by the relation (1) (MSirdi98 and al.). We considered the system behavioural in the vicinity of one cyclic trajectory in the goal to analysis the orbital stability.

Limit Cycles: for a second order system with state equation defined by χ = f (χ,t), we define a positive limited set invarying for a boundedness trajectory

χ(t)( χ(t) ) < µ, ∀t > 0 by: -= {p ∈ ℜ n , ∀ξ > 0, ∃t k such that p -χ(t k ) < ξ, ∀k ∈ N} where t k is the time sequencial, with, lim k → ∞ t k = ∞
Orbital Stability: Trajectory of the system in the phase plane ℜ 2 is an orbit stable if:

-

∀ξ > 0, ∃ρ > 0 such that x 0 --(z 0 ) < ρ ⇒ in f x(t) -p < ξ, ∀t > t 0 with p ∈ ℜ n
Asymptotic Orbital Stability: Trajectory of the system in the phase plane ℜ 2 is an asypmtotic orbit

stable if: -x 0 --(.) < ρ ⇒ lim k → ∞ in f x(t) -p = 0 with p ∈ ℜ n 3 System Description

Mass Spring Model

Let us consider the mass-spring system of figure(4), with mass M, stiffness constant k and z 0 the original length of massless spring. The environment is assumed infinitely rigid: k e >> k. If this is not the case let k r be the stiffness of the spring and k the equivalent stiffness of interaction with the ground

(k ∼ = k r k e k r +k e ).
The position of the mass M, in a frame attached to the ground, is noted z. The gravity constant is g = 9.81ms -2 . Let v d = żd > 0 be the lift off velocity and v c = żc < 0 the touch down velocity.

The dynamic interaction with the ground is composed by two phases: flying and stance phases [16][17]. This system is composed by interconnectionof three subsystems (mass, spring and ground) and energy evolutions are: Potential (g) → Kinetic → potential accumulation → potential restitution → Kinetic and so on. We assume the landing without rebounds and no energy loss. Note that the values used in simulations are estimations of equivalent coefficients for out robot SAP [15] (M ∼ = 2.6kg; k = 1100). • Contact Phases. In these phases the controls are active when the springs are in contact.

-The two springs are in contact:

ẋ = f 1 (x, u,t) t ∈ R + and x(t) ∈ D 1 ⊂ R 4    ẋ4 = z = -k l M (z l -z l0 -u l ) -k r M (z r -z r0 -u r ) -g ẋ5 = θ = lk l I (z l -z l0 -u l ) -lk r I (z r -z r0 -u r ) ẋ6 = φ = lk l I (z l -z l0 -u l ) + lk r I (z r -z r0 -u r ) (2) -The right spring is in contact: ẋ = f 2 (x, u,t) t ∈ R + and x(t) ∈ D 2 ⊂ R 4    ẋ4 = z = -k r M (z r -z r0 -u r ) -g ẋ5 = θ = -lk r I (z r -z r0 -u r ) ẋ6 = φ = lk r I (z r -z r0 -u r ) (3) -The left spring is in contact: ẋ = f 3 (x, u,t) t ∈ R + and x(t) ∈ D 3 ⊂ R 4    ẋ4 = z = -k l M (z l -z l0 -u l ) -g ẋ5 = θ = lk l I (z l -z l0 -u l ) ẋ6 = φ = lk l I (z l -z l0 -u l ) (4) • Flying Phase: ẋ = f 4 (x, u,t) t ∈ R + and x(t) ∈ D 4 ⊂ R 4          ẋ1 = x 3 ẋ2 = x 4 ẋ4 = z = -g ẋ5 = θ = 0 ẋ6 = φ = 0 (5)
z r et z l can be expressed in function of z if we assume θ and φ small:

     z l1 = z -l sin θ -d sin φ = z -lθ -dφ z l2 = z + l sin θ -d sin φ = z + lθ -dφ z r1 = z + l sin θ -d sin φ = z + lθ -dφ z r2 = z + l sin θ + d sin φ = z + lθ + dφ

Switching control and supervisor model

As we have said above, our system is composed of two sub-system. One hand with continuous state and in other hand discrete behavioural state.

For this last, we considerate the following phases (Figure2) :

-All springs are in contact with ground -All springs are in flying phase 

-O c = Select 1 = Contact model = 1 -O r1C = Select 2 = Right1Contact model = 2 -O l1C = Select 3 = Le f t1Contact model = 3 -O f = Select 4 = Flight model = 4 -O r2C = Select 2 = Right2Contact model = 5 -O l2C = Select 3 = Le f t2Contact model = 6 -O r1l1C = Select 4 = Right1Le f t1Contact model = 7 -O r2l2C = Select 4 = Right2Le f t2Contact model = 8
For this application let us consider the functions ξ r (z r , u r ) and ξ l (z l , u l ) as the external state transition function. So we can write:

δ ext : S -× I → S + = ξ τ (z τ , u τ ) (6) 
with τ = l, r which defined the Left or Right spring

This function can be equal to 0 in the flying phase and 1 when there is contact with the corresponding spring. We want give a periodic motion for our system i.e. to damp any rotational motion and maintain hopping along z axis. For obtain this goal, let us consider the following Lyapunov function (energy of the system):

ξ r (z r , u r ) = 1 2 (1 -sign(z r -z 0 -u r )) (7) ξ l (z l , u l ) = 1 2 (1 -sign(z l -z 0 -u l )) (8) 
V = 1 2 ż2 + gz + I 2M θ2 + I 2M φ2 (9) V = V LC +V T (1) +V T (2) (10) whit ≡ V LC = 1 2 ż2 + gz V T (1) = I 2M θ2 V T (2) = I 2M φ2 (11)
Energy is splitted in two parts: V LC the energy corresponding to the desired periodic hopping motion and V T (.) the transverse motion energy. It is clear that one of this energy has to be regulated to some level and the other must be damped. The right an left control inputs are

       ξ r1 u r1 = 1 2 u LC -u T (1) -u T (2) ξ l1 u l1 = 1 2 u LC + u T (1) -u T (2) ξ r2 u r2 = 1 2 u LC -u T (1) + u T (2) ξ l2 u l2 = 1 2 u LC + u T (1) + u T (2) ( 12 
)
u T is the control which has to damp transverse energy V T and then rotional motions. This has as consequence to keep the system state in the plane (z, ż) with θ = θ = 0 and φ = φ = 0. The u LC has to stabilise priodic cycle (cyclic motion). The two control inputs u T and u LC have to be applyed in the time period where the corresponding spring is in contact with ground. This is made by displacement of the springs attach points u r and u l .

Convergence and stability of the periodic motion

The transverse motion and its energy V T have to be damped. Let us use as Lypunov candidate function

V 1 V 1 = 1 2 V 2 T (1) + 1 2 V 2 T (2) (13) 
Its time derivative is:

V1 = V T (1) VT(1) +V T (2) VT(2) (14) VT(1) = I M θθ (15) VT(2) = I M φφ ( 16 
)
using expression (??) and ( 16), lead:

VT = lk M (ξ l (z l -z l0 ) -ξ r (z r -z r0 ) (17) + (ξ r u r -ξ l u l ) θ + lk M (ξ l (z l -z l0 ) -ξ r (z r -z r0 ) + (ξ r u r -ξ l u l ) φ
Substitutind controls ξ r u r , ξ l u l by equation ( 12) in VT , we have:

VT = lk M (ξ l (z l -z l0 ) -ξ r (z r -z r0 ) + u T ) θ + lk M (ξ l (z l -z l0 ) -ξ r (z r -z r0 ) + u T ) φ (20)
We propose a transverse control input u T as follows:

u T = ξ r u r -ξ l u l = -Γ 11 ψ(V T (1) ) θ -Γ 12 ψ(V T (2) ) φ (21) -ξ l (z l -z l0 ) + ξ r (z r -z r0 )
ψ is a positive function can be sign or saturation function ( 21). we then obtain:

VT = - lk M Γ 11 ψ(V T (1) ) θ2 - lk M Γ 12 ψ(V T (2) ) φ2 (22) V1 = V T (1) VT(1) +V T (2) VT(2) (23) = -Γ 11 V T (1) ψ(V T (1) ) θ2 (24) -Γ 12 V T (2) ψ(V T (2) ) φ2 ≤ 0 (25)
V T (.) VT(.) is negative then the transverse energy V T converges to zero. We can conclude that

∀ε 1 > 0, ∃t 1 ≥ 0, such as | V T |< ε 1 , ∀t > t 1
Convergence of V LC desired reference V * LC . Let us choose another Lyapunov candidate function

V 2 = 1 2 V 2 T + 1 2 (V LC -V * LC ) 2 (26)
V * LC the constant reference energy is defined at the lft off pont żd or at the maximal desired height z max :

V * LC (0, z d ) = 1 2 ż2 d or V * LC (z max , 0) = gz max when t > t 1 we have (V T , VT ) = (0, 0), then V2 = (V LC -V * LC ) VLC ∀t > t 1 with VLC = (z + g) ż ∀t > t 1 (27) VLC = -ξ l k M (z l -z l0 ) -ξ r k M (z r -z r0 ) (28) + k M (ξ r u r + ξ l u l )ż (29) VLC = -ξ l k M (z l -z l0 ) -ξ r (30) k M (z r -z r0 ) + k M u LC ż (31)
we propose as control input :

u LC = ξ r u r + ξ l u l = -Γ 2 ψ(V -V * LC )ż (32) + ξ l (z l -z l0 ) + ξ r (z r -z r0 )
such as the derivative VLC will be negative:

VLC = - k M Γ 2 ψ(V -V * LC )ż 2 (33) Then V2 = (V LC -V * LC ) VLC (34) = - k M Γ 2 (V LC -V * LC )ψ(V LC -V * LC )ż 2 ≤ 0
The second Lyapunov function ensures global asymptoticconvergence of the system trajectories z to the orbit Ω θ(t), θ(t) converge to zero with the following control:

   u T = -Γ 11 ψ(V T (1) ) θ -Γ 12 ψ(V T (2) ) φ -ξ l (z l -z l0 ) + ξ r (z r -z r0 ) u LC = -Γ 2 ψ(V -V * LC )ż + ξ l (z l -z l0 ) + ξ r (z r -z r0 ) (35) 

EXPERIMENTAL RESULTS

-First test:

We want just to show firstly when θ 0 = 0rad and φ 0 = 0rad that our system can respect the limit cycle that we have imposed with the control considered. These conditions give for the simulation in figure For the sequel, we make one test whose the goal is to show the effectiveness of our supervision 

CONCLUSION

We propose of this work is to define an approach to identify and then control and supervise such class of complex systems represented by switched models. The system is composed by different sub-models. Each model switches to another instantaneously when the thresholds that define some operating points or zone, is reached by the application of the external or internal transition function. In the goal to build the best prediction of system outputs, we have to get the best switching and supervision device depending on operating point, the behavior and environment. We have illsutred the observability of this class of system with different phases when operating, or commutation of structures (contact and non contact situations). The presented experimental results emphasize efficiency of this approach for modeling, behavior analysis and prediction for such class of complex systems. We have shown, in our first results using this ap- proach, an important difference of performance of the prediction regard to the case when using fuzzy logic for estimation and supervision (Duplaix05).

In a future work, this approach will be used for modelling a vehicle in the goal to make a diagnosis, fault detection and monitoring. A diagnostic framework on this application will be considered to detect defaults and control the system. . Allur, D. L. Dill, A thoery of timed automata, theoretical computer science, ACM, vol. 126, pp.116-146, N2, 1994 .K.MSirdi, N.Manamani and N.Nadjar-Gauthier Methodology based on CLC for control of fast legged robots, Intl. Conference on intelligent robots and systems, proceedings of IEEE/RSJ, October 1998.

. Duplaix, J.F. Balmat, F. Lafont, N. Pessel, Data Analysis For Neuro-Fuzzy Model Approach, STIC-LSIS, Universite du Sud Toulon-Var, Sofa 2005.
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 1 Figure 1: Mass Spring Model

  (03) good results with the desired height z m = 3.5m. The figure (04) illustrates the model commutation, here we have just cummutation of model 1 to model 4, the transverse energy V T and the cycle in vertical direction (V Lc goes to its imposed reference) and the Figure(05) shows the angle θ and φ equal to zero. -Second test: Now we consider that θ 0 = 0.5rad, φ 0 0rad. With the same conditions for simulation figure(06) shows the good results with the desired height z m = 3.5m obtain after few seconds of simulation, here t = 1.5s. Figure(07) illustrated the switching model result and the moment that corresponds to the necessary time interval to damp the transverse energy V T and stabilize the cycle in vertical direction (V Lc . The Figure (08) shows the convergence of the angle θ. -Third test:
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 3 Figure 3: Cycle limite stable for θ 0 = 0rad, φ 0 = 0rad
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 456 Figure 4: Energy of the System M when θ 0 = 0rad, φ 0 = 0rad
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 78 Figure 7: Energy of the System M when θ 0 = 0.5rad, φ 0 = 0rad
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 9 Figure 9: Cycle limite stable for θ 0 = 1rad, φ 0 = 0.5rad
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 1011 Figure 10: Energy of the System M when θ 0 = 1rad, φ 0 = 0.5rad