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Abstract

In an earlier article [BDKSV2017], explicit expressions were described
for the coefficients of the order-d polynomial subresultant of (x − α)m and
(x−β)n with respect to Bernstein’s set of polynomials {(x−α)j(x−β)d−j, 0 ≤
j ≤ d}, for 0 ≤ d < min{m,n}. The current paper further develops the
study of these structured polynomials and shows that the coefficients of the
subresultants of (x − α)m and (x − β)n with respect to the monomial basis
can be computed in linear arithmetic complexity, which is faster than for
arbitrary polynomials. The result is obtained as a consequence of the amazing
though seemingly unnoticed fact that these subresultants are scalar multiples
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of Jacobi polynomials up to an affine change of variables.
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1. Introduction

Let K be a field, and let f = fmx
m + · · ·+ f0 and g = gnx

n + · · ·+ g0 be
two polynomials in K[x] with fm 6= 0 and gn 6= 0. Set 0 ≤ d < min{m,n}.
The order-d subresultant Sresd(f, g) is the polynomial in K[x] defined as

Sresd(f, g) := det

m+n−2d

fm · · · · · · fd+1−(n−d−1) xn−d−1f
. . .

...
... n−d

fm . . . fd+1 f
gn · · · · · · gd+1−(m−d−1) xm−d−1g

. . .
...

... m−d

gn · · · gd+1 g

, (1)

where, by convention, f` = g` = 0 for ` < 0.
The polynomial Sresd(f, g) has degree at most d, and each of its coeffi-

cients is equal to a minor of the Sylvester matrix of f and g. In particular
the coefficient of xd, called the principal subresultant of f and g, is given by

PSresd(f, g) := det

m+n−2d

fm · · · · · · fd−(n−d−1)
. . .

... n−d

fm · · · fd
gn · · · · · · gd−(m−d−1)

. . .
... m−d

gn · · · gd

.
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Subresultants were introduced implicitly by Jacobi [Jac1836] and explic-
itly by Sylvester [Syl1839, Syl1840]; we refer to [GL2003] for a detailed his-
torical account1.

Let M(n) denote the arithmetic complexity of degree-n polynomial mul-
tiplication. Precisely, M(n) is an upper bound for the total number of
additions/subtractions and products/divisions in the base field K that are
sufficient to compute the product of any two polynomials in K[x] of de-
gree at most n. It is classical, see e.g. [GG2013, Ch. 8], that M(n) =
O(n log n log log n) by using FFT-based algorithms. For arbitrary polynomi-
als f, g ∈ K[x] of degree n, the fastest known algorithms are able to compute
in O(M(n) log n) arithmetic operations in K either one selected polynomial
subresultant Sresd(f, g) [Rei1997, Lec2018], or all their principal subresul-
tants PSresd(f, g) for 0 ≤ d < n [GG2013, Cor. 11.18]. It is an open question
whether this can be improved to O(M(n)), even for the classical resultant
(the case d = 0).

In this paper we present linear complexity results for these two questions
for a special family of polynomials, namely f = (x− α)m and g = (x− β)n,
with α, β ∈ K. To our knowledge, we are exhibiting the first family of “struc-
tured polynomials” for which subresultants (and all principal subresultants)
can be computed in optimal arithmetic complexity. We also thoroughly dis-
cuss the (characteristic of the) fields for which our complexity results hold.

We now describe the main complexity result of the current article.

Theorem 1. Let K be a field and α, β ∈ K. Set d,m, n ∈ N with 0 ≤ d <
min{m,n}, and write

Sresd((x− α)m, (x− β)n) =
d∑

k=0

sk x
k.

Then, when char(K) = 0 or char(K) ≥ max{m,n}, all the coefficients sk

1The Sylvester matrix was defined in [Syl1840], and the order-d subresultant was in-
troduced in [Syl1839, Syl1840] under the name of “prime derivative of the d-degree”. The
term “polynomial subresultant” was seemingly coined by Collins [Col1967], and probably
inspired to him by Bôcher’s textbook [Boc1907, §69] who had used the word “subresul-
tants” to refer to determinants of certain submatrices of the Sylvester matrix. Almost
simultaneously, Householder and Stewart [HS1967, Hou1968] employed the term “polyno-
mial bigradients”.
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for 0 ≤ k ≤ d can be computed using O(min{m,n} + log(mn)) arithmetic
operations in K.

This result is obtained via an amazing (and seemingly previously unobserved)
close connection of the subresultants Sresd((x−α)m, (x−β)n) with the clas-
sical family of orthogonal polynomials known as the Jacobi polynomials, in-
troduced and studied by Jacobi in his posthumous article [Jac1859]. This
allows us to produce a recurrence for the coefficients of the subresultant in
the monomial basis that is derived from the differential equation satisfied by
the Jacobi polynomial, and hence, by the subresultant.

To express the polynomial subresultants Sresd((x−α)m, (x−β)n) as Jacobi
polynomials, let us recall [Sze1975, Chapter 4] that for any k, `, r ∈ Z with

r≥0, the Jacobi polynomial P
(k,`)
r (x) can be defined in 1

2
Z[x], and thus also

in K[x] for any abstract field K with char(K) 6= 2, in two equivalent ways:

• by Rodrigues’ formula

P (k,`)
r (x) :=

(−1)r

2r r!
(1− x)−k(1 + x)−`

∂r

∂xr
[
(1− x)k+r(1 + x)`+r

]
,

• as a hypergeometric sum:

P (k,`)
r (x) :=

r∑
j=0

(k + r − j + 1)j
j!

(`+ j + 1)r−j
(r − j)!

(
x− 1

2

)r−j (
x+ 1

2

)j
,

where for any a ∈ Z, (a)0 := 1 and (a)j := a(a + 1) · · · (a + j − 1) for
j ≥ 1 denotes the jth Pochhammer symbol, or, rising factorial, of a.

We then have the following result, which asserts that the d-th subresultant of
(x−α)m and (x−β)n coincides, up to an explicit multiplicative constant and

up to an affine change of variables, with the Jacobi polynomial P
(−n,−m)
d (x).

Theorem 2. Let K be a field, m,n ∈ N and assume char(K) = 0 or char(K) ≥
max{m,n}. Let α, β ∈ K with α 6= β. Set d ∈ N with 0 ≤ d < min{m,n}.
Then

Sresd((x− α)m, (x− β)n) (2)

=
d∏
i=1

i!(m+ n− d− i− 1)!

(m− i)!(n− i)!
· (α− β)(m−d)(n−d)+d·P (−n,−m)

d

(
2x− α− β
β − α

)
.
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A comment is in order here: Although the Jacobi polynomials are only
defined in characteristic different from 2 and although the rational coefficient

d∏
i=1

i!(m+ n− d− i− 1)!

(m− i)!(n− i)!

is not in general an integer number, Theorem 2 does hold in any character-
istic in the following sense: The theorem holds over the field Q(uα, uβ) to
give an expression for Sresd((x− uα)m, (x− uβ)n), where uα, uβ are indeter-
minates. Since Sresd((x− uα)m, (x− uβ)n) ∈ Z[uα, uβ, x] by the definition of
subresultants, the right-hand side of equality (2) also has integer coefficients
when expanded in the monomial basis. Then we can interpret the theorem
for arbitrary fields K by applying a classical specialization argument, via the
ring homomorphism Z[uα, uβ]→ K which maps 1 7→ 1K, uα 7→ α, uβ 7→ β.

As mentioned above, we derive from Theorem 2 a second-order recurrence
satisfied by the coefficients of Sresd((x−α)m, (x−β)n) in the usual monomial
basis, which is the key ingredient in the proof of our complexity result in
Theorem 1.

Corollary 3. Let K be a field and α, β ∈ K. Set d,m, n ∈ N with 0 ≤ d <
min{m,n}, and write

Sresd((x− α)m, (x− β)n) =
d∑

k=0

sk x
k.

Then, when char(K) = 0 or char(K) ≥ m+n− d, the following second-order
linear recurrence is satisfied by the coefficients sk, for 0 ≤ k ≤ d:

sd = PSresd((x− α)m, (x− β)n),

sd−1 =
−d((n− d)α + (m− d)β)

m+ n− 2d
PSresd((x− α)m, (x− β)n),

and for k = d− 2, . . . , 0,

sk =
−(k + 1)

((
(n− k − 1)α + (m− k − 1)β

)
sk+1 + (k + 2)αβsk+2

)
(d− k)(m+ n− d− k − 1)

.
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Concerning the characteristic of the field K, in Section 2.4 below, Corol-
lary 7 shows how the recurrence in Corollary 3 can be refined in such a way
that another slightly different second-order recurrence holds if char(K) ≥
max{m,n}. This explains why the assumption char(K) ≥ m + n − d in
Corollary 3 can be relaxed to char(K) ≥ max{m,n} in Theorem 1.

Our next complexity result concerns the computation of all principal sub-
resultants PSresd(f, g) for 0 ≤ d < min{m,n}.

Theorem 4. Let K be a field, let m,n ∈ N and assume char(K) = 0 or
char(K) ≥ m + n. Let α, β ∈ K. Then one can compute all the principal
subresultants PSresd((x − α)m, (x − β)n) ∈ K for 0 ≤ d < min{m,n} using
O(min{m,n}+ log(mn)) operations in K.

This is again obtained thanks to a recurrence that is derived from the
description of PSresd((x−α)m, (x−β)n) from [BDKSV2017, Proposition 3.3]:

PSresd((x− α)m, (x− β)n) = (α− β)(m−d)(n−d)
d∏
i=1

(i− 1)! (m+ n− d− i)!
(m− i)!(n− i)!

,

(3)
where the product in the right-hand side belongs to Z if char(K) = 0 and to
Z/pZ if char(K) = p. This description implies in particular that if α 6= β,
and char(K) = 0 or char(K) ≥ m+n, the principal subresultant PSresd((x−
α)m, (x − β)n) is non-zero, that is, Sresd((x − α)m, (x − β)n) has degree
exactly d for all 0 ≤ d < min{m,n}.

In the current article, we repeatedly use the crucial fact that improved
complexity results are obtained using recurrence relations that algebraic ob-
jects obey, rather than just computing independently a collection of these
objects. This is one of the strength of our results: not only they provide
nice formulae for the subresultants, but they also exploit their particular
structure for designing efficient algorithms.

This work has an interesting story. While working on paper [BDKSV2017],
we first realized that [BDKSV2017, Theorems 1.1 and 1.2] (see Theorem 9
below) implies the linear recurrence on the coefficients of Sresd((x−α)m, (x−
β)n) in the usual monomial basis described in Corollary 3. This recur-
rence was initially found using a computer-driven “guess-and-prove” ap-
proach, where the guessing part relied on algorithmic Hermite-Padé approx-
imation [SZ94], and where the proving part relied on Zeilberger’s creative
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telescoping algorithm [Zei90, WZ1992]. From this we derived a first proof
of our complexity result (Theorem 1). Shortly after that, by studying the
differential equation attached to this recurrence, we realized that it has a ba-
sis of solutions of hypergeometric polynomials, which appeared to be Jacobi
polynomials. We have then obtained an indirect and quite involved proof
of Theorem 2 and of Corollary 3 based on manipulations of hypergeometric
functions, notably on the Chu-Vandermonde identity, much inspired by an
experimental mathematics approach. The proof that we choose to present in
this article is the shortest and the simplest that we could find. It is chronolog-
ically the latest proof of our results, and the one which provides the deepest
structural insight. This proof was obtained by applying some classical re-
sults and the fact that any polynomial that can be written as a polynomial
combination of f and g in K[x] with given degree bounds is in fact a constant
multiple of the subresultant of f and g: we prove that the Jacobi polynomial
can indeed be expressed as such a combination of (x−α)m and (x−β)n, and
we determine the scalar multiple that gives the subresultant. In conclusion,
we want to stress here the importance of the interaction between computer
science and classical mathematics, which allowed us to guess and prove all
our statements using the computer, before finding a short and elegant human
proof.

The paper is organized as follows: We first derive Theorem 2 in Section 2.
Section 3 is dedicated to the proof of Theorem 1, while in Section 4 we prove
Theorem 4. Section 5 explains the connection of our results with previous
work, notably the relationship with classical results on Padé approximation.
We conclude the paper with various remarks and perspectives in Section 6.

Acknowledgements. We thank Christian Krattenthaler for precious help with
hypergeometric identities during an early stage of this work. T. Krick and
M. Valdettaro were partially supported by ANPCyT PICT-2013-0294, CON-
ICET PIP-11220130100073CO and UBACyT 2014-2017-20020130100143BA.
A. Szanto was partially supported by the NSF grants CCF-1813340 and CCF-
1217557.

2. Proof of Theorem 2 and beyond

As explained in the introduction, the proof of Theorem 1 crucially relies
on the description of the subresultant as a Jacobi polynomial, as stated in
Theorem 2, so we first give the proof of Theorem 2. In the second half
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of Section 2, we give similar expressions for the coefficients in the Bézout
identity (14), and also prove Corollary 3.

2.1. Proof of Theorem 2.

We will need the next classical lemma, which follows e.g. from [Mis1993,
Lemmas 7.7.4 and 7.7.6], and which is also a key ingredient in [BDKSV2017].

Lemma 5. Let m,n ∈ N and f, g ∈ K[x] of degrees m and n respectively.
Set 0 ≤ d < min{m,n} and assume PSresd(f, g) 6= 0. If F ,G ∈ K[x] with
deg(F) < n− d, deg(G) < m− d are such that h = F f + G g is a non-zero
polynomial in K[x] of degree at most d, then there exists λ ∈ K\{0} satisfying

h = λ · Sresd(f, g).

2

For the convenience of the reader, we recall that Theorem 2 claims that

Sresd((x−α)m, (x−β)n) = (α−β)(m−d)(n−d)+dC(m,n, d)P
(−n,−m)
d

(
2x− α− β
β − α

)
,

where

C(m,n, d) :=
d∏
i=1

i!(m+ n− d− i− 1)!

(m− i)!(n− i)!
. (4)

We first assume that K has characteristic 0. One can check (or refer to
[Sze1975, Theorem 4.23.1] to verify) that the polynomials

P
(−n,−m)
d (z), (1 + z)mP

(−n,m)
n−d−1 (z) and (1− z)nP

(n,−m)
m−d−1(z)

all solve the linear differential equation

(1− z2)y′′(z) +
(
(m+ n− 2)z −m+ n

)
y′(z) + d(d+ 1−m− n)y(z) = 0.

Substituting z =
2x− α− β
β − α

in this differential equation shows that the

polynomials

y1(x) := P
(−n,−m)
d

(
2x− α− β
β − α

)
,

y2(x) :=

(
2

β − α

)m
(x− α)mP

(−n,m)
n−d−1

(
2x− α− β
β − α

)
and

y3(x) :=

(
2

α− β

)n
(x− β)nP

(n,−m)
m−d−1

(
2x− α− β
β − α

)
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all solve the linear differential equation

(x− α)(x− β)y′′(x)+
(
α(n− 1) + β(m− 1)− (m+ n− 2)x

)
y′(x)

+ d(m+ n− d− 1)y(x) = 0. (5)

Since the dimension of the solution space of this second-order linear differen-
tial equation is 2, the three polynomials y1, y2, y3 must be linearly dependent
over K. Now, it is well-known that the Jacobi polynomials satisfy

P (k,`)
r (1) =

(k + 1)r
r!

and P (k,`)
r (−1) = (−1)r

(`+ 1)r
r!

. (6)

This implies that y2 and y3 are not linearly dependent over K since

y2(β) = 2mP
(−n,m)
n−d−1 (1) = (−1)n−d−12m

(
n− 1

d

)
6= 0 and y2(α) = 0 (7)

while

y3(β) = 0 and y3(α) = 2nP
(n,−m)
m−d−1(−1) = 2n

(
m− 1

d

)
6= 0. (8)

Thus, there exist A,B ∈ K such that y1(x) = Ay2(x) +B y3(x), that is,

P
(−n,−m)
d

(
2x− α− β
β − α

)
=A

(
2

β − α

)m
P

(−n,m)
n−d−1

(
2x− α− β
β − α

)
(x− α)m

(9)

+B

(
2

α− β

)n
P

(n,−m)
m−d−1

(
2x− α− β
β − α

)
(x− β)n.

In addition P
(−n,−m)
d

(
2x− α− β
β − α

)
6= 0, since

P
(−n,−m)
d (1) = (−1)d

(
n− 1

d

)
and P

(−n,−m)
d (−1) =

(
m− 1

d

)
. (10)

Moreover, degP
(−n,−m)
d

(
2x−α−β
β−α

)
≤ d, degP

(−n,m)
n−d−1

(
2x−α−β
β−α

)
< n− d and

degP
(n,−m)
m−d−1

(
2x−α−β
β−α

)
< m− d. Therefore, since PSresd(f, g) 6= 0 by (3),

Lemma 5 implies that there exists µ := 1/λ ∈ K such that

Sresd((x− α)m, (x− β)n) = µP
(−n,−m)
d

(
2x− α− β
β − α

)
. (11)
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We compute µ by comparing the leading coefficients of both sides of (11).

The leading coefficient of P
(−n,−m)
d

(
2x− α− β
β − α

)
equals by definition

1

(β − α)d

d∑
j=0

(−n+ d− j + 1)j
j!

(−m+ j + 1)d−j
(d− j)!

=
(−1)d

(β − α)d

d∑
j=0

(
n− d+ j − 1

j

)(
m− j − 1

d− j

)
=

1

(α− β)d

(
m+ n− d− 1

d

)
.

The last equality can be easily checked by thinking of a d-combination with
repetition from a set of size m+n−2d, written as a disjoint union of a subset
with n− d elements and its complement with m− d elements, computed by
adding, for 0 ≤ j ≤ d, the j-combination with repetition from the first subset
of size n−d combined with the (d− j)-combination with repetition from the
second subset of size m− d.
Therefore

µ =
(α− β)d(
m+n−d−1

d

)PSresd((x− α)m, (x− β)n)

where we know by (3) that

PSresd((x− α)m, (x− β)n) = (α− β)(m−d)(n−d)
d∏
i=1

(i− 1)! (m+ n− d− i)!
(m− i)!(n− i)!

.

This implies

µ = (α− β)(m−d)(n−d)+d
∏d

i=1
(i−1)! (m+n−d−i)!

(m−i)!(n−i)!(
m+n−d−1

d

)
= (α− β)(m−d)(n−d)+d

d∏
i=1

i!(m+ n− d− i− 1)!

(m− i)!(n− i)!
(12)

= (α− β)(m−d)(n−d)+dC(m,n, d),

for C(m,n, d) defined in (4), and proves Theorem 2 when char(K) = 0.
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Since the denominator of C(m,n, d) is a product of integers smaller than
m and n, and since by the second definition of the Jacobi polynomials,

P
(−n,−m)
d

(
2x− α− β
β − α

)
=

d∑
j=0

(
n− d+ j − 1

j

)(
m− j − 1

d− j

)
(x− α)j(x− β)d−j

(α− β)d
,

(13)

is well defined in any characteristic, the claim is also true when char(K) ≥
max{m,n}.

2.2. Beyond Theorem 2

An advantage of our proof of Theorem 2 is that it also shows that the
unique polynomials Fd and Gd in K[x] of degrees respectively less than n− d
and m− d that are the coefficients of the Bézout identity

Sresd((x− α)m, (x− β)n) = Fd · (x− α)m +Gd · (x− β)n (14)

are also (scalar multiples of) Jacobi polynomials, up to the same affine change
of variables. More precisely, we have:

Corollary 6. Let K be a field, α, β ∈ K with α 6= β and assume that
char(K) = 0 or char(K) ≥ max{m,n}. Let d,m, n ∈ N with 0 ≤ d <
min{m,n}. Then, the polynomials Fd and Gd defined in (14) satisfy

Fd =
(−1)n−1µ

(β − α)m
P

(−n,m)
n−d−1

(
2x− α− β
β − α

)
= (−1)m−d(α− β)(m−d)(n−d)−(m+n−2d−1)C(m,n, d) ·

·
n−d−1∑
j=0

(−1)j
(
d+ j

d

)(
m+ n− d− 1

m+ j

)
(x− α)j(x− β)n−d−1−j,

Gd =
(−1)nµ

(β − α)n
P

(n,−m)
m−d−1

(
2x− α− β
β − α

)
= (α− β)(m−d)(n−d)−(m+n−2d−1)C(m,n, d) ·

·
m−d−1∑
j=0

(−1)j
(
m+ n− d− 1

j

)(
m− j − 1

d

)
(x− α)j(x− β)m−d−1−j,

where µ is defined in (12) and C(m,n, d) in (4).
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Proof. We first assume that K is a field of characteristic 0.
By Identities (14), (11) and (9), one has

Fd = µA

(
2

β − α

)m
P

(−n,m)
n−d−1

(
2x− α− β
β − α

)
and

Gd = µB

(
2

α− β

)n
P

(n,−m)
m−d−1

(
2x− α− β
β − α

)
.

We now determine the values of A and B. By Identities (10), (6), (8) and (7),
we get(

m− 1

d

)
= P

(−n,−m)
d (−1) = B

(
2

α− β

)n
P

(n,−m)
m−d−1(−1)(α− β)n

= 2n
(
m− 1

d

)
B,

(−1)d
(
n− 1

d

)
= P

(−n,−m)
d (1) = A

(
2

β − α

)m
P

(−n,m)
n−d−1 (1)(β − α)m

= (−1)n−d−12m
(
n− 1

d

)
A.

Therefore A =
(−1)n−1

2m
and B =

1

2n
. The statement follows when char(K) =

0. Since the denominator of C(m,n, d) is a product of integers smaller than
m and n, the claim is also true if char(K) ≥ max{m,n}. 2

2.3. Proof of Corollary 3

We now prove Corollary 3, which gives a recurrence satisfied by the coef-
ficients (in the monomial basis) of Sresd((x−α)m, (x− β)n). The recurrence
is inherited from the differential equation (5) satisfied by this subresultant.

Clearly, sd = PSresd((x − α)m, (x − β)n). Note that by Identity (11), the
differential equation (5) satisfied by the Jacobi polynomial is also satisfied
by s(x) := Sresd((x−α)m, (x−β)n). We now show that this fact implies the
expression for sd−1, and the recurrence. We start with

s(x) =
d∑

k=0

skx
k, s′(x) =

d∑
k=1

kskx
k−1 and s′′(x) =

d∑
k=2

k(k − 1)skx
k−2.

12



We then have

(x− α)(x− β)s′′(x) =
d∑

k=2

k(k − 1)skx
k − (α + β)

d∑
k=2

k(k − 1)skx
k−1

+ αβ
d∑

k=2

k(k − 1)skx
k−2

=
d∑

k=0

k(k − 1)skx
k − (α + β)

d−1∑
k=0

(k + 1)ksk+1x
k

+ αβ
d−2∑
k=0

(k + 2)(k + 1)sk+2x
k,

(α(n− 1) + β(m− 1)− (m+ n− 2)x) s′(x) = −(m+ n− 2)
d∑

k=1

kskx
k

+ (α(n− 1) + β(m− 1))
d∑

k=1

kskx
k−1

= −(m+ n− 2)
d∑

k=0

kskx
k + (α(n− 1) + β(m− 1))

d−1∑
k=0

(k + 1)sk+1x
k,

and

d(m+ n− d− 1)s(x) = d(m+ n− d− 1)
d∑

k=0

skx
k.

Then, comparing the coefficients of degree d− 1 in (5), we get

(d− 1)(d− 2)sd−1 − (α + β)d(d− 1)sd − (m+ n− 2)(d− 1)sd−1

+
(
α(n− 1) + β(m− 1)

)
dsd + d(m+ n− d− 1)sd−1 = 0.

This implies

sd−1 =
−d((n− d)α + (m− d)β)

m+ n− 2d
sd.

We then compare the degree-k coefficient in (5) for k = 0, . . . , d− 2:(
k(k − 1)− (m+ n− 2)k + d(m+ n− d− 1

)
sk +

(
− (α + β)(k + 1)k

+ (α(n− 1) + β(m− 1))(k + 1)
)
sk+1 + αβ(k + 2)(k + 1)sk+2 = 0.

13



Therefore,

sk =
−(k + 1)

((
(n− k − 1)α + (m− k − 1)β

)
sk+1 + (k + 2)αβsk+2

)
(d− k)(m+ n− d− k − 1)

.

We observe that these recurrence expressions hold for fields K of character-
istic 0 or ≥ m + n − d since we are dividing only by natural numbers less
than m+ n− d. 2

2.4. Refining Corollary 3

We now refine the expressions in Corollary 3 in order to avoid dividing
by numbers as big as m+ n− d− 1. To do so, we exhibit a slightly different
recurrence that holds for fields K of finite characteristic ≥ max{m,n}.

Corollary 7. Let m,n, d ∈ N with d < min{m,n} and let K be a field with
char(K) = 0 or char(K) ≥ max{m,n}. Let α, β ∈ K with α 6= β, and write

Sresd((x− α)m, (x− β)n) =
d∑

k=0

skx
k.

Define recursively

td := (α− β)(m−d)(n−d)
d∏
i=1

(i− 1)! (m+ n− d− i− 1)!

(m− i)!(n− i)!
,

td−1 = −d
(
(n− d)α + (m− d)β

)
td,

and for k = d− 2, . . . , 0,

tk = −(k + 1)
((n− k − 1)α + (m− k − 1)β

d− k
tk+1

+
(k + 2)(m+ n− d− k − 2)αβ

d− k
tk+2

)
.

Then for k = d, . . . , 0 one has

sk =

(
d+k∏
i=d+1

(m+ n− i)

)
tk.

14



Proof. It suffices to show that the terms we just recursively defined also
satisfy the recurrence proposed in Corollary 3 in a field of characteristic 0,
and then use the specialization Z→ K, 1 7→ 1K, noting that the only divisions
that occur are by natural numbers less than max{m,n}.
Clearly sd =

(∏2d
i=d+1(m + n − i)

)
td = PSresd((x − α)m, (x − β)n) by (3),

since
2d∏

i=d+1

(m+ n− i) =
d∏
i=1

(m+ n− d− i).

Now,

sd−1 =

(
2d−1∏
i=d+1

(m+ n− i)

)
td−1

=

(
2d−1∏
i=d+1

(m+ n− i)

)(
− d((n− d)α + (m− d)β)td

)
=
−d((n− d)α + (m− d)β)

m+ n− 2d

(
2d∏

i=d+1

(m+ n− i)

)
td

=
−d((n− d)α + (m− d)β)

m+ n− 2d
sd

also agrees with the expression in Corollary 3.
Finally, for k = d− 2, . . . , 0, we get that

sk =

(
d+k∏
i=d+1

(m+ n− i)

)
tk

= −(k + 1)

(
d+k∏
i=d+1

(m+ n− i)

)(
(n− k − 1)α + (m− k − 1)β

d− k
tk+1

+
(k + 2)(m+ n− d− k − 2)αβ

d− k
tk+2

)
,
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which implies

sk = −(k + 1)

(
(n− k − 1)α + (m− k − 1)β

(d− k)(m+ n− d− k − 1)

(
d+k+1∏
i=d+1

(m+ n− i)

)
tk+1

+
(k + 2)αβ

(d− k)(m+ n− d− k − 1)

(
d+k+2∏
i=d+1

(m+ n− i)

)
tk+2

)

=
−(k + 1)

((
(n− k − 1)α + (m− k − 1)β

)
sk+1 + (k + 2)αβsk+2

)
(d− k)(m+ n− d− k − 1)

.

This agrees with the desired expression. 2

3. Proof of Theorem 1.

We start with the following simple observation.
Observation 8. For any integers k, ` ≥ 0, the binomial coefficient

(
k+`
k

)
can

be computed in O(min{k, `}) operations in K.

Proof. It is enough to use the most economic of the writings (k + `) · · · (k +
1)/`! and (k + `) · · · (`+ 1)/k!. 2

The second-order recurrence of Corollary 3 immediately implies that one
can compute all coefficients of the d-th subresultant using O(min{m,n} +
log(mn)) operations in K as follows:
First, sd = PSresd((x− α)m, (x− β)n) can be computed thanks to (3) using
O(min{m,n}+ log(mn)) arithmetic operations in K: We set

r(i) :=
(i− 1)!(m+ n− d− i)!

(m− i)!(n− i)!
, 1 ≤ i ≤ d

so that PSresd((x− α)m, (x− β)n) = (α− β)(m−d)(n−d)
∏d

i=1 r(i).
First r(d) = (d− 1)!

(
m+n−2d
m−d

)
can be computed in O(min{m,n}) arithmetic

operations by applying Lemma 8. Then we deduce r(d− 1), . . . , r(1) thanks
to the recurrence

r(i) =
(m+ n− d− i)
i(m− i)(n− i)

r(i+ 1),
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and the product r(1) · · · r(d), addingO(d) operations. The term (α−β)(m−d)(n−d)

can be computed by binary powering withO(log((m−d)(n−d)) ≤ log(O(mn))
operations. This computes sd using O(min{m,n}+ log(mn)) arithmetic op-
erations in K.
Then one computes sd−1 adding O(1) operations, and from these one keeps
computing sd−2 to s0 adding O(1) operations in K for each of these d − 1
terms. This shows that all sk can be computed using O(min{m,n}+log(mn))
operations in K. The same holds for the terms tk in Corollary 7.
Remark that during the whole procedure only divisions by integers at most
max{m,n} − 1 occur. 2

4. Proof of Theorem 4

By (3),

PSresd((x− α)m, (x− β)n) = c(d)(α− β)(m−d)(n−d), (15)

where

c(d) =
d∏
i=1

(i− 1)! (m+ n− d− i)!
(m− i)!(n− i)!

is an integer number, as already mentioned in the introduction. When α = β
all the principal subresultants vanish, so we can assume w.l.o.g. that α 6= β.
We set

u(0) := c(0) = 1

and for 1 ≤ d < min{m,n},

u(d) :=
c(d)

c(d− 1)
.

We observe that u(k+1) for all k > 0 can be computed thanks to the equality

u(k + 1) = v(1) · v(2) · · · v(k), (16)

where

v(1) = u(1) = c(1) =

(
m+ n− 2

m− 1

)
(17)

and, by (15), for 1 ≤ k < min{m,n} − 1,
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v(k)=
u(k + 1)

u(k)
=
c(k + 1)c(k − 1)

c(k)2

=
k(m− k)(n− k)(m+ n− k)

(m+ n− 2k − 1)(m+ n− 2k)2(m+ n− 2k + 1)
. (18)

We note that the only numbers that appear in the denominators of u(1) and
of the previous fractions are products of integers of absolute value less than
m+ n, which are invertible in K by the assumption that char(K) ≥ m+ n.

Based on these considerations, we now design an algorithm that computes all
principal subresultants PSresd((x−α)m, (x−β)n) with 1 ≤ d < min{m,n} in
O(min{m,n}+log(mn)) arithmetic operations in K, thus proving Theorem 4.
First, v(1) is computed by (17), using O(min{m,n}) arithmetic operations
in K using Observation 8.
Then, v(2) to v(min{m,n} − 1) are computed using (18) from the previous
one using O(1) arithmetic operations each.
Next, Identity (16) allows us to compute all u(d) for 2 ≤ d < min{m,n} in
O(min{m,n}) operations in K. Then, the elements c(d) = u(0)·u(1) · · ·u(d),
with 0 ≤ d < min{m,n}, are computed in O(min{m,n}) operations in K.
It remains to compute all the powers p(d) := (α − β)(m−d)(n−d), and finally
to output PSresd((x− α)m, (x− β)n) = c(d) · p(d), for 0 ≤ d < min{m,n}:
We first compute the elements γ(d) := (α − β)2d+1−m−n for d < min{m,n},
using O(log(m + n) + min{m,n}) operations in K. This can be done by
computing γ(0) = (α − β)1−m−n by binary powering, then unrolling the
recurrence γ(d+ 1) = (α− β)2 · γ(d) for d < min{m,n} − 1.
Next we compute p(0) = (α − β)mn by binary powering, and then all p(d),
for 1 ≤ d < min{m,n}, by repeated products using p(d + 1) = γ(d) · p(d),
for a total cost of O(log(mn) + min{m,n}) operations in K.
We conclude the proof by Identity (15) without changing the order of the
arithmetic operations we used. 2

5. Connections to previous results

Theorem 2 is closely connected to some previous results. First we discuss
the connection to the work [BDKSV2017] (some of the co-authors are the
authors of the current paper). Second, we explain the relationship of the
present work to classical results on Padé approximation.
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5.1. Connection with [BDKSV2017]

We show that the expression for the subresultant obtained in [BDKSV2017],
though not expressed in terms of Jacobi polynomials, is equivalent to the one
in Theorem 2. First, let us recall the main results of [BDKSV2017].

Theorem 9. [BDKSV2017, Theorems 1.1 and 1.2]
Let K be a field and α, β ∈ K. Set d,m, n ∈ N with 0 ≤ d < min{m,n}.
Then,

Sresd((x− α)m, (x− β)n) = (α− β)(m−d)(n−d)
d∑
j=0

cj(m,n, d)(x− α)j(x− β)d−j ,

where the coefficients c0(m,n, d), . . . , cd(m,n, d) are defined by

c0(m,n, d) =
d∏
i=1

(i− 1)! (m+ n− d− i− 1)!

(m− i− 1)!(n− i)!
,

and

cj(m,n, d) =

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) c0(m,n, d), for 1 ≤ j ≤ d.

(Here c0(m,n, 0) = 1, following the convention that an empty product equals 1.)
Moreover, for 0 ≤ j ≤ d, cj(m,n, d) ∈ Z or Z/pZ if char(K) = 0 or
char(K) = p, respectively.

Theorem 9 describes the coefficients of Sresd((x − α)m, (x − β)n) with
respect to the set of Bernstein polynomials

{
(x− α)j(x− β)d−j, 0 ≤ j ≤ d

}
,

which we remark here is a basis for the K-vector space of polynomials in K[x]
of degree bounded by d in the non-trivial case when α 6= β (note that all
subresultants vanish in the trivial case when α = β).

Proof that Theorems 9 and 2 are equivalent. Set c := m + n − d − 1. We
want to prove that

d∑
j=0

cj(m,n, d)(x− α)j(x− β)d−j

= (α− β)d
d∏
i=1

i!(c− i)!
(m− i)!(n− i)!

P
(−n,−m)
d

(
2x− α− β
β − α

)
,
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where

cj(m,n, d) =

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) d∏
i=1

(i− 1)! (c− i)!
(m− i− 1)!(n− i)!

.

By (13),

(α− β)dP
(−n,−m)
d

(
2x− α− β
β − α

)
=

d∑
j=0

(
n− d+ j − 1

j

)(
m− j − 1

d− j

)
(x− α)j(x− β)d−j.

Thus, we only need to verify that(
n− d+ j − 1

j

)(
m− j − 1

d− j

) d∏
i=1

i!(c− i)!
(m− i)!(n− i)!

=

(
d
j

)(
n−d+j−1

j

)(
m−1
j

) d∏
i=1

(i− 1)!(c− i)!
(m− i− 1)!(n− i)!

,

i.e. after simplification, that

(m− 1)!

(m− d−1)!

d∏
i=1

i!

(m− i)!
= d!

d∏
i=1

(i− 1)!

(m− i− 1)!
,

which trivially holds.
It remains to show that the coefficients cj(m,n, d) belong to Z for 0 ≤

j ≤ d when char(K) = 0 (and therefore belong to the prime ring Z/pZ
when char(K) = p). In [BDKSV2017] it is shown that they are integer
numbers by showing they coincide (up to a sign) with the determinants of
some combinatorial matrices. We give here an independent proof of this fact:
For α = 0 and β = −1, one has on the one hand

Sresd(x
m, (x+ 1)n) =

d∑
j=0

cj(m,n, d)xj(x+ 1)d−j

with cj(m,n, d) ∈ Q because of their expression, while on another hand
Sresd(x

m, (x + 1)n) ∈ Z[x] by the determinantal definition (1) of the subre-
sultant. This means that

d∑
j=0

cj(m,n, d)xj(x+ 1)d−j =
d∑

k=0

akx
k
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with ak ∈ Z for 0 ≤ k ≤ d. Comparing coefficients, we observe that

ak =
k∑
j=0

(
d

k − j

)
cj(m,n, d), 0 ≤ k ≤ d,

i.e., that  a0
...
ad

 =


1(
d
1

)
1

...
...

. . .(
d
d

) (
d
d−1

)
. . . 1


 c0(m,n, d)

...
cd(m,n, d)

 .

We conclude that cj(m,n, d) ∈ Z for 0 ≤ j ≤ d since the ak’s are integer
numbers and the transition matrix is an invertible integer matrix. 2

5.2. Connection with Padé approximation

In this subsection we show that Theorem 2 and Corollary 6 are also
equivalent to classical descriptions of some Padé approximants via Gauss
hypergeometric functions.

The starting point is a theorem due to Padé [Pad1901], stating that the
[m/n] Padé approximation in C(x) to (1−x)k is the ratio of hypergeometric
functions

2F1(−m,−k − n;−m− n;x)

2F1(−n, k −m;−m− n;x)
. (19)

That result had been previously obtained, by different methods and under
several additional assumptions, by Laguerre [Lag1885] and Jacobi [Jac1859].
See also [Per1913, Eq. (Padé 5), p. 252], [Bak1975, p. 65], [Ise1979] and
Theorem 4.1 in [GGZ2012].

There is also a well-known connection between subresultants and Padé
approximants (c.f. [GG2013, Corollary 5.21]): the [m/n] Padé approximation
in C(x) to (1− x)k, for integer k ≥ m, equals

Sresm(xm+n+1, (1− x)k)

Gm(xm+n+1, (1− x)k)
= (−1)k

Sresm(xm+n+1, (x− 1)k)

Gm(xm+n+1, (x− 1)k)
, (20)

where Gm := Gm(xm+n+1, (x − 1)k) is the polynomial coefficient of degree
≤ n in the Bézout expression

Sresm(xm+n+1, (x− 1)k) = Fm · xm+n+1 +Gm · (x− 1)k.
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Identity (19) implies that

2F1(−m,−n− k;−m− n;x)

2F1(−n, k −m;−m− n;x)
= (−1)k

Sresm(xm+n+1, (x− 1)k)

Gm(xm+n+1, (x− 1)k)
.

We showed earlier that the fact that xm+n+1 and (x−1)k are coprime polyno-
mals implies that deg(Sresm(xm+n+1, (x−1)k)) = m, and it is also immediate
to verify that Sresm(xm+n+1, (x−1)k) and Gm(xm+n+1, (x−1)k) are coprime.
Therefore, since the degree of

2F1(−m,−k − n;−m− n;x) =
m∑
i=0

(−1)i
(
m

i

)
(−k − n)i
(−m− n)i

xi

equals m, one derives that there exists a non-zero λ ∈ C such that

Sresm(xm+n+1, (x− 1)k) = λ · 2F1(−m,−k − n;−m− n;x),

Gm(xm+n+1, (x− 1)k) = (−1)kλ · 2F1(−n, k −m;−m− n;x).

Here, λ can be computed by comparing the leading coefficients of
Sresm(xm+n+1, (x− 1)k) and 2F1(−m,−k − n;−m− n;x):

λ = (−1)m
(k + n−m)!(m+ n)!

(k + n)!n!
PSresm(xm+n+1, (x− 1)k)

= (−1)(n+1)(k−m)+m

m∏
i=1

(i− 1)!(k + n− i)!
(k − i)!(m+ n− i)!

,

by Identity (3).
Now, according to [EMOT1953, (1.6)], see also [Koo1984, (1.5)]:

2F1(−m,−k − n;−m− n;x) =
1(

m+n
m

)P (−k,−m−n−1)
m (2x− 1) ,

2F1(−n, k −m;−m− n;x) =
1(

m+n
m

)P (k,−m−n−1)
n (2x− 1) ,

while, according to our Theorem 2 and Corollary 6,

Sresm(xm+n+1, (x− 1)k) = µP (−k,−m−n−1)
m (2x− 1),

Gm(xm+n+1, (x− 1)k) = (−1)kµP (k,−m−n−1)
n (2x− 1),
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for

µ := (−1)(n+1)(k−m)+m

m∏
i=1

i!(k + n− i)!
(k − i)!(m+ n+ 1− i)!

.

This shows the equivalence of the results for α = 0, β = 1, since λ =
(
m+n
m

)
µ.

In order to deduce Theorem 2 and Corollary 6 for any α, β we apply the
usual changes of variables formulas that can be found in the now classical
book [ApJo2006]:

Sresd(f(x− α), g(x− α)) = Sresd(f, g)(x− α),

Sresd(f(γx), g(γx)) = γmn−d(d+1)Sresd(f, g)(γx).

Therefore,

Sresd((x− α)m, (x− β)n) = Sresd(x
m, (x− (β − α))n)(x− α),

Sresd(x
m, (x− γ)n)(γx) =

1

γmn−d(d+1)
Sresd((γx)m, (γx− γ)n)

=
1

γmn−d(d+1)
Sresd(γ

mxm, γn(x− 1)n)

=
γm(n−d)+n(m−d)

γmn−d(d+1)
Sresd(x

m, (x− 1)n)

= γ(m−d)(n−d)+d Sresd(x
m, (x− 1)n).

Hence, since we have just proven that Sresd(x
m, (x−1)n) = µ̃ P−n,−md (2x−1)

for µ̃ =
∏d

i=1
i!(m+n−d−i−1)!
(m−i)!(n−i)! , we deduce that

Sresd(x
m, (x− (β − α))n)((β − α)x) = µ̃ (β − α)(m−d)(n−d)+dP−n,−md (2x− 1)

which implies that

Sresd(x
m, (x−(β−α))n)(x) = µ̃ (β−α)(m−d)(n−d)+dP−n,−md

(
2

(
x

β − α

)
− 1

)
.

We conclude with

Sresd((x− α)m, g(x− β)n) = Sresd(x
m, (x− (β − α))n)(x− α)

= µ̃ (β − α)(m−d)(n−d)+dP−n,−md

(
2

(
x− α
β − α

)
− 1

)
= µ̃ (β − α)(m−d)(n−d)+dP−n,−md

(
2x− α− β
β − α

)
,
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as stated in Theorem 2.
Note that similar arguments allow to deduce Gd((x − α)m, (x − β)n) from
Gd(x

m, (x− 1)n).

6. Final remarks

6.1. Algorithmic optimality

The complexity result O(min{m,n}+ log(mn)) is quasi-optimal for The-
orem 4, since the size of the output is min{m,n}. On the other hand, the
complexity result O(min{m,n} + log(mn)) for Theorem 1 is not optimal
when d is small compared to m and n. A natural question is whether an al-
gorithm of arithmetic complexity O(d+ log(mn)) may exist. We argue that
this is unlikely; moreover, no algorithm of complexity polylog(d, log(mn))
would probably exist. Else, we could in particular compute the leading co-
efficient of Sres1((x− α)m, (x− β)n), which is readily checked to be equal to
(α− β)(m−1)(n−1) ·

(
m+n−2
m−1

)
, in arithmetic complexity polylog(log(mn)). This

does not seem plausible, since it would imply in particular that the central
binomial coefficient

(
2N
N

)
could be computed using an arithmetic complexity

polynomial in logN . Although no proof exists, this is generally believed to
be false.

6.2. Fast computation of cofactors

One can use similar ideas as in the proof of Theorem 1 in order to compute
the cofactors Fd(x) and Gd(x) in Corollary 6 using O(min{m,n}+ log(mn))
arithmetic operations in K.

6.3. Fast factorials

It is possible to further improve some of our complexity results by us-
ing Strassen’s algorithm [Str1976] for the computation of N ! in arithmetic
complexity O(M(

√
N) logN), which becomes quasi-linear in

√
N when FFT-

based algorithms are used for polynomial multiplication. For instance, for
fixed d, the principal subresultant PSresd((x−α)m, (x−β)n) can be computed
using fast factorials in

O(d+ log(mn) + M(
√

min{m− d, n− d}) log min{m− d, n− d})

operations in K. The same cost can be also achieved for the computation of
the whole polynomial subresultant Sresd((x− α)m, (x− β)n) in Theorem 1.

24



6.4. Bit complexity

We have only discussed arithmetic complexity. When K is a finite field,
this is perfectly realistic, since arithmetic complexity reflects quite well the
running time of the algorithms. When K is infinite, for instance when K = Q,
assuming operations in K at unit cost is not realistic anymore, so studying
bit complexity becomes a much more pertinent model.

6.5. Subresultants for other structured polynomials

The question addressed in this article is a particular case of a much
broader topic, the design of efficient algorithms for structured polynomials.
Preliminary results let us hope that for polynomials whose coefficients sat-
isfy linear recurrences, the computation of subresultants can be performed
in linear time. This generalization of Theorems 1 and 4 will be the subject
of a forthcoming work.
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[EMOT1953] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi.
Higher transcendental functions, Vol. II. McGraw-Hill, 1953.
xviii+396 pp. Based, in part, on notes left by Harry Bateman,
and compiled by the Staff of the Bateman Manuscript Project.
http://authors.library.caltech.edu/43491/

[Eul1778] L. Euler. Specimen transformationis singularis serierum. Nova
Acta Academiae Scientarum Imperialis Petropolitinae 12, 1794,
pp. 58–70. Reprinted in Opera Omnia Series 1, Volume 16, 2,
pp. 41–55, Enestrm-Number E710.
http://eulerarchive.maa.org

[GL2003] J. von zur Gathen, T. Lücking. Subresultants revisited. Theoret.
Comput. Sci. 297 (2003), no. 1–3, 199–239.
http://dx.doi.org/10.1016/S0304-3975(02)00639-4

[GG2013] J. von zur Gathen, J. Gerhard. Modern Computer Algebra, 3rd
Edition. Cambridge University Press, 2013.
http://dx.doi.org/10.1017/CBO9781139856065

[GGZ2012] O. Gomilko, F. Greco, K. Ziȩtak. A Padé family of iterations for
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von B.G. Teubner, Leipzig & Berlin, 1913. viii+520 pp.
https://archive.org/details/dielehrevondenk00perrgoog/

[Rei1997] D. Reischert. Asymptotically fast computation of subresultants.
Proceedings ISSAC’97, 233–240, ACM, New York, 1997.
http://dx.doi.org/10.1145/258726.258792

27

http://doi.org/10.1515/crll.1836.15.101
https://eudml.org/doc/147752
http://doi.org/10.4153/CMB-1984-030-7
http://sites.mathdoc.fr/JMPA/PDF/JMPA_1885_4_1_A5_0.pdf
http://doi.org/10.1016/j.jsc.2018.04.017
http://dx.doi.org/10.1007/978-1-4612-4344-1
http://www.numdam.org/article/ASENS_1892_3_9__S3_0.pdf
https://archive.org/details/dielehrevondenk00perrgoog/
http://dx.doi.org/10.1145/258726.258792


[SZ94] B. Salvy, P. Zimmermann. GFUN: a Maple package for the ma-
nipulation of generating and holonomic functions in one vari-
able. ACM Transactions on Mathematical Software 20 (1994),
no. 2, 163–177.
http://dl.acm.org/citation.cfm?id=178368

[Str1976] V. Strassen. Einige Resultate über Berechnungskomplexität.
Jber. Deutsch. Math.-Verein 78 (1976), no. 1, 1–8.
https://eudml.org/doc/146659

[Syl1839] J. J. Sylvester. On rational derivation from equations of coexis-
tence, that is to say, a new and extended theory of elimination.
Philos. Mag. 15 (1839), 428–435. Also appears in the Col-
lected Mathematical Papers of James Joseph Sylvester, Vol. 1,
Chelsea Publishing Co. (1973), 40-46.
http://dx.doi.org/10.1080/14786443908649916

[Syl1840] J. J. Sylvester. A method of determining by mere inspection the
derivatives from two equations of any degree. Philos. Mag. 16
(1840), 132–135. Also appears in the Collected Mathematical
Papers of James Joseph Sylvester, Vol. 1, Chelsea Publishing
Co. (1973), 54-57.
http://dx.doi.org/10.1080/14786444008649995
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