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SUMMARY

Full Waveform Inversion (FWI) is a powerful tool for quantitative seismic imaging from

wide-azimuth seismic data. The method is based on the minimization of the misfit be-

tween observed and simulated data. This amounts to the resolution of a large-scale

nonlinear minimization problem. The inverse Hessian operator plays a crucial role in

this reconstruction process. Accounting accurately for the e↵ect of this operator within

the minimization scheme should correct for illumination deficits, restore the amplitude

of the subsurface parameters, and help to remove artifacts generated by energetic multi-

ple reflections. Conventional preconditioned gradient-based minimization methods only

roughly approximate the e↵ect of this operator. We are interested in this study to another

class of minimization methods, named as truncated Newton methods. These methods are

based on the computation of the model update through a matrix-free conjugate gradient

resolution of the Newton linear system. The aim of this study is to present a feasible im-

plementation of this method for the FWI problem, based on a second-order adjoint state
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formulation for the computation of Hessian-vector products. We compare this method

with the nonlinear conjugate gradient and the l-BFGS method within the context of

2D acoustic frequency FWI for the reconstruction of P-wave velocity models. Two test

cases are investigated. The first is the synthetic BP 2004 model, representative of the

Gulf Of Mexico geology with high velocity contrasts associated with the presence of salt

structures. The second is a 2D real data-set from the Valhall oil field in North sea. These

tests emphasize the interesting properties of the truncated Newton method regarding

conventional optimization methods within the context of FWI.

Key words: Full Waveform, Theory, Computing aspects, Numerical study, Imaging

1 INTRODUCTION

Full Waveform Inversion (FWI) is a powerful seismic imaging tool, dedicated to quantita-

tive estimations of subsurface parameters such as P-wave and S-wave velocities, density,

impedance, or anisotropy parameters. The method is based on the minimization of a misfit

function that measures the distance between recorded seismic data and predicted data com-

puted through the numerical simulation of wave propagation. An initial subsurface model is

iteratively updated to produce the final estimation.

The formalism of the FWI method has been introduced by Lailly (1983) and Tarantola

(1984), based on a time domain discretization of the wave equation. Its first application to

2D synthetic data in the acoustic approximation was performed by Gauthier et al. (1986).

Later on, a hierarchical frequency domain approach has been introduced by Pratt for cross-

hole tomography (Pratt and Worthington 1990; Pratt 1990). During the past ten years, the

simultaneous advances in acquisition systems (development of wide-azimuth seismic surveys

for instance) and high performance computing facilities have made possible the successful

application of FWI to surface data, both in the 2D acoustic or 2D elastic approximation

to reconstruct one or several parameters (Operto et al. 2004, 2005; Ravaut et al. 2004; Gao

et al. 2006; Brossier et al. 2009; Prieux et al. 2011; Plessix et al. 2012; Prieux et al. 2013a,b).

Applications of FWI to real surface data in the 3D acoustic approximation have also been
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performed (Sirgue et al. 2008; Vigh et al. 2010; Plessix and Perkins 2010; Plessix et al. 2012).

For an overview on the FWI methodology and its applications to synthetic and real case

studies, the reader is referred to the survey proposed by Virieux and Operto (2009).

The simplest optimization methods used in the context of FWI are gradient-based algo-

rithms, such as the steepest descent or the nonlinear conjugate gradient algorithms. From

a given initial model, the sequence of updates yielding the final model is defined by the

gradient of the misfit function. However, it is well known that these methods have poor

convergence properties.

Conversely, Newton-based methods possess better convergence properties (superlinear

to quadratic convergence rate). These methods are based on a model update given by the

multiplication of the gradient by the inverse Hessian operator?. The importance of this

operator in the context of FWI has been emphasized by Pratt et al. (1998). The inverse

Hessian operator acts as a deconvolution operator that accounts for the limited bandwidth

of the seismic data and corrects for the loss of amplitude of poorly illuminated subsurface

parameters. In addition, it helps to remove artifacts that the second order reflected waves

may generate on the model update.

However, because of the large-scale aspect of the FWI problem, which easily involves

millions of discrete unknowns in 2D up to billions discrete unknowns in 3D, explicit com-

putation of the inverse Hessian operator is beyond current computational capabilities. As a

consequence, research e↵orts have been mainly directed toward direct approximation of this

operator.

A first possibility consists in approximating the diagonal of the Hessian. For instance,

Operto et al. (2006) compute the diagonal terms of the Gauss-Newton approximation of the

Hessian, which requires some extra-computation. A cheaper strategy based on the so-called

pseudo-Hessian operator is also proposed by Shin et al. (2001).

A second possibility consists in approximating the inverse Hessian operator using pre-

vious values of the gradient of the misfit function. Among this class of methods, known as

?The Hessian is the matrix of the second-order derivatives of the misfit function.
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quasi-Newton methods, the l-BFGS method is quite popular (Nocedal and Wright 2006;

Byrd et al. 1995). Instead of approximating only the diagonal elements, a positive definite

approximation of the full inverse Hessian is computed.

The approximation of the diagonal elements of the Hessian and the l-BFGS strategy can

be combined to produce a more accurate approximation of the inverse Hessian operator.

Indeed, the accuracy of the l-BFGS approximation of the inverse Hessian operator can be

improved when based on a first estimation of the inverse Hessian operator. This method

has been applied in the framework of 2D elastic FWI: Brossier et al. (2009) implemented a

l-BFGS optimization using a diagonal pseudo-Hessian as initial guess. This method shows

good convergence properties compared to preconditioned non-linear conjugate-gradient. The

diagonal estimation can even be updated along the iterations (Nocedal and Wright 2006).

The truncated Newton represents an alternative to these already described optimization

methods. At each iteration, the model update is computed as an approximate solution of

the Newton equations through a linear iterative solver (namely a conjugate gradient solver)

(Nash 2000). Implemented in a “matrix-free” fashion, this iterative solver only requires to

compute Hessian-vector products. It is not necessary to form the Hessian operator explicitly.

Although this class of methods is well known in the numerical optimization community,

the application of truncated Newton method in the FWI context has still not been fully

investigated. Given the importance of the inverse Hessian operator in the FWI reconstruction

scheme, we believe that this method could benefit from a better approximation of the inverse

Hessian e↵ect, and provides more accurate subsurface parameter estimations than standard

optimization schemes. Therefore, the ambition of this study is to focus on the two following

points:

• Designing a feasible implementation of the truncated Newton method for FWI in terms

of computational time.

• Compare the performance of this method with conventional methods (nonlinear conju-

gate gradient, l-BFGS) on two realistic test cases.

In Section 2, we describe in more details the principle of the truncated Newton method
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compared to preconditioned gradient-based methods. In Section 3, we present how the

method can be implemented e�ciently in the FWI context. In Section 4, we present two

application cases. The first case is based on the synthetic BP 2004 model, partly inspired

from the deep water Gulf of Mexico geology. The presence of salt structures in a marine

environment is responsible for high velocity contrasts which make the seismic imaging task

di�cult. The second test case concerns a 2D line of a real Ocean Bottom Cable (OBC)

data-set, acquired in a shallow-water environment at the Valhall oil field, in the North Sea.

This test case is investigated to emphasize how the truncated Newton method behaves when

the data is noise-contaminated. Conclusion and perspectives are given in Section 5.

2 THE TRUNCATED NEWTON SCHEME

For the sake of clarity, the mathematical results presented in this section are formulated for

a number of sources equal to 1. The extension to a multi-source context is straightforward,

as only explicit summations over the sources are required.

2.1 Problem settings

We consider the frequency-domain forward problem

A(m)u = s (1)

where

• m 2M denotes the subsurface model;

• u 2W is the complex-valued seismic wavefield;

• s is a source term;

• A(m) is a discretized partial di↵erential operator related to the wave equation (from

the acoustic dynamics to the visco-elastic anisotropic dynamics).
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The FWI problem is defined as the minimization over the parameter space of a distance

between the data predicted by the forward problem and the recorded data.

min
m2M

f(m) =
1

2
kRu(m)� dk2

, (2)

where

• u(m) is the solution of the forward problem (1) for the source term and the subsurface

parameter s and m;

• R is a mapping of the wavefield to the receivers locations;

• d is the data set associated to the source s;

• k.k is a norm in the data space D.

For practical reasons, the use of the L
2 norm is common. However, more general L

p norm

could be also selected (Tarantola 2005). The L
1 norm is, for instance, a good choice when

high-amplitude noise (outliers) corrupts the data (Brossier et al. 2010). More complex mea-

surements of the distance between data sets can also be proposed to mitigate the sensitivity

of FWI to the initial model. This is, however, beyond the scope of the work presented here.

2.2 Preconditioned gradient based-methods

From a numerical point of view, FWI is a large-scale nonlinear minimization problem. The

high number of discrete parameters prevents from using global or semi-global optimization

techniques to solve this problem. Therefore, we focus on local optimization methods, which

are based on the following recurrence: from an initial guess m0, a sequence mk is computed

such that

mk+1 = mk + �k�mk, (3)

where �mk is the model update and �k is a scalar parameter computed through a linesearch

or a trust-region procedure (Bonnans et al. 2006; Nocedal and Wright 2006).

Within the framework of Newton algorithms, the increment �mk is defined as

H(mk)�mk = �rf(mk). (4)
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where H(m) denotes the Hessian operator and rf(m) is the gradient of the misfit function

with respect to the model parameter m.

The exact resolution of this linear system at each iteration is beyond current computa-

tional capacities in the context of FWI. This is why many large-scale optimization schemes

rely on an approximation of the inverse Hessian operator. These schemes are based on the

computation of �mk as

�mk = �Pkrf(mk), (5)

where Pk is an approximation of the inverse Hessian operator H(mk)�1. We shall refer to

these schemes as preconditioned gradient-based methods in what follows.

Preconditioned steepest-descent, nonlinear conjugate gradient and l-BFGS methods fall

into the scope of these minimization algorithms. These methods only di↵er in the way the

matrix Pk is computed. The preconditioned steepest-descent uses a “direct” approximation

of the inverse Hessian (for instance an approximation of its diagonal (Operto et al. 2006;

Shin et al. 2001)). The nonlinear conjugate gradient method and the l-BFGS method (Byrd

et al. 1995) use former values of the gradient to estimate the inverse Hessian operator†. As

mentioned in the introduction, nonlinear conjugate gradient and l-BFGS techniques can be

used in combination of a prior estimation of the diagonal to compute the matrix Pk (Nocedal

and Wright 2006).

2.3 Truncated Newton algorithm

Instead of building an approximation Pk, the linear system (4) can be solved using a matrix-

free version of the conjugate gradient algorithm (Saad 2003). This only requires the capability

of computing Hessian-vector products H(mk)v where v is an arbitrary vector in the model

space M. The truncated Newton method thus results in a two nested loops algorithm:

†Only the value of the gradient at the previous iteration is used for the nonlinear conjugate gradient, while l previous values

are used for the l-BFGS algorithm.
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• The external loop consists in the iterative update of the current subsurface parameter

estimation, following equation (3).

• The internal loop consists in the iterative resolution of the linear system (4), in order

to compute the model update �mk. An approximate solution of this system is computed,

as described in the following

The advantage of using a truncated Newton method is two-fold:

• The approximation of the inverse Hessian operator is local, while the approximation

computed in l-BFGS or nonlinear conjugate gradient method depends on previous iterations.

For minimizing strongly nonlinear misfit functions, this can be advantageous, since the

information on the local curvature carried out by previous iterate can be erroneous. Setting

the memory parameter l is thus known to be a di�cult issue as it is strongly problem

dependent (Nocedal and Wright 2006).

• The truncation strategy in the inner loop consists in accounting only for the higher

eigenvalues of the inverse Hessian operator. This has an intrinsic regularization e↵ect on the

computation of the model update.

In addition, the truncated Newton method o↵ers the possibility of using the approxima-

tions of the inverse Hessian operator which have been developed in the context of precondi-

tioned gradient-based methods as preconditioners of the inner linear systems, yielding the

resolution of the preconditioned linear system

PkH(mk)�mk = �Pkrf(mk), (6)

at each outer iteration. Hence, this method could be seen as a complementary evolution of

previously developed minimization strategies.

However, compared to the preconditioned gradient-based methods, the truncated Newton

method involves an additional computational expense associated with the iterative resolution

of the linear system (4). This should be balanced by an improvement of the convergence speed

of the external loop. Therefore, as mentioned by Nash (2000), an e�cient implementation
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of the truncated Newton method relies on the reduction of this additional cost. This can be

achieved in the context of FWI by:

• Defining second-order adjoint formulas for the e�cient computation of Hessian vector

products H(mk)v for any v 2M.

• Defining an adapted stopping criterion for the approximate resolution of the linear

system (4) to limit as much as possible the number of iterations of the conjugate gradient

algorithm at each step of the external loop.

• Using an appropriate preconditioner to accelerate the convergence of the resolution of

the linear system (4).

The truncated Newton strategy can also be implemented using the Gauss-Newton ap-

proximation B(m) of the Hessian operator H(m), which consists in neglecting the second-

order terms of the Hessian operator. The Gauss-Newton approximation is

B(m) = J(m)†R†RJ(m), (7)

where J(m) is the Jacobian matrix:

J(m) = @mu(m), (8)

and † denotes the transpose conjugate operator.

The Gauss-Newton method is appealing for the following reasons:

• B(m) is positive definite by construction, therefore the conjugate gradient algorithm is

well adapted for the resolution of the linear system (4);

• Close to the solution, the residuals are small, therefore the matrix B(m) should be a

good approximation of the full Hessian matrix H(m), since the second-order part which is

neglected in the Gauss-Newton approximation is proportional to the residuals.

From the implementation point of view, the truncated Gauss-Newton procedure di↵ers

only in the computation of matrix-vector products B(m)v instead of H(m)v from the trun-

cated Newton method.
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In the next section, we investigate how the truncated Newton and Gauss-Newton meth-

ods can be e�ciently implemented in the context of FWI.

3 IMPLEMENTATION OF THE TRUNCATED NEWTON METHOD

3.1 Computation of the model update

The resolution of the linear systems (4) first requires to compute the right-hand side�rf(mk).

The computation of rf(mk) is e�ciently achieved through the first-order adjoint-state

method, introduced by Lions (1968). For the sake of generality, we will use here the no-

tations introduced by Plessix (2006) in his review of the adjoint-state technique for seismic

imaging. In this framework, the forward problem should be rewritten as

F (m, u) = 0, (9)

where

F (m, u) = A(m)u� s. (10)

3.1.1 Computation of the gradient and first-order adjoint method

In the context of FWI, the first-order adjoint method amounts to compute rf(mk) as the

zero-lag cross-correlation of the incident wavefield and the adjoint wavefield (Chavent 1974).

The adjoint wavefield is defined as the solution of

@F (m, u)†

@u
� = R

†(d�Ru(m)), (11)

where u(m) is the solution of (1). Based on the definition of the adjoint state �, the gradient

can be expressed as

rf(m) = Re

✓
@F (m, u)†

@m
�(m)

◆
, (12)

where Re denotes the real part operator.

Using this method, the computation cost of the gradient amounts to the resolution of

two wave propagation problems per shot: one forward problem (1) and one adjoint problem

(11).
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3.1.2 Computation of H(m)v through second-order adjoint method

The computation of Hessian-vector products through second-order adjoint methods is a

topic that has already been investigated in the field of data assimilation and weather fore-

casting (Wang et al. 1992). However, the control variable in data assimilation is an initial

condition for the system, whereas in seismic imaging, the control variable is a coe�cient of

the partial di↵erential equation that describes the system. A formula for the computation

of Hessian-vector products have been given by Pratt et al. (1998) in the seismic imaging

context, for the Gauss-Newton approximation in the discrete frequency domain. Fichtner

and Trampert (2011) also propose more general formulas for the computation of Hessian

kernels. Epanomeritakis et al. (2008) give the formulas corresponding to the elastic case.

We propose here a general framework in the frequency domain for deriving these formulas,

with no assumption on the discretization and the kind of partial di↵erential equations that

are used for the wave propagation description. The method can be straightforwardly adapted

to the time-domain formulation by adding proper initial and final conditions, and boundary

conditions. In addition, no prior assumption on the linearity of the forward problem is

required, as it was the case in Pratt et al. (1998) and a previous work (Métivier et al. 2013).

We first define the functional hv(m) as

hv(m) = (rf(m), v)M, (13)

where (., .)M denotes the scalar product on the parameter space M. By definition, the

gradient of the functional hv(m) is

rhv(m) = H(m)v. (14)

We use the Lagrangian formalism to compute rhv(m). We introduce the Lagrangian oper-
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ator L(m, u,�, g, µ1, µ2, µ3) such that

Lv(m, u,�, g, µ1, µ2, µ3)W =

(g, v)M+

Re
⇣
g � @F (m,u)†

@m �, µ1

⌘

W
+

Re
⇣

@F (m,u)†

@u ��R
† (d�Ru) , µ2

⌘

W
+

Re (F (m, u), µ3)W .

(15)

In this expression, (., .)W denotes the scalar product in the wavefield space W . In addition,

u and � play the role of the incident and adjoint wavefields respectively, while g plays the

role of the gradient. Let u(m), �(m), g(m) satisfying the constraints

F (m, u) = 0
@F (m, u)†

@u
� = R

† (d�Ru) g =
@F (m, u)†

@m
�. (16)

We have

Lv(m, u, �, g, µ1, µ2, µ3) = hv(m), (17)

and

@Lv

@m
(m, u, �, g, µ1, µ2, µ3) = rhv(m). (18)

In addition
@Lv

@m
(m, u, �, g, µ1, µ2, µ3) =

Re

 ✓
@

2
F (m, u)†

@m2
�

◆†
µ3

!
+

Re

 ✓
@

2
F (m, u)†

@m@u
�

◆†
µ2

!
+

Re

✓
@F (m, u)†

@m
µ1

◆
+

@Lv

@g
(m, u, g, µ1, µ2, µ3)

@g(m)

@m
+

@Lv

@�
(m, u, g, µ1, µ2, µ3)

@�(m)

@m
+

@Lv

@u
(m, u, g, µ1, µ2, µ3)

@u(m)

@m

(19)
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We can choose µi, i = 1, 3 such that for any perturbations dg, d�, du we have
8
>>>>><

>>>>>:

@Lv

@g
(m, u, g, µ1, µ2, µ3).dg = 0

@Lv

@�
(m, u, g, µ1, µ2, µ3).d� = 0

@Lv

@u
(m, u, g, µ1, µ2, µ3).du = 0.

(20)

This yields 8
>>>>>>>>>>>><

>>>>>>>>>>>>:

µ1 = �v

@F (m, u)

@u
µ2 =

@F (m, u)

@m
µ1

@F (m, u)

@u

†

µ3 =

 
@

2
F (m, u)

@u2

†

�

!†
µ2�

 
@

2
F (m, u)

@u@m

†

�

!†
µ1 �R

†
Rµ2.

(21)

Using the relation (10) which defines our forward problem, we see that

@F (m, u)

@u
= A(m),

@
2
F (m, u)

@u2
= 0. (22)

This yields 8
>>><

>>>:

A(m)µ2 = �@F (m, u)

@m
v

A(m)†µ3 = �
 

@
2
F (m, u)

@u@m

†

�

!†
µ1 �R

†
Rµ2.

(23)

We thus obtain the three-terms Hessian-vector product formula

H(m)v = Re

 ✓
@

2
F (m, u)†

@m2
�

◆†
µ1

!
+

Re

 ✓
@

2
F (m, u)†

@m@u
�

◆†
µ2

!
+

Re

✓
@F (m, u)†

@m
µ3

◆
.

(24)

where

@
2
F (m, u)

@m@u
(25)

is the radiation matrix.

The adjoint wavefield µ1 is equal to v. The computation of one Hessian-vector products

thus requires to compute the the radiation wavefield u(m) the adjoint wavefield �(m), as
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well as two additional wavefield µ2(m) and µ3(m). The two latter are computed through the

resolution of respectively one forward and one adjoint problem with new source terms.

3.1.3 Gauss-Newton approximation

From the definition of the Gauss-Newton operator B(m) (7), we see that only first-order

derivatives of the wavefield u(m) with respect to the model parameter m (also called Jacobian

matrix or Fréchet derivatives) are taken into account. The computation of B(m)v can thus

be derived from equations (23) and (24) by neglecting the contribution of all the second-order

terms. This yields the following simplifications:
8
><

>:

A(m)µ2 = �@F (m, u)

@m
v

A(m)†µ3 = �R
†
Rµ2,

(26)

and the following formula for the Gauss-Newton approximation

B(m)v = Re

✓
@F (m, u)†

@m
µ3

◆
. (27)

This formula is consistent with the one derived in Pratt et al. (1998) or Métivier et al. (2013).

Note however that in these two articles, the method used to derive this formula relies on the

assumption of a linear forward problem, which is not the case here.

3.1.4 Computation cost

Consider the resolution of the linear system (4) for the computation of the model update

�mk. The right hand side in (4) is the opposite gradient �rf(m). Using the first-order

adjoint state method, it can be computed at the expense of one forward problem for u(m)

and one adjoint problem for �(m).

Provided these wavefields can be stored, the computation of H(m)v of B(m)v only

requires to solve two additional problems: one forward problem for the computation of

µ2(m), and one adjoint problem for the computation of µ3(m).

Note that in practice, the computation of B(m)v does not make use of the adjoint

wavefield �(m). However, its computation is imposed by the computation of the gradient,
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which is the right-hand side of the linear system (4). The computation cost of the action

of the Hessian operator or its Gauss-Newton approximation on an arbitrary vector is thus

the same in terms of number of wave equations to be solved. Nonetheless, only the incident

wavefield u(m) have to be stored in the Gauss-Newton approximation.

The overall computation cost of the truncated Newton method in terms of wave propa-

gation simulation is thus given by

C = Next(2 + 2⇥Nint,k), (28)

where Next is the total number of iterations of the external loop and Nint,k is the number of

conjugate gradient iterations performed at the k
th iteration of the external loop. The choice

of an appropriate stopping criterion for the conjugate gradient helps to reduce the quantities

Nint,k. Note that this computational cost depends on the ability of storing u(m) and �(m).

This is a reasonable assumption for 2D applications. This is a more complex issue in 3D:

more sophisticated memory and I/O management methods should be required. In particular,

the increase of the number of sources is critical, as one incident and one adjoint wavefield

u(m) and �(m) have to be stored per sources. The use of source encoding techniques should

therefore be crucial in this context.

3.2 Definition of an adapted stopping criterion

The Newton method is an iterative minimization of local quadratic expansions of the mis-

fit function. Indeed, the resolution of the system (4) amounts to the minimization of the

quadratic form

qk(�m) = f(mk) + (rf(mk), �m) +
1

2
(H(mk)�m, �m). (29)

The definition of the stopping criterion for the truncated Newton method is related to

the accuracy of these quadratic expansions. The idea exploited by Eisenstat and Walker

(1994) is the following. Consider a stopping criterion for the CG iterations of the form

kH(mk)�mk +rf(mk)k  ⌘kkrf(mk)k. (30)



16 L. Métivier, F. Bretaudeau, R. Brossier, S. Operto, J. Virieux

where ⌘k is the forcing term. The role devoted to this forcing term is to account for the

accuracy of the local quadratic approximation. When this accuracy increases, ⌘k should

decrease, so as to require to solve the linear system (4) more accurately. Conversely, when

the accuracy decreases, ⌘k should increase, so as to allow a less precise resolution of the

linear system (4). This is achieved by defining ⌘k as the measure of the distance between

the first order Taylor expansion of the gradient at the iteration k � 1 and the gradient at

iteration k:

⌘k =
krf(mk)�rf(mk�1)� �k�1H(mk�1)�mk�1k

krf(mk�1)k
. (31)

The definition of the stopping criterion is complemented with an appropriate strategy

to deal with the detection of negative eigenvalues of the Hessian operator. The conjugate

gradient algorithm is designed for the resolution of symmetric definite positive systems.

However, far from the solution, the full Hessian operator H(mk) may be indefinite. Therefore,

the iterative construction of the solution of (4) in the Krylov space

�
r0, H(mk)r0, H(mk)

2
r0, . . .

 
, (32)

where r0 is the initial residual

H(mk)�m
0
k +rf(mk), (33)

may use a ascent direction associated with a negative eigenvalue of the operator H(mk).

In this case, the linear iterations are stopped and the last value of the model update �mk

which is computed is returned. If this ascent direction is met at the very first linear iteration,

the steepest-descent direction is returned. This strategy, proposed by Eisenstat and Walker

(1994), ensures superlinear convergence properties far from the solution, and quadratic con-

vergence when entering the attraction basin of the minimum.

3.3 Preconditioning

In order to speed-up the convergence of the resolution of the linear system (4), it is natural to

introduce a preconditioning matrix. In this study we focus on the special preconditioner re-

lated to the FWI problem proposed by Shin et al. (2001). The diagonal elements of the Gauss-
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Newton part of the Hessian B(m) are approximated using the pseudo-Hessian approach,

which appears to be relevant for surface seismic survey. Let us denote ↵j(m) = @mju(m)

the column j of the Jacobian matrix. Deriving the forward problem with respect to the jth

component of the model parameter mj yields

A(m)
@u

@mj

+ A(m)
@A

@mj

u = 0. (34)

Thus, ↵j(m) is the solution of the forward problem

A(m)↵j = �@mjA(m)u. (35)

Using this formula, an exact computation of the entire Jacobian matrix J(m) would thus

require to solve m forward problems, which is intractable from a computational cost point

of view. Nonetheless, a cheap approximation can be built by approximating the forward

problem operator A(m) as the identity matrix I in the left-hand side of equation (35). This

leads to the definition of the pseudo-Hessian matrix entries:

eHij(m) =
⇣
[@miA(m)u(m)]T

⇥
@mjA(m)u(m)

⇤⌘
, i, j = 1, . . . ,M. (36)

The preconditioner used by Shin et al. (2001) is defined by

Pk = diag

 
1

eHii(mk)

!
i = 1, . . . ,M. (37)

However, because of the fast decrease of the wavefield with depth, very small values appear

on the diagonal entries of eH(m) corresponding to deep subsurface parameters. Therefore,

using directly Pk as a preconditioner may yield numerical instabilities. We thus introduce a

threshold parameter ✓ 2 R, the constant Ck 2 R such that

Ck = max
j

eHjj(mk), (38)

and we define the matrix P
✓
k such that

P
✓
k = diag

 
1

eHii(mk) + ✓Ck

!
, i = 1, . . . ,M. (39)

Finally the norm of the misfit gradient rf(m) should be preserved by the preconditioner?.

?Since the stopping criterion for the linear system (4) is based on the reduction of the linear residuals with respect to the norm

of the gradient, it appears natural that the preconditioner conserves the gradient norm.
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Therefore, we introduce

P
⌫,✓
k = ⌫P

✓
k , (40)

such that

⌫ =
krf(mk)k
kP ✓

krf(mk)k
. (41)

We use P
⌫,✓
k as a preconditioner of the linear system (4) at each iteration of the external

loop. The preconditioner P
⌫,✓
k can also be used as a preconditioner of the nonlinear conjugate

gradient method and the l-BFGS method.

4 CASE STUDIES

4.1 Numerical framework

4.1.1 Forward problem

The numerical tests we present are performed in the 2D frequency domain. In the first case

study, we use an isotropic acoustic approximation of the wave propagation. In the second

case study, we consider the propagation of acoustic anisotropic waves in a VTI media . In

both cases an optimized second-order finite di↵erences scheme with a compact stencil is

used (Hustedt et al. 2004; Operto et al. 2009). Perfectly Matched Layers (PML) (Berenger

1994; Métivier 2011) are introduced to avoid fictitious reflections on the boundaries of the

computation domain, excepted on top, where a free surface condition is implemented.

The numerical resolution of the forward problem amounts to the resolution of a sparse

linear system. This is performed through a parallel LU factorization using the MUMPS

algorithm (Amestoy et al. 2000). The LU factorization of the impedance matrix associated

with the discretization of the forward problem is reused to solve the adjoint problems, as

MUMPS o↵ers the possibility of solving the adjoint system once the factorization has been

performed. This is especially important when the number of sources is large: the same LU

factorization is used to solve the forward and adjoint problems associated with each source.

This interesting feature is one of the reason for working in the frequency domain: provided

the LU factorization of the impedance matrix can be stored, this approach largely reduces
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the computational costs, compared to the time domain approach. In the particular case

of the truncated Newton method, this also makes possible to use the factorization of the

impedance matrix for the computation of the Hessian-vector products. The resolution of the

extra forward and adjoint problems induced by the truncated Newton method can thus be

performed without a new factorization of the impedance matrix.

4.1.2 Minimization scheme settings

In the following two tests an estimation of the P-wave velocity model is computed using a

FWI scheme. For each of these two tests, we compare the performances of four minimization

strategies:

• nonlinear conjugate gradient method;

• l-BFGS method;

• truncated Newton method using the full Hessian operator;

• truncated Newton method using the Gauss-Newton approximation;

In our implementation of the truncated Newton algorithm, we complement the Eisenstat

stopping criterion by setting to 30 the maximum number of inner iterations that can be

performed in the first case study, and only 3 in the second case study. These rather small

values is chosen to enhance the smoothing e↵ect related to the truncation strategy, which is

appropriate for the inversion of noisy data.

The stopping criterion we use is the following: the iterations end as soon as

f(mk)/f(p0) < ✏. (42)

The quantity ✏ is set to 10�2 for the first experiment. Such an accuracy can be reached since

in this case we work with synthetic data without noise. In the second experiment, we use

real noisy data, and ✏ is set to 6 ⇥ 10�1, which is adapted to the expected decrease of the

misfit function.

This stopping criterion is complemented with a maximum number of nonlinear iteration,

which is set to 100 for the BP 2004 test case and 20 for the Valhall test case. In addition, if
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no acceptable step length is found after 20 linesearch iterations, the minimization is stopped

and an error flag is returned.

Finally, note that the memory parameter l for the two l-BFGS methods, which cor-

responds to the number of gradient stored to compute the approximation of the inverse

Hessian, is set to l = 20 in the first case and l = 5 in the second case.

4.1.3 Linesearch algorithm and nonlinear conjugate gradient implementation

The linesearch algorithm we use is designed so that the step �k computed at each nonlinear

iteration satisfies the Wolfe criterion (see equation (4)). Because we want the four minimiza-

tion methods to use the same linesearch algorithm, we implement a particular form of the

nonlinear conjugate gradient method. Indeed, as mentioned by Nocedal and Wright (2006),

standard implementations of this algorithm (such as Fletcher-Reeves or Polak-Ribière im-

plementations) require to use a linesearch algorithm satisfying the strong Wolfe conditions

to guarantee global convergence toward local minima. We select instead the nonlinear con-

jugate gradient algorithm proposed by Dai and Yuan (1999), which is compatible with a

linesearch process that only enforces the standard Wolfe conditions.

4.1.4 Preconditioner

The four minimization methods use the same preconditioner P
⌫,✓
k . For the two case studies,

a trial-and-error approach has been used to determine a common usable values for ✓. Prag-

matical values range from 10�1 to 10�5. In practice, the value ✓ = 10�2 has been used along

all the experiments, for all the methods.

4.2 The 2004 BP model

4.2.1 Presentation

The 2004 BP model has been originally designed as a benchmark model for testing sub-salt

seismic imaging methods (Billette and Brandsberg-Dahl 2004). We perform a decimation of

the original model taking one parameter value each ten grid points, and we choose a 25 m
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Figure 1. BP 2004 synthetic exact model (a), initial model (b).

discretization grid. We end up with a 6.2 km wide and 4.2 km deep reduced model, described

by approximately 5⇥ 104 discrete parameters.

The resulting model is presented in figure 1. It presents a complex rugose salt body, and

sub-salt slow velocity anomalies that represent over-pressured zones. This intends to mimic

the geology that can be found in the Gulf of Mexico. The main challenges in this area are

related to the definition of a precise delineation of the salt and recovering information on

the sub-salt velocity variations. The P-wave velocity in the salt reaches 4790 m.s�1, while it

is equal to 1486 m.s�1 in the water. The discrepancy between these two values is responsible

for high amplitude reflections. These energetic reflected waves are reflected back at the top

of the water layer through the free surface condition. The proximity of these two reflectors

generates multiple scattering.

We use a surface acquisition configuration with 62 sources and 248 receivers, from x = 50

m to x = 6225 m at 25 m below the sea-level. The spatial sampling of the receivers and

the sources is set up to 25 m and 100 m, respectively. We use a free-surface condition at

the top of the model, to account for the surface multiples. The water layer is kept constant

throughout the iterations, so as to stabilize the problem. The bathymetry of the sea-bottom

is respected. No regularization strategy is used here, as we consider synthetic data without

additional noise.

The cycle of FWI starts with an initial model computed as a smooth version of the

exact model using again a Gaussian smoothing. Compared to previous work (Métivier et al.
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Group 1 2 Hz 2.25 Hz 2.5 Hz 2.75 Hz

Group 2 2.5 Hz 3 Hz 3.5 Hz 4 Hz

Group 3 4 Hz 4.5 Hz 5 Hz 5.5 Hz

Group 4 5.5 Hz 6 Hz 6.5 Hz 7 Hz

Group 5 7 Hz 7.5 Hz 8 Hz 8.5 Hz

Group 6 8.5 Hz 9.5 Hz 10.5 Hz 11.5 Hz

Group 7 11.5 Hz 12.5 Hz 13.5 Hz 14.5 Hz 15.5 Hz

Group 8 15.5 Hz 16.5 Hz 17.5 Hz 18.5 Hz 19.5 Hz

Table 1. Frequency group strategy for the BP 2004 case study

2012), we use here a smoother initial model. The characteristic length used for this smooth-

ing is set to 500 m instead of 375 m for this former study. The resulting initial model is

presented in figure 1. The use of this smoother initial model requires a careful hierarchical

frequency strategy. We generate 27 data sets, from 2 Hz frequency to 19.5 Hz gathered into

8 overlapping subgroups, as presented in table 1.

4.2.2 Estimated models

The models estimated by the four minimization methods are presented in figure 2. From km

1 to km 6 in the horizontal direction, the top salt-structure is correctly delineated in the

four estimations. The reconstruction of the basin between x = 0 km and x = 1 km seems

more di�cult. This basin is responsible for high amplitude multi-scattered waves di�cult

to interpret, and is located at one extremity of the acquisition. The nonlinear conjugate

gradient method and the l-BFGS method seem to be the most a↵ected by this particular

configuration. The geometry of the basin is not recovered and is filled with high amplitude

velocities. These perturbations are also responsible for obscuring the sub-salt targets, and

creating erroneous slow velocity anomalies.

Conversely, the results provided by the truncated Gauss-Newton or the truncated New-

ton method seem more reliable. The best estimation is provided by the truncated Newton

method. The geometry of the basin is better recovered, and the sub-salt slow velocity anoma-

lies better reconstructed. Note also that only these two methods are able to provide details on
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Figure 2. Estimated models for the BP case study. Nonlinear conjugate gradient (a), l-BFGS

method (b), truncated Gauss-Newton method (c), truncated Newton method (d).

the salt structure itself, namely the very small heterogeneities located at x = 2km, z = 2km.

The possible enhancement of the inverse Hessian approximation yielded by the truncated

Newton method may explain this improvement in the resolution and the stability of the

inversion.

4.2.3 Convergence profiles

The convergence profiles of the four methods are presented for the frequency group 1, 4 and

8 in figure 3. Excepted for the frequency group 1 for which the l-BFGS method converges

slightly faster, the nonlinear conjugate gradient and the l-BFGS method converge slower than

the two truncated Newton methods in terms of nonlinear iterations. This is satisfactory since

each nonlinear iteration is more expensive for the truncated Newton method. In addition,

only the two truncated Newton method satisfies the convergence criterion before reaching

the maximum number of nonlinear iteration, set to 100.

In terms of number of forward problems resolution, the slowest method is the truncated

Newton method. This indicates that the speed-up in terms of nonlinear iteration does not
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Figure 3. Misfit function decrease for the BP 2004 case study. Decrease with respect to the the

number of nonlinear iterations: first frequency group (a), second frequency group (b), third fre-

quency group (c). Decrease with respect to the number of wave equation problem solved: first

frequency group (d), second frequency group (e), third frequency group (f). PCG: nonlinear conju-

gate gradient, PLB: l-BFGS, PTN: truncated Newton, PTGN: truncated Gauss-Newton method.

compensate the extra computation cost required. However, as suggested by the profile as-

pect, reducing the total number of authorized internal iterations could possibly improve the

convergence in terms on forward problem resolutions. Indeed, we can detect plates which

correspond to non-converging inner iterations, which reach the maximum allowed number of

iterations, set to 30 for this experiment. In each case, the fastest method in terms of forward

problem resolution is the l-BFGS method. The truncated Gauss-Newton method and the

nonlinear conjugate gradient are in between.
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The speed-up obtained in terms of convergence with respect to the number of nonlinear

iterations does not compensate for the additional cost related to the resolution of the inner

linear systems. However, compared to preconditioned gradient-based method, the truncated

Newton method appears to provide better subsurface estimations.

4.3 2D Valhall case study

4.3.1 Description

The Valhall oil field is located in the North Sea, in production since the beginning of the

80s. In this shallow water environment field, the water depth reaches only 100 m. This par-

ticular configuration is adapted for the use of ocean bottom cables (OBC) seismic recorders.

Four components sensors have thus been disposed at the sea bottom level. Several three-

dimensional seismic surveys have been performed to follow the time-evolution of the oil

field. The Valhall seismic data have been investigated by several authors in the context of

2D multi-parameter FWI (Prieux et al. 2011, 2013a,b) and 3D mono-parameter FWI(Sirgue

et al. 2010; Etienne et al. 2012).

In this study, we are interested in the mono-parameter inversion of a 2D line from the

Valhall OBC data-set. This data-set involves 320 sources located at 5 meters depth in the

water layer, and 210 receivers located on the sea bottom, between 68 and 72 meter depth.

Sources and receivers are equally spaced each 50 m. Only the hydrophone component is

used. The data is interpreted down to 3.5 Hz. The signal-over-noise ratio (SNR) for lower

frequencies is too weak for the data to be exploited in this frequency band.

Below the sea level, the presence of soft shale sediments is responsible for strong attenu-

ation and anisotropy of the wave propagation. As demonstrated in the work of Prieux et al.

(2011), it is necessary to account for this anisotropy in the modeling to correctly invert the

Valhall data-set. For this case study, we thus change the forward problem from standard

isotropic acoustic modeling to the VTI acoustic modeling proposed by Operto et al. (2009).

From 3.5 Hz to 7.45 Hz, we define 6 overlapping frequency groups to be inverted sequen-

tially
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Group 1 3.54 Hz 3.78 Hz 4.03 Hz

Group 2 4.03 Hz 4.28 Hz 4.64 Hz

Group 3 4.64 Hz 5.00 Hz 5.25 Hz

Group 4 5.25 Hz 5.62 Hz 5.99 Hz

Group 5 5.99 Hz 6.35 Hz 6.72 Hz

Table 2. Frequency group strategy for the Valhall case study

Figure 4. Initial models for P-wave velocity (a), density (b). Dimensionless Thomsen parameters

✏ (c), � (d)

The VTI forward modeling requires to define initial models not only for P-wave velocity,

density and attenuation, but also for the Thomsen anisotropy parameters ✏ and �. The

initial models for P-wave velocity and Thomsen parameters are determined by reflection

travel-time tomography. The density initial model is derived from the P-wave velocity initial

model through the Gardner law. The quality factor model is taken constant equal to 200.

The corresponding models are presented in figure 4. In our experiments, the initial models

for density, attenuation and Thomsen parameters remain the same, and we only focus on

the reconstruction of the P-wave velocity model.
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4.3.2 Regularization strategy

As the real seismic data is noise contaminated, an appropriate regularization strategy has to

be designed. We choose to add a standard Tikhonov regularization term T (m) to the misfit

function f(m) to define the regularized misfit function fT (m)

fT (m) = f(m) +
↵

2
T (m) (43)

where

T (m) =
�
↵xk@xmk2 + ↵zk@zmk2

�
(44)

The parameter ↵ accounts for the influence of the regularization term. The parameters ↵x

and ↵z can be used to enforce a stronger regularization in the direction x or z. In the sequel,

we use the settings

↵x = 1, ↵z = 0.5 (45)

to enforce smoother variations in the horizontal direction.

In addition, the truncation strategy for the computation of the descent direction within

the truncated Newton/Gauss-Newton methods is used as an additional regularization (see

the work of Kaltenbacher et al. (2008) on this particular topic). The maximum number of

inner conjugate gradient iteration is set to 3.

In order to investigate the sensitivity of the methods to the regularization parameter ↵,

we have performed experiments for 2 di↵erent values of ↵, reflecting what we may call a

“strong” ↵1 and a “weak” ↵2 regularization.

• For nonlinear conjugate gradient and l-BFGS, we use ↵1 = 10�4 and ↵2 = 5⇥ 10�4.

• For the truncated Newton/Gauss-Newton method, we use ↵1 = 10�6 and ↵2 = 5⇥10�6.

The combination of two types of regularization for the truncated Newton/Gauss-Newton

strategies makes possible to decrease the value of the parameter ↵ by two orders of magnitude

for these methods. This reduces the smoothing e↵ect yielded by the Tikhonov regularization

term, and possibly the resolution loss associated with this smoothing.
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Figure 5. Weak regularization: computed P-wave velocity models using the nonlinear conjugate

gradient (a), l-BFGS (b), truncated Gauss-Newton (c), truncated Newton (d).

4.3.3 FWI results

We presents the results obtained by our four optimization schemes in figures 5 and 6. Below

shallow layers of shale sediments (from z = 0 to z = 1.5 km), we can see two low velocity

zones, corresponding to the presence of gas layers (between z = 1.5 km and z = 2.5 km,

x = 8 km and x = 12 km). Below these gas layers (between z = 2.5 km and z = 4 km), we

can locate the cap rock of the reservoir and stronger reflectors.

The results we obtain demonstrate the di�culty of finding a suitable trade-o↵ be-

tween regularization and resolution power. For nonlinear conjugate gradient and the l-BFGS

method, changing from weak to strong regularization yields significant di↵erences in the re-

sults. For weak regularization, the final results is contaminated by noise. For strong regular-
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Figure 6. Strong regularization: computed P-wave velocity models using the nonlinear conjugate

gradient (e), l-BFGS (f), truncated Gauss-Newton (g), truncated Newton (h).

ization, the results appears significantly smoother, to the cost of a potential loss of resolution

in depth.

Conversely, the truncated Newton method seems to be more stable with respect to a

modification of the regularization parameter. The two results obtained for weak and strong

regularization do not show strong di↵erences. In addition, even if the regularization param-

eter used is two order of magnitude smaller than the one used for the two latter methods,

the final results is less a↵ected by noise. This tends to confirm the regularization e↵ect

associated with the truncation strategy.

This analysis is confirmed by the well-logs presented in figures 7 and 8. The results from

the truncated Newton methods provide a globally better fit to the well-log data with strong

or weak regularization. We are particularly interested in the jump in depth at z = 3.5 km
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Figure 7. P-wave velocity logs compared to a reference well-log at x = 9.5 km, ), with weak

regularization. Results obtained using the nonlinear conjugate gradient (a), l-BFGS (b), truncated

Gauss-Newton (c), truncated Newton (d)

(green circles), which can be quite clearly identified in the results provided by these two

methods. This jump correspond to the presence of an actual reflector (see the migrated

section using the initial velocity model 9). For the preconditioned gradient-based methods,

the results obtained with a weak regularization present strong oscillations in depth which

make di�cult to identify this reflector. The results obtained with a strong regularization

smooth out the results, and make equivalently di�cult the identification of the reflector.
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Figure 8. P-wave velocity logs compared to a reference well-log at x = 9.5 km, ), with strong

regularization. Results obtained using the nonlinear conjugate gradient (a), l-BFGS (b), truncated

Gauss-Newton (c), truncated Newton (d)

4.3.4 Resolution analysis

The analysis we have led suggests that a better trade-o↵ between regularization and resolu-

tion power can be obtained using the truncated Newton method. In order to investigate this

particular point we compare the sensitivity of the preconditioned gradient-based methods

and the truncated Newton method to a perturbation in the final estimations.

We add a positive perturbation of 200 m.s�1 in the gas cloud localized around x = 11

km, z = 2 km. We compute synthetic data using the same surface acquisition geometry in
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Figure 9. Reverse Time Migration result using the starting velocity model.

this perturbed model. We invert this synthetic data starting from the unperturbed model,

and we perform only one nonlinear iteration. In this case, the nonlinear conjugate gradient

and the l-BFGS method are equivalent: at the first iteration, the l-BFGS approximation is

just given by the preconditioning matrix.

We compare the reconstruction of the perturbation for the nonlinear conjugate gradient

model and for the truncated Newton model. For the truncated Newton experiment, we

compute the perturbation using

• 3 inner linear iterations

• 7 inner linear iterations

The results are presented in figure 10. Not surprisingly, the focusing achieved by the

nonlinear conjugate gradient method is poorer than the one obtained using the truncated

Newton method. The amplitude of the perturbation reconstructed by the nonlinear conjugate

gradient only reaches 10 m.s�1 while it reaches more than 30 m.s�1 for the truncated Newton

method. More interestingly, we can see the refocusing e↵ect associated with the inverse

Hessian operator on the model update obtained after 7 inner linear iterations. The amplitude

of the reconstructed perturbation is similar, but the artifacts around the perturbation tends

to vanish.
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Figure 10. Reconstruction of a small amplitude perturbation in the final estimation. Zoom on

the perturbation. Nonlinear conjugate gradient (a), truncated Newton method with 3 inner linear

iterations (b), 7 inner linear iterations (c)

4.3.5 Convergence profiles

The convergence profiles for the Valhall case study are displayed in figure 11. They cor-

respond to the inversion of the frequency groups 1, 3, and 5 in the strong regularization

case.

Among the four methods, the l-BFGS method seems to be the less robust, as it fails to

converge for the three frequency groups displayed. It means that the method terminates on

a linesearch failure: the minimization of the misfit function does not reach the bound fixed

at 0.6 or the maximum number of nonlinear iteration fixed at 20.

Compared to l-BFGS, the nonlinear conjugate gradient method seems to be more robust.

For the frequency group 1 and 3, the maximum number of nonlinear iterations is reached

and the method provides a better decrease of the misfit function.

The truncated Newton/Gauss-Newton methods systematically reach the maximum num-

ber of authorized nonlinear iterations and provide a better decrease of the misfit function
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at each frequency group. However, the speed-up in terms of nonlinear iteration compared to

the gradient-based methods is limited, excepted for the first frequency group.

In terms of number of resolution of wave propagation problems, the truncated Newton/Gauss-

Newton methods appear not surprisingly as more expensive as their gradient-based counter-

part. However, this extra computation cost is controlled by the maximum number of inner

iteration, which is limited to 3. Note that for this case study, the results provided by the

truncated Newton and the truncated Gauss-Newton are very similar (for the first frequency

group, the convergence curves of these two methods are even superposed).

5 CONCLUSION AND PERSPECTIVES

5.1 Conclusion

In this study, we are interested in the implementation of the truncated Newton minimization

scheme for FWI. The algorithm is based on a two nested loops architecture: the external

loop consists in updating an initial model up to the final estimation. The inner loop consists

in the computation of the model updates from an inexact resolution of the linear system

associated with the computation of the Newton descent direction. This inexact resolution

is performed with a matrix-free conjugate gradient solver. Only the action of the Hessian

operator on an arbitrary vector has to be computed. This can be e�ciently achieved using

second-order adjoint state formulas: only two additional wave propagation problems have to

be solved to compute this quantity. The use of an adaptive stopping criterion for the inner

loop and a suitable preconditioner enhance the e�ciency of the algorithm.

Compared to conventional preconditioned gradient-based methods operator such as the

nonlinear conjugate gradient or the l-BFGS method, it seems that using the truncated

Newton method could be advantageous. The synthetic BP 2004 case study emphasizes the

di�culty of salt and sub-salt imaging. The high velocity contrasts caused by the presence

of large salt structures is responsible for the presence of energetic multiple reflections in the

data. This cause di�culties to standard minimization methods to provide correct images

of the salt and sub-salt targets. In this case, the truncated Newton method seems to be
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Figure 11. Misfit function decrease for the Valhall case study for the strong regularization case.

Decrease with respect to the number of nonlinear iterations: frequency group 1 (a), frequency group

3 (b), and frequency group 5 (c). Decrease with respect to the number of wave equation problems

solved: frequency group 1 (d), frequency group 3 (e), and frequency group 5 (f). PCG: nonlin-

ear conjugate gradient, PLB: l-BFGS, PTGN: truncated Gauss-Newton method, PTN: truncated

Newton.

more robust than the nonlinear conjugate gradient and the l-BFGS method. In particular,

the truncated Newton method provide better results than the truncated Gauss-Newton

method. A possible explanation is that the part of the Hessian operator which is neglected

in the Gauss-Newton approximation is related to double scattered waves. In this context of

multiple-scattering between the salt and the free surface, it could be crucial to account for

the whole Hessian operator.
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The Valhall real data case study also demonstrates the potential interest of using the

truncated Newton method compared to the conventional methods. The noise-contamination

of the data requires to use a suitable regularization. We use a standard Tikhonov reg-

ularization of the first order derivatives of the model. We identify the trade-o↵ between

regularization and the expected resolution of the final estimation. The nonlinear conjugate

gradient and the l-BFGS method are highly sensitive to the regularization hyper-parameter

which controls the amount of regularization. Conversely, the truncated Newton method pos-

sesses an inherent smoothing related to the truncation strategy for computing the model

update (Kaltenbacher et al. 2008). This yields the possibility of choosing a regularization

hyper-parameter 2 orders of magnitude lower than for the preconditioned gradient-based

methods. It also reduces the sensitivity to this hyper-parameter. A better trade-o↵ between

resolution and regularization is thus achieved. A point-spread function test in the final es-

timated models clearly indicates that the information on the local curvature carried out by

the inverse Hessian operator yields a better resolution.

5.2 Perspectives

The numerical performances of the di↵erent minimization schemes we have compared strongly

depend on an accurate estimation of the inverse Hessian operator as a preconditioner. For

now, we have only used the diagonal preconditioner from the pseudo-Hessian approach de-

veloped by Shin et al. (2001). The accuracy of this approximation is however limited and

the use of this preconditioner is restricted to surface acquisition configurations. Therefore

we are interested in the development of better approximation of the inverse Hessian. Several

techniques could be used.

For instance, Chiu and Demanet (2012) have proposed approximation of the inverse

Hessian operator through matrix probing. However, this method only approximates the

Gauss-Newton part of the operator, and relies on the acoustic approximation. Bekas et al.

(2007) propose a general algebraic method to compute approximation of the diagonal of

a given matrix in a matrix-free fashion. The explicit construction of the entire matrix is
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not required. This makes this method adapted to FWI, as opposed with incomplete LU or

Cholesky factorization (Benzi 2002).

Another way of improving the resolution of the inner linear systems is related to deflation

strategies (Saad 2003). From the Krylov subspace created during the resolution of the inner

linear system at iteration k � 1, an estimation of the smallest eigenvectors of the Hessian

operator can be computed. These eigenvectors can be inserted in the starting Krylov suspace

at iteration k in order to improve the convergence. Related methods developed within the

data assimilation community could also be investigated. Gratton et al. (2011) propose for

instance to compute an approximate initial guess for the inner linear systems in a reduced

space given by a spectral decomposition of the initial Hessian operator.

The importance of an accurate estimation of the inverse Hessian operator should be even

more important in the context of multi-parameter FWI. The simultaneous reconstruction

of parameters such as the P-wave velocity and the density for instance is a↵ected by strong

trade-o↵s. The perturbation in the P-wave models can be erroneously interpreted as per-

turbations in the density model, and vice-versa. A more accurate estimation of the inverse

Hessian operator should help to mitigate these trade-o↵ e↵ects. In this context, the truncated

Newton method could thus produce more reliable results. This topic will be investigated in

future studies.
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