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Abstract

In this paper a 16 DoF vehicle model is developped and discussed. Then some parial models are considered and
justified for the design of robust estiamtors using sliding mode approach in order to identify the tire-road friction
or input variables.
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I. INTRODUCTION

In recent years, increase of safety demand in vehicles motivated research and developement in the field of active
safety. More and more new safety systems are installed on vehicle for real-time monitoring and controlling the
dynamic stability (EBS, ABS, ESP). Car accidents may occur for several reasons which involve either the driver or
vehicle components or environment. One of the important factors determining vehicle dynamics including safety
is road friction and evolution of the contact forces. Thus for vehicles and road safety analysis, it is necessary to
take into account the contact force characteristics. However, tire forces and road friction are difficult to measure
directly. In literature, their values are often deduced by some experimentally approximated models[2][9][1]. Tire
forces are represented by nonlinear functions of wheel slip.Generally the partial and approximated models used are
not fully justified and their validity is often limited.This makes the forces and parameters difficult to estimate on
line for vehicle control applications and detection and diagnosis for driving monitoring and surveillance. In this
work we try to highlight approximations made and give details allowing to evaluate what is really neglected. Robust
observers looking forward are based on the physics of interacting systems (the vehicle, the driver and the road).

Recently, many analytical and experimental studies have been performed on estimation of the frictions and contact
forces between tires and road [3][4]. In [7][4], application of sliding mode control is proposed. Observers based on
the sliding mode approach have been also used in [8]. In [5] an estimation based using the least squares method
and Kalman filtering is applied for estimation of contact forces. Gustafsson in [1] presented a tire/road friction
estimation methode based on Kalman filter to give a relevant estimates of the slope of µ versus slip (λ), that
is, the relative differnence in wheel velocity. Carlson in [9] presented an estimator for longitudinal stiffness and
wheel effective raduis using stok vehicle sensors and GPS for low values of slip. Robust observers with unknown
inputs are efficient for estimation of road profile and for estimation of the contact forces [8]. Robut observers with
unknown inputs have been shown to be efficient for estimation of road profile [12][?] and for estimation of the
contact forces. Tracking and braking control reduce wheel slip. This can be done also by means of its regulation
while using sliding mode approach for observation and control.[3]. This enhances the road safety leading better
vehicle adherence and maneuvers ability. The vehicle controllability in its environment along the road admissible
trajectories remain an important open research problem [6].

In this paper, modelling of the contact forces and interactions between a vehicle and road is revisited in the
objective of on line force estimation by means of robust observers coupled with a robust and adaptive estimation
for contact forces. We propose an observer to estimate the vehicle state and an adaptive estimator for tire forces
identification. The designed observer is based on the sliding mode approach. The main contribution is the on-line
estimation of the tire force needed for control.
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We focus our work, as presented in this paper, first on modeling and second on on-line estimation of the tires
forces. We estimate the vehicle state and identify tire forces. The main contribution is the emphisize of the rational
behind partial approximated models and the on-line estimation of the tire force needed for control. Tire forces can
be represented by the nonlinear (stochastic) functions of wheel slip. The deterministic tire models encountered are
complex and depend on several factors (as load, tire pressure, environmental characteristics, etc.). The proposed
estimation procedure has to be robust enough to avoid model complexity. It can then be used to detect some critical
driving situations in order to improve the security. This approach can be used also in several vehicle control systems
such as Anti-look Brake Systems (ABS), traction control system (TCS), diagnosis systems, etc...

The estimations are produced using only the angular wheel position as measurement by the specially designed
robust observer based on the super-twisting second-order sliding mode. The proposed method of estimation is
verified through one- wheel simulation model with a ”Magic formula” tire model and then application results (on
a Peugeot 406) show an excellent reconstruction of the velocities, tire forces and radius estimation.

II. VEHICLE MODELING
1) Mechanical Models: 4 DOF system: In order to give an idea for the system modeling, we start with a simple

example. In this part we develop a 4 Degrees Of Freedom (DOF) model. This means that we consider only the
vertical motion (along Oz axis) and the 3 rotations. Let us consider for simplicity a table moving in 4 DOF, made
of a rigid body (see figure ??) with a mass M , as length L and wide l. The table thikness is h. We first consider
the reference frame R1 attached to the table and the absolute reference R0.

The table is only excited by 4 forces F1, F2, F3 and F4 du to the springs attached at the points:PFT1 /R1.;
PFT2 /R1 for the rear right and left and PFT3 /R1. PFT4 /R1 for the front right and left respectively. Each point is
refered by its cartesian coordinates (x, y, z) (distances to the centre of gravity (CDG) / relative to R1). There are
no lateral nor longitudinal forces F5 = F6 = 0. The inertia tensor is I = diag (Ixx, Iyy, Izz). The table model
is obtained applying the Lagrange formalism, considering the generalized coordinate vector q = [z, ψ, ϕ, θ]T ∈ <4

and Γa the external forces vector.

M(q)q̈ + C(q, q̇)q̇ +G(q) + V (q, q̇) = Γa (1)

z is the vertical displacement of the gravity center, ψ the roll angle, ϕ the pitch angle, θ the yaw angle. q̇
is the velocity vector and q̈ the accelerations one. The inertia matrix is M(q) and C(q, q̇) represent the coriolis
and centrifugal effects. G(q) = [gM, 0, 0, 0]T is the gravitation effect. Frictions can be considered and are noted
V (q, q̇).The system is passive, then we have the following property: Ṁ(q)− 2C(q, q̇) is an antisymétric matrix.

The external forces applied to the table are expressed in the cartesian space (FTi : longitudinal force, FLi : lateral
force, FNi : normal force): F = [FT1, FL1, FN1, FT2, FL2, FN2, FT3, FL3, FN3, FT4, FL4, FN4]

T . The transversal
and lateral exerted forces are assumed nul.

Γa = JT (q)F (2)

with J(q) the (12× 4) jacobian matrix defined at the 4 contact points. This describes the fact that contact points
are the connections betwen environment (in the absolute reference frame) and the system’s body (in its refernce
frame).

The applied forces vector is then reduced to only normal force, for simplicity of presentation (this will not be
the case of the vehicle, here we have then F = [FN1, FN2, FN3, FN4]

T and then

JT (q) =


1 1 1 1
0 0 0 0
J3,3 J3,6 J3,9 J3,12

J4,3 J4,6 J4,9 J4,12

 (3)

M(q) =


M 0 0 0
0 M2,2 M2,3 M2,4

0 M3,2 M3,3 0
0 M4,2 0 M4,4

 (4)

Please note that the inertia matrix is not diagonal despite considering only the chassis alone and that different
frames must be considered with geometric and kinematic models relating cartesian and operational spaces.
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a) The Coriolis and centrifugal effects matrix C(q, q̇)::

C(q, q̇) =


0 0 0 0
0 C2,2 C2,3 C2,4

0 C3,2 C3,3 C3,4

0 C4,2 C4,3 0


With as exemple we give only diagonal coefficients:
C2,2 = 1/8 ϕ̇ Iyy sin(2ϕ+2 θ) + 1/8 ϕ̇ Iyy sin(2ϕ−2 θ)− 1/4 ϕ̇ Iyy sin(2ϕ)

−1/8 ϕ̇ Izz sin(2ϕ+2 θ)− 1/8 ϕ̇ Izz sin(2ϕ−2 θ)− 1/4 ϕ̇ Izz sin(2ϕ)
+1/2 ϕ̇ Ixx sin(2ϕ) + 1/8 θ̇ Iyy sin(2ϕ+2 θ)− 1/8 θ̇ Iyy sin(2ϕ−2 θ)
+1/4 θ̇ Iyy sin(2 θ)− 1/8θ̇ Izz sin(2ϕ+2 θ) + 1/8 θ̇ Izz sin(2ϕ−2 θ)
−1/4 θ̇ Izz sin(2 θ)

C3,3 = −1/2 sin(2 θ) (Iyy − Izz )θ̇
b) The Transpose Jacobian matrix:: The applied forces vector is then reduced to F = [FN1, FN2, FN3, FN4]

T

J =


0 0 1 0 0 1 0 0 1 0 0 1
J2,1 J2,2 0 J2,4 J2,5 0 J2,7 J2,8 0 J2,10 J2,11 0
J3,1 J3,2 J3,3 J3,4 J3,5 J3,6 J3,7 J3,8 J3,9 J3,10 J3,11 J3,12

J4,1 J4,2 J4,3 J4,4 J4,5 J4,6 J4,7 J4,8 J4,9 J4,10 J4,11 J4,12


This 4 DOF model gives only an idea of how much complex is the nominal model of vehicle dynamics. In what

follows we restart the procédure to compute the vehicle model assuming it is composed with a body (chassis) with
6 DOF and four wheels attached to this body by four suspensions.

A. Complete 16 DoF model

In litterature, many studies deal with vehicle modelling [10][11]. This kind of systems are complex and nonlinear
composed with many coupled subsystems: wheels, motor and system of braking, suspensions, steering, more and
more in borad and inbedded electronics. Let us represent the vehicle (like eg a Peugeot 406) by the scheme of
figure 1 and define the following notations.

ftbpFU3.2113in1.8157in0ptVehicle dynamics and reference framesVehiiclvehicl.jpg
The vehicle body receives as excitations external forces and moments following the three axes: - Longitudinal,

- Lateral, - Vertical. These come from interaction of the wheels and road, from perturbations (wind for example),
gravity and vehicle drive line. Let us consider the basic reference fixed frame R. Whe can consider the vehicle as
made of 5 sub-systems: chassis whit 6 DOF and then 4 wheels with their suspensions. Each of the rear wheels has
2 DoF. The front ones are driven wheels with 3 DoF each. Then we have 16 DoF. Let the generalized variables be
in the vector q ∈ R16, defined as

qT = [x, y, z, θz, θy, θx, z1, z2, z3, z4, δ3, δ4, ϕ1, ϕ2, ϕ3, ϕ4]

where x, y, et z represent displacements in longitudinal, laterl and vertical direction. angles of roll, pitch and yaw
are θx, θy et θz respectively. The suspensions elongations are noted zi: (i = 1..4). δi: stands for the steering angles
(for wheels numbered as i = 3, 4), finally ϕi: are angles wheels rotations (i = 1..4.). Vectors q̇, q̈ ∈ R16 are
respectively velocities and corresponding accelerations. M(q) is the inertia matrix and C(q, q̇)q̇ are coriolis and
centrifugal forces. The gravity term is G . Suspensions forces are V (q, q̇) = Kv q̇+Kpq with respevtively damping
and stifness matrices Kv , Kp. We can define as dynamic equations of the vehicle by applying the principles
fundamental of the dynamics (see [13]):

Γ + JTF = M
..
q + C(q,

.
q)

.
q +Kq +G (5)

with as parameters only to give an idea

M =


M̄1,1 M̄1,2 M̄1,3 0 0
M̄2,1 M̄2,2 M̄2,3 M̄2,4 M̄2,5

M̄3,1 M̄3,2 M̄3,3 0 0
0 M̄4,2 0 M̄4,4 0
0 M̄5,2 0 0 M̄5,5


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C =


0 C̄12 C̄13 0 0
0 C̄22 C̄23 C̄24 C̄25

0 C̄32 C̄33 0 0
0 C̄42 0 0 0
0 C̄52 0 0 C̄55



and JT =


J1,1 J1,2 J1,3 J1,4

J2,1 J2,2 J2,3 J2,4

J3,1 J3,2 J3,3 0
0 0 0 J4,4

0 0 0 0
0 0 0 0

 .
This is just to show that we can decompose our system as coupled subsystems. Let us say five coupled subsystems,

that we have considered in our previous works. This has been computed using a symbolic computation software
considering 16 generalized variables: 6 for position and orientation of body, 4 as suspensions ones, 2 for front
wheels steering and 4 as wheels rotations. The matrices M , C and K are of dimensions 16× 16. F is input forces
vector acting on wheels, it has 12 components(3 forces ( longitudinal, lateral and normal) × 4 wheels), Γ represent
extra inputs for perturbations.. In the following application this model has been reduced and simplified assuming
as nominal behaviour a normal driving situation [6].

B. Coupled sub models

We can split the previous model, without approximations, in five parts as follows. This leads us to Rotations and
orientation motions of the body: J4F

J5F

J6F

= M̄
T
12

 ..
q1..
q2..
q3

+M̄22

 ..
q4..
q5..
q6

+

+M̄23


..
q11..
q21..
q31..
q41

+M̄24

 ..
q12..
q22..
q32



+M̄25

 ..
q42..
q33..
q43

+C̄22

 .
q4.
q5.
q6

+C̄23


.
q11.
q21.
q31.
q41

+

+C̄24

 .
q12.
q22.
q32

+C̄25

 .
q42.
q33.
q43


The body’s translations dynamics is given by: FLT

FTT

FNT

 = M̄11

 ..
x
..
y
..
z

+M̄12

 ..
q4..
q5..
q6

+ (6)

+M̄13


..
q11..
q21..
q31..
q41

+C̄12

 .
q4.
q5.
q6

 (7)

Suspensions dynamics is written:
J7F

J8F

J9F

J10F

=M̄1,3

 ..
q1..
q2..
q3

+M̄2,3

 ..
q4..
q5..
q6

+
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+M̄3,3


..
q11..
q21..
q31..
q41

+C̄32

 .
q4.
q5.
q6

+C̄33


.
q11.
q21.
q31.
q41

+

+


R11

R21

R31

R41



q11

q21

q31

q41

+


G7

G8

G9

G10


The previous 16 DoF model is then equivalent to the following one:

FT

F2

F3

0
U5

= M


ξ̈1
ξ̈2
ξ̈3
ξ̈4
ξ̈5

+C


ξ̇1
ξ̇2
ξ̇3
ξ̇4
ξ̇5

+


0
0
R33ξ3
0
0

+


G1

G2

G3

0
0


In the last expression, we can remark that splitting the model can be realized and this model is helpful, when

using reduced models, to identify what is neglected regard to our proposed nominal model with 16 DoF. The
dynamic equations can be reduced, in case where we assume that motion is normal driving in a normal straith
road, to translations and rotations of the body, and wheels plus supension motions. For translations we find often
in literature:

m
.
vx =

∑
Fx

m
.
vy =

∑
Fy

m
.
vz =

∑
Fz

(8)

where m is the total mass of the vehicle and v = [vx, vy, vz]
T describe the vehicle velocities along x, y, z. In

the left hand side of this approximate model are the forces
∑
Fx,

∑
Fy and

∑
Fz applied in directions of x, y

and z and the balance of the moments (
∑
Mx,

∑
My,

∑
Mz), give rotations following the three directions x, y

and z, is given by:

J


..
θ
..
φ
..
ψ

 =

 ∑
Mx∑
My∑
Mz

 (9)

The wheel angular motions can be written:

.
ωfl =

1
Iω

(Cfl −RωFxf1) (10)

.
ωfr =

1
Iω

(Cfr −RωFxf2)

.
ωrl =

1
Iω

(Crl −RωFxr1)

.
ωrr =

1
Iω

(Crr −RωFxr2)

with ωf and ωr are the rotation velocities of the front and rear wheel, Cmi is the motor couple applied at wheel i
and Ti is the braking couple applied at wheel i. Let r1 be the distance between the center of gravity and the front
axis and r2 the distance between the center of gravity and the rear axis.

C. Partial models

The complete model is difficult to use in control applications. It involves several variables which are not available
for measurement or not observable. The most part of applications deal with simplified and partial models. Let
us consider, for our robust observer, the simplified motion dynamics of a quarter-vehicle model, capturing only
nominal behavior [3] [6]. This model retains the main characteristics useful for the longitudinal dynamic. For a
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global application, this method can be easily extended to the complete vehicle and involve the four coupled wheels.
The amount of neglected parts in the modeling can be considered to evaluate robustness of proposed estimators.

Applying Newton’s law to one isolated wheel gives:.

m
.
vx = Fx

Jr
.
ω = T − rFx

where m is the vehicle mass and Jr, r are the inertia and effective radius of the tire respectively. vs is the linear
velocity of the vehicle, ω is the angular velocity of the considered wheel. T is the accelerating (or braking) torque,
and Fx is the tire/road friction force. The tractive (respectively braking) force, produced at the tire/road interface
when a driving (braking) torque is applied to pneumatic tire, has opposite direction of relative motion between the
tire and road surface. This relative motion exhibits the tire slip properties. The wheel-slip is due to deflection in the
contact patch. The longitudinal wheel slip is generally called the slip ratio and is described by a kinematic relation
as [9].

λ =
|vr − vx|

max(vr, vx)
(11)

where vr is the wheel velocity. Representing the adhesion coefficient as a function of the wheel slip yields the ad-
hesion characteristic µ(λ), which depends on the road surfaces as shown in the following figure 2.ftbphFU3.5959in2.0773in0ptWheel
slipWheel slipimfqzl00.wmf

The figure 2 shows the relations between coefficient of road adhesion µ and longitudinal slip λ for different
road surface conditions. It can be observed that all curves µ(λ) start at µ = 0 for zero slip, which corresponds
to the non-braking and non accelerating, free rolling wheel. With a linear increasing slip ratio from 3% to 20%.
Beyond this maximum value the slope of the adhesion characteristic is maximum and then slope becomes negative.
At a slip ratio of 100% the wheel is completely skidding, which corresponds to the locking of the wheel. The
adhesion characteristic plays an essential role for both the design and the validation of ABS. Overall, to improve
the performance of an ABS it is desirable to have some real-time information about the adhesion characteristic.

By assuming that the longitudinal forces are proportional to the transversal ones, we can expressed theses forces
as follows, where Fz is the vertical force of the wheel.

Fx = µFz (12)

The verticla forces that we use in our model are function of the longitudinal acceleration and the height of the
center of gravity. The vertical force can be represented as:

Fz =
m

2(lf + lr)
(glr − h

.
vx) (13)

where h is the height of the center of gravity, lf is the distance between the center of gravity and the front axis
center of gravityand lr is the distance between the center of gravity and the rear axis center of gravity.

III. OBSERVER DESIGN

The sliding mode technique is an attractive approach [14]. The primary characterestic of SMC is that the feedback
signal is discontinuous, switching on one or several manifolds in the state-space. In what follows, we develop a
second order differentiator in order to obtain estimates of the tire road friction.

A. High Order Sliding Mode Observer (HOSM)

In this part we will use a Robust Differentiation Estimator (RDE) to deduce our estimations. Consider a smooth
dynamics function, s(x) ∈ R. The system containing this variable may be closed by some possibly-dynamical
discontinuous feedback where the control task may be to keep the output s(x(t)) = 0. Then provided that successive
total time derivatives s,

.
s,

..
s...s(r−1) are continuous functions of the closed system state space variables, and the

t-sliding point set is non-empty and consist locally of Filippov trajectories.
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s =
.
s =

..
s = ... = s(r−1) = 0 (14)

is non-empty and consists locally of Filippov trajectories. The motion on set [16][17] is called r-sliding mode
(rth-order sliding mode) [18][19].

The HOSM dynamics converge toward the origin of surface coordinates in finite time always that the order
of the sliding controller is equal or bigger than the sum of a relative degree of the plant and the actuator. To
estimate the derivatives s1 and s2 without its direct calculations of derivatives, we will use the 2nd-order exact
robust differentiator of the form [19]

.
z0 = v0 = z1 − λ0 |z0 − sω|

2
3 sign(z0 − sω)

.
z1 = v1 = −λ1sign(z1 − v0)

1
2 sign(z1 − v0) + z2

.
z2 = −λ2sign(z2 − v1)

where z0, z1 and z2 are the estimate of sω, s1 and s2, respectively, λi > 0, i = 0, 1, 2. Under condition
λ0 > λ1 > λ2 the third order sliding mode motion will be established in a finite time. The obtained estimates are
z1 = s1 =

.
sω and z2 = s2 =

..
sω then they can be used in the estimation of the state variables and also in the

control.

B. Cascaded Observers - Estimators

In this section we use the previous approach to build an estimation scheme allowing to identify the tire road
friction. The estimations will be produced in three steps, as cascaded observers and estimator, reconstruction of
informations and system states step by step. This approach allow us to avoid the observability problems dealing with
inappropriate use of the complete modeling equations. For vehicle systems it is very hard to build up a complete
and appropriate model for global observation of all the system states in one step. Thus in our work, we avoid this
problem by means of use of simple and cascaded models suitable for robust observers design.

The first step produces estimations of velocities. The second one estimate the tire forces (vertical and longitudinal
ones) and the last step reconstruct the friction coefficient.

The robust differentiation observer is used for estimation of the velocities and accelerations of the wheels. The
wheels angular positions and the velocity of the vehicles body vx, are assumed available for measurements. The
previous Robust Estimator is useful for retrieval of the velocities and accelerations.

1st Step:
.

θ̂ = v0 = ω̂ − λ0

∣∣∣θ − θ̂
∣∣∣ 2

3
sign(θ − θ̂)

.

ω̂ = v1 =
.

ω̂ − λ1sign(ω̂ − v0)
1
2 sign(ω̂ − v0)

..

ω̂ = −λ2sign(
.

ω̂ − v1)

The convergence of these estimates is garanteed in finite time t0.
2nd Step: In the second step we can estimate the forces Fx and Fz . Then to estimate Fx we use the following

equation,
J

.

ω̂ = T −Ref F̂x (15)

In the simplest way, assuming the input torques known, we can reconstract Fx as follows:

F̂x =
(T − J

.

ω̂)
Ref

(16)

.

ω̂ is produced by the Robust Estimator (RE). Note that any estimator with output error can also be used to
enhance robustness versus noise. In our work, in progress actually, the torque T wil be also estimated by means
of use of additional equation from engine behaviour related to accelrating inputs.

After those estimations, their use in the same time with the system equations allow us to retrieve de vertical
forces Fz as follows. To estimate Fz we use the following equation

F̂z =
m

2(lf + lr)
(glr − h.

.

v̂x) (17)
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v̂x is produced by the RE.
3rd Step: At this step it only remains to estimate the adherence or friction coefficient. To this end we assume

the vehicle rolling in a normal or steady state situation in order to be able to approximate this coefficient by the
following formula

µ̂ =
F̂x

F̂z

(18)

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we give somme realistic simulation results in order to test and validate our approach and the
proposed observer. In simulation, the state and forces are generated by use of a car simulator called VEDYNA
[20]. In this simulator the model involved is more complex than the one of 16 DoF presented in the first part of
the paper. Comparind the simplified model to the 16 DoF one, let us evaluate the robustnes of estimation The
VeDyna simulated braque torque is shown in figure 3.ftbphFU3.6296in1.9847in0ptBraking torquetorqueFigure

Figure 4 showes the measured and estimated wheel angular position. This signal is used to estimat velocities
and accelerations.ftbphFU3.5198in1.8844in0ptAngular displacementsAngular displacementsFigure

Figure ?? shows the estimated wheel velocity.ftbphFU3.1868in1.5264in0ptangular velocityAngular velocity-
imedgf08.wmfIn the figure ??, we represente the estimation of vehicle velocity. The figure shows the good
convergence to the actual vehicle velocity.ftbphFU3.4082in1.6276in0ptVehicle velocityVelocityFigure

Figure ?? shows the obtained vehicle acceleration. The observer allows a good estimation of angular velocity
and acceleration.ftbphFU3.3676in1.5463in0ptEstimated and measured acceleration AccelerationFigure

The last step gives us the estimated longitudinal forces Fx and normal forces Fz wich are presented in figure
8 and 9.ftbphFU3.2552in1.4529in0ptLongitudinal forceLongitudinal forceFigureftbphFU3.122in1.6094in0ptNormal
force FzNormal forceimedi30f.wmf

Finally road friction coefficient is deduced and presented in 10.ftbphFU3.1946in1.8481in0ptRoad frictionRoad
frictionimedi30g.wmf

V. CONCLUSIONS

In this work we have tryed to highlight all approximations made in general when using simplified models and
this paper gives some details allowing to evaluate what is really neglected. In second part od this paper, we have
proposed an effecient and robust estimator baser on the second order sliding mode differentiator. This is used to
build an estimation sheme allowing to identify the tire road frictions and input forces which are non observable when
using the complete model and standard sensors. The estimations produced finite time converging measurements of
model inputs, in three steps by cascaded observers and estimators. This method shows very good performances in
simulations conducted using a more complex model (than the 16 DoF one) involved in VeDyna car simulator. Tire
forces (vertical and longitudinal ones) are also estimated correctly. Simulation results are presented to illustrate the
ability of this approach to give estimation of both vehicle states and tire forces. The robustness versus uncertainties
on model parameters and neglected dynamics has also been emphasized in simulations. Application of this approach
with inclusion of torque estimation using a simplified model for the engine behaviour, is in progress.
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VI. APPENDIX A

Definition of the matrices involved.in the model.

M̄11=

 M1,1 0 0
0 M2,2 0
0 0 M3,3

 ;

M̄12 = M̄T
21=

 M1,4 M1,5 M1,6

M2,4 M3,5 M2,6

0 M3,5 M3,6

 ;

M̄13 = M̄T
31 =

 M1,7 M1,8 M1,9 M1,10

M2,7 M2,8 M2,9 M2,10

M3,7 M3,8 M3,9 M3,10

 ;

M̄23 = M̄ t
32 =

 M4,7 M4,8 M4,9 M4,10

M5,7 M5,8 M5,9 M5,10

M6,7 M6,8 M6,9 M6,10


M̄24 = M̄T

42 =

 M4,11 M4,12 M4,13

M5,11 M5,12 M5,13

0 0 0

 ;

M̄2,5 = M̄T
52

 M4,14 M4,15 M4,16

M5,14 M5,15 M5,16

0 M6,15 M6,16


M̄2,2 =

 M4,4 M4,5 M4,6

M5,4 M5,5 M5,6

M6,4 M6,5 M6,6

 ;

M̄3,3 =


M7,7 0 0 0
0 M8,8 0 0
0 0 M9,9 0
0 0 0 M10,10

 ;

M̄4,4 =

 M11,11 0 0
0 M12,12 0
0 0 M13,13

 ;

M̄5,5 =

 M14,14 0 0
0 M15,15 0
0 0 M16,16




